Роль примесной зоны при переходе диэлектрик–металл при изменении состава сильно легированного и компенсированного полупроводникового твердого раствора TiCo_{1-x}Ni_xSb. Донорные примеси

© В.А. Ромака^{*,†}, М.Г. Шеляпина[^], Ю.В. Стаднык^{•,¶}, D. Fruchart[◊], Л.П. Ромака•, В.Ф. Чекурин*

* Институт прикладных проблем механики и математики им. Я. Пидстрыгача Национальной академии наук Украины, 79053 Львов, Украина

[†] Национальный университет «Львовская политехника»,

79013 Львов, Украина

[^] Институт физики им. И.В. Фока Санкт-Петербургского государственного университета,

198504 Санкт-Петербург, Россия • Львовский национальный университет им. И. Франко,

79005 Львов, Украина

 $^{\diamond}$ Лаборатория кристаллографии Национального центра научных исследований, ВР 166,

38042 Гренобль, Франция

(Получена 23 июня 2005 г. Принята к печати 1 декабря 2005 г.)

Определена роль примесной донорной зоны в проводимости сильно легированного и компенсированного интерметаллического полупроводника TiCoSb. Произведен расчет электронной структуры полупроводникового твердого раствора $TiCo_{1-x}Ni_xSb$. Предложена модель перестройки примесной зоны полупроводника TiCoSb при легировании донорными примесями. Выявлен переход проводимости от активационной к металлической при изменении состава твердого раствора $TiCo_{1-x}Ni_xSb$, который мы связываем с переходом Андерсона.

PACS: 71.20.Nr, 71.30.+h, 72.20.Pa, 75.20.Ck, 81.05.Hd

1. Введение

При изучении влияния примесей на кинетические, магнитные и структурные характеристики интерметаллических соединений структурного типа MgAgAs, в частности полупроводников MCoNi(Sn, Sb) (M = Ti, Zr, Hf), мы сделали вывод об определяющей роли примесных состояний в проводимости указанных соединений. Данный вывод сделан из анализа как собственных теоретических и экспериментальных результатов, так и литературных данных по проводимости, коэффициенту Зеебека и магнитной восприимчивости полупроводников M(Co, Ni)(Sn, Sb) и твердых растворов на их основе, а также в результате исследования структурных особенностей указанных соединений [1–12].

Было изучено влияние акцепторных примесей различных концентраций от $N_A = 3.5 \cdot 10^{20} \text{ сm}^{-3}$ до $N_A = 5.3 \cdot 10^{21} \text{ см}^{-3}$ на кинетические и магнитные явления в интерметаллических полупроводниках *n*-ZrNiSn и *n*-TiNiSn. Кроме того, был сделан расчет электронной плотности для полупроводниковых твердых растворов $\text{Zr}_{1-x}\text{Sc}_x\text{NiSn}$ и $\text{Ti}_{1-x}\text{Sc}_x\text{NiSn}$. Эти исследования позволили предложить модель перестройки примесной зоны при легировании указанных полупроводников акцепторными примесями и наблюдать предсказанный теоретическими расчетами переход проводимости диэлектрик-металл, который является переходом Андерсона [13,14].

В этой связи важно отметить, что технология получения указанных полупроводниковых материалов во всех известных нам работах, включая цитируемые, предусматривает сплавление шихты исходных компонентов с последующим неконтролируемым охлаждением расплава. Иными словами, на практике частично реализуется один из путей получения аморфных твердых тел [15]. Последнее наряду с флуктуациями больших концентраций заряженных примесей $(10^{19}-10^{21} \text{ см}^{-3})$ [16] приводит к наличию в кристаллических соединениях структурного типа MgAgAs значительных структурных разупорядочений [17]. Все перечисленное в свою очередь обусловливает появление в запрещенной зоне состояний, связанных с дефектами, а в зоне непрерывных энергий — локализованных состояний, разделенных с непрерывными зонными состояниями порогом подвижности [15]. Такие изменения в энергетическом спектре полупроводника существенным образом влияют на его характеристики. В то же время ни в одной из известных нам работ при анализе экспериментальных результатов, в частности температурных зависимостей проводимости, термоэдс, коэффициента Холла, авторы не обращают внимания на этот, на наш взгляд, принципиальный и определяющий факт. В этой связи в работе [18] изложен подход для оценки экспериментальных результатов исследования интерметаллических полупроводников структурного типа MgAgAs. В основе подхода лежит одновременный учет особенностей сильно легированных и компенсированных полупроводников MNi(Sn, Sb) (M = Ti, Zr, Hf) и локальных разупорядочений их кристаллической структуры.

[¶] E-mail: stadnyk_yuriy@franko.lviv.ua

Известно, что проводимость полупроводников в значительной мере определяется степенью их компенсации, которая в свою очередь задает положение уровня Ферми (E_F). Определение положения E_F , а также умение управлять этим положением в полупроводнике TiCoSb является важной практической задачей, поскольку данный полупроводник только при существующем методе полученния обладает относительно высокими значениями проводимости и коэффициента Зеебека, что делает его одним из наиболее исследуемых и перспективных термоэлектрических материалов [19–21].

Данная работа посвящена изучению влияния значительных концентраций донорных примесей на кинетические, магнитные и структурные характеристики интерметаллического полупроводника TiCoSb. Исследовалось поведение электропроводности, коэффициента Зеебека и магнитной восприимчивости TiCoSb, а также пространственное расположение атомов в кристаллической решетке полупроводника при легировании его донорными примесями различных концентраций путем замены Со $(3d^74s^2)$ на Ni $(3d^84s^2)$ и образования твердого раствора замещения TiCo_{1-x}Ni_xSb. При этом концентрация доноров изменялась от $N_{\rm D} = 1.9 \cdot 10^{20} \, {\rm cm}^{-3}$ (x = 0.01) до $N_{\rm D} = 3.8 \cdot 10^{21}$ см⁻³ (x = 0.2). Столь большие концентрации донорных примесей в исследуемых полупроводниках позволяют наблюдать особенности их характеристик, в том числе при достаточно высоких температурах [16]. Для отделения эффектов, связанных с примесными состояниями, мы провели расчет электронной структуры TiCo_{1-x}Ni_xSb методом функций Грина в приближении когерентного потенциала [22] и сопоставили результаты расчетов с экспериментальными данными.

2. Методика эксперимента

Образцы твердого раствора TiCo_{1-x}Ni_xSb получали методом электродуговой плавки исходных компонентов на медном водоохлаждаемом поде в атмосфере очищенного аргона. Сплавы подвергались гомогенизирующему отжигу при 1070 К на протяжении 720 ч в вакуумированных кварцевых ампулах. Рентгеновский фазовый анализ осуществлялся при помощи дифрактометров ДРОН-2.0 (Fe K_{α} -излучение) и HZG-4A (Си K_{α} -излучение). Расчет параметров решетки и уточнение кристаллической структуры осуществлялись при помощи комплекса программ CSD [23]. Удельное сопротивление (ρ), коэффициент Зеебека (S) по отношению к меди и магнитная восприимчивость (χ), определенная по методу Фарадея, были измерены в области температур 80–380 К.

3. Расчет электронной структуры TiCo_{1-x}Ni_xSb

На рис. 1 представлены результаты расчета распределения электронной плотности (DOS) для каждого из компонентов твердого раствора TiCo_{1-x}Ni_xSb и суммарное распределение для различных составов. Видно, что TiCoSb и TiNiSb, находящиеся на противоположных сторонах твердого раствора, являются узкозонными полупроводниками. Данный вывод согласуется как с экспериментальными результатами [10], так и с результатами теоретических расчетов методом псевдопотенциала [5]. Из расчетов следует, что принципиальным отличием между полупроводниками TiCoSb и TiNiSb является расположение в них уровня Ферми $E_{\rm F}$. В TiCoSb $E_{\rm F}$ располагается в запрещенной зоне, а в TiNiSb — в зоне проводимости. Соответственно проводимость TiCoSb будет носить активационный характер, а проводимость TiNiSb — металлический.

Из рис. 1 также следует, что электронная плотность выше уровня Ферми определяется главным образом d-состояниями Ті, в то же время валентная зона определяется d-состояниями Со или Ni, которые перекрываются с d-состояниями Ті и p-состояниями Sb. Уже при x = 0.1 уровень Ферми попадает в зону проводимости. Увеличение *х* приводит к дрейфу *E*_F внутри зоны проводимости. Наблюдается уменьшение интенсивности пиков в валентной зоне при -0.14 и -0.06 Ry (для случая TiCoSb), которые соответственно принадлежат *d*-состояниям Со и Ni. При этом новый пик -0.22 Ry ниже E_F, связанный с увеличением d-состояний Ni, является более рельефным и доминирует для x = 0.9. Проводимость TiCo_{1-x}Ni_xSb будет носить металлический характер. Таким образом, замена Со на Ni в полупроводниковом твердом растворе TiCo_{1-x}Ni_xSb приводит к реализации перехода проводимости от активационной к металлической.

Расчет плотности состояний на уровне Ферми $N(E_{\rm F})$ свидетельствует (рис. 2, вставка), что для малых значений x (меньших концентраций донорных примесей) плотность состояний на уровне Ферми определяется d-электронами Ti с существенным вкладом d-состояний Co. C увеличением x определяющим становится вклад d-электронов Ni.

4. Экспериментальные иследования TiCo_{1-x}Ni_xSb

Рентгеновский фазовый анализ подтвердил, что все исследуемые образцы неограниченного твердого раствора TiCo_{1-x}Ni_xSb являются однофазными и кристаллизуются в структурном типе MgAgAs (пространственная группа $F\bar{4}3m$). Уточнение кристаллической структуры для фаз составов TiCo_{0.99}Ni_{0.01}Sb и TiCo_{0.95}Ni_{0.05}Sb показало, что распределение атомов в образцах соответствует структурному типу MgAgAs, в котором позиции 4 (*a*) 0 0 0 статистически заняты атомами Ni и Co [10].

Зависимости $\ln \rho(1/T)$ для TiCo_{1-x}Ni_xSb при $x \le 0.01$ являются типичными для полупроводников (рис. 3). При значениях x > 0.01 активационные участки исчезают и зависимости принимают металлический характер. На зависимости $\ln \rho(1/T)$ для образца TiCoSb (кривая 1)

Рис. 1. Распределение плотности состояний для каждого из компонентов и суммарное распределение для твердого раствора TiCo_{1-x}Ni_xSb. Вертикальными пунктирными прямыми обозначено положение уровня Ферми *E*_F.

можно выделить высоко- и низкотемпературный активационные участки, которые мы связываем соответственно с активацией электронов с уровня Ферми, расположенного в кулоновской щели примесной зоны, в нелокализованные состояния зоны проводимости (энергия *ε*₁) и ε_2 — энергия активации на порог подвижности E_C зоны проводимости. Расчеты показывают, что для TiCoSb $(x = 0) \varepsilon_1 \approx 176$ мэВ, а $\varepsilon_2 \approx 9$ мэВ. При этом коэффициент Зеебека S с температурой изменяется квазилинейно (рис. 4, кривая 1). Такое несвойственное для классических полупроводников поведение зависимости S(T), как считают авторы [24], обусловлено значительными концентрациями примесей ($\sim 10^{20} \, {\rm cm}^{-3}$). Оно экспериментально наблюдалось в сильно легированных акцепторными примесями и компенсированных полупроводниках ZrNiSn [17,18,25,26]. Для образца с x = 0 при T < 100 К величина *S* имеет положительный знак (рис. 2, 4). При более высоких температурах и для всех остальных образцов коэффициент Зеебека имеет отрицательный знак. Смена знака *S* с положительного на отрицательный свидетельствует, что исследуемый образец TiCoSb имеет неконтролированные акцепторные примеси.

Легирование полупроводника донорными примесями с $N_{\rm D} = 1.9 \cdot 10^{20}$ см⁻³ (x = 0.01) обусловливает процесс перестройки примесной зоны в результате изменения как степени компенсации и положения уровня Ферми, так и размеров этой зоны и ее расположения по отношению к вершинам зон непрерывных энергий, а также изменяет механизмы проводимости полупроводника. При полной компенсации полупроводника уровень $E_{\rm F}$ должен находиться на дне примесной зоны, а при перекомпенсации (увеличении x) будет дрейфовать по

Рис. 2. Зависимости проводимости σ (1), коэффициента Зеебека *S* (2), магнитной восприимчивости χ (3) и расчетной плотности состояний на уровне Ферми (вставка) от состава твердого раствора TiCo_{1-x}Ni_xSb при 80 K.

Рис. 3. Температурные зависимости удельного сопротивления ρ для твердого раствора TiCo_{1-x}Ni_xSb для различных значений *x*: 1 - 0, 2 - 0.01, 3 - 0.03, 4 - 0.05.

примесной зоне в направлении зоны проводимости [16]. Уменьшение энергии активации проводимости ε_2 с 9 мэВ (x = 0) до 3.5 мэВ (x = 0.01) указывает на увеличение радиусов локализации электронов и изменение положения $E_{\rm F}$ по отношению к порогу подвижности зоны проводимости $E_{\rm C}$ из-за изменения степени компенсации полупроводника. Как следует из рис. 2, на этом же концентрационном участке (x = 0-0.05) наблюдается

увеличение $\chi = f(x) \, \left(\chi \propto N(E_{\rm F})/E_{\rm F} \right)$ для парамагнетика Паули) и возрастание по абсолютной величине значений S(x) ($S \propto k_{\rm B}T/E_{\rm F}$). Поскольку исследованные образцы являются парамагнетиками Паули, наблюдаемая синхронность в поведении |S|(x) и $\chi(x)$ в концентрационном интервале $N_{\rm D} = (1.9 - 9.5) \cdot 10^{20} \, {\rm cm}^{-3}$ (x = 0.01 - 0.05)свидетельствует об уменьшении плотности состояний на уровне Ферми, что связано поначалу с изменением степени компенсации полупроводника с последующей перекомпенсацией и переходом от р-к п-типу проводимости. Последнее приводит к дрейфу уровня E_F от дна примесной зоны в сторону зоны проводимости (случай сильной компенсации полупроводника *n*-типа) вплоть до дна зоны (случай слабой компенсации) при увеличении концентрации донорной примеси [16]. Можем предположить, что в этой области концентраций кулоновская щель исчезает из-за заполнения всех состояний примесной зоны. В результате примесная зона перекрывается с порогом подвижности, а уровень $E_{\rm F}$ фиксируется на пороге подвижности зоны проводимости, т.е. на минимуме плотности состояний. Отметим, что мы не наблюдали осцилляций плотности состояний при прохождении уровня Ферми через примесную зону в TiCoSb, как это имело место при легировании интерметаллических полупроводников ZrNiSn и TiNiSn акцепторными примесями [13,14,18,25]. Объяснений этого различия у нас пока нет.

Из рис. З следует, что для образца с x = 0.01 при $T \gtrsim 270$ К вклад зонных носителей становится все более существенным и при $T \gtrsim 300$ К наблюдается металлизация проводимости, а рост $\rho(T)$ обусловлен зонными механизмами рассеяния. Иными словами, уже при x = 0.01 и определенных значениях температур появляется достаточное количество свободных электронов с высокой подвижностью, которые существенно влияют на проводимость полупроводника. Проводимость

Рис. 4. Температурные зависимости коэффициента Зеебека *S* для твердого раствора $TiCo_{1-x}Ni_xSb$ при различных значениях x: 1 - 0, 2 - 0.01, 3 - 0.03, 4 - 0.05.

Рис. 5. Модель перестройки примесной зоны интерметаллического полупроводника *n*-TiCo_{1-x}Ni_xSb при легировании донорной примесью Ni различной концентрации.

полупроводника в этом концентрационном интервале увеличивается на 3 порядка. При $N_{\rm D} > 9.5 \cdot 10^{20}$ см⁻³ (x > 0.06) наблюдаемый рост зависимостей $\chi(x)$ и $\sigma(x)$, а также одновременное уменьшение по абсолютной величине коэффициента Зеебека при изменении состава полупроводникового твердого раствора *n*-TiCo_{1-x}Ni_xSb связаны с появлением и увеличением концентрации свободных электронов и ростом плотности состояний на уровне Ферми в зоне проводимости (выше $E_{\rm C}$). Это согласуется и с результатами расчетов электронной структуры. Проводимость интерметаллического полупроводника *n*-TiCo_{1-x}Ni_xSb носит металлический характер.

По аналогии с теорией легирования интерметаллических полупроводников MNiSn (М — металл) акцепторными примесями [25] предлагаем модель перестройки примесной зоны TiCoSb при легировании донорными примесями различных концентраций (рис. 5).

Известно, что, когда состав твердых растворов рассматриваемого типа изменяется таким образом, что $E_{\rm C} - E_{\rm F}$ изменяет знак, имеет место переход Андерсона [15]. Из приведенного следует:

а) *p*-TiCoSb является компенсированным полупроводником, уровень Ферми фиксируется акцепторной зоной, проводимость носит активационный характер и $E_{\rm C} - E_{\rm F} > 0$;

б) проводимость *n*-TiCo_{1-x}Ni_xSb при x > 0.06 носит металлический характер и определяется свободными электронами, уровень Ферми находится в зоне проводимости и $E_{\rm C} - E_{\rm F} < 0$.

5. Заключение

Представленные результаты свидетельствуют о том, что наблюдаемый переход проводимости диэлектрикметалл в интерметаллическом полупроводниковом твердом растворе $TiCo_{1-x}Ni_xSb$ является переходом Андерсона и связан с перестройкой примесной зоны легированного и компенсированного полупроводника. Совпадение выводов теоретических расчетов с экспериментальными результатами о наличии перехода проводимости диэлектрик-металл при легировании TiCoSb донорными примесями свидетельствует о корректности предложенной модели перестройки примесной зоны интерметаллических полупроводников при легировании донорными примесями.

Работа выполнена в рамках грантов Национальной академии наук Украины (№ 0102U000454) и Министерства образования и науки Украины (№ 0106U001299).

Список литературы

- K.H.J. Buschow, D.B. Mooij, T.T.M. Palstra, G.J. Nieuwenhuys, J.A. Mydosh. Phil. J. Res., 40, 313 (1985).
- [2] M. Terada, K. Endo, Y. Fujita, R. Kimura. J. Phys. Soc. Japan, 32 (1), 91 (1972).
- [3] J. Pierre, R.V. Skolozdra, J. Tobola, S. Kaprzuk, C. Hordequm, M.A. Kouacou, I. Karla, R. Currat, E. Lelievre-Berna. J. Alloys Comp., 262–263, 101 (1997).
- [4] K. Kaczmarska, J. Pierre, J. Beille, J. Tobola, R.V. Skolozdra, G.A. Melnik. J. Magn. Magn. Mater., 187, 210 (1998).
- [5] J. Tobola, J. Pierre, S. Kaprzuk, R.V. Skolozdra, M.A. Kouacou. J. Phys. B: Condens. Matter., 10, 1013 (1998).
- [6] H. Kleinke. Z. Anorg. Allgm. Chem., 624, 1272 (1998).
- [7] J. Tobola, J. Pierre. J. Alloys Comp., 296, 243 (2000).
- [8] D. Jung. H.-J. Koo, M.-H. Whangbo. J. Molecul. Struct., 527, 113 (2000).
- [9] Y. Xia, V. Ponnambalam, A.L. Pope, S.J. Poon, T.M. Tritt. J. Appl. Phys., 88 (4), 1952 (2000).
- [10] Yu. Stadnyk, Yu. Gorelenko, A. Tkachuk, A. Goryn, V. Davydov, O. Bodak. J. Alloys Comp., **329**, 37 (2001).
- [11] Y. Xia, V. Ponnambalam, A.L. Pope, S.J. Poon, T.M. Tritt. J. Phys. B: Condens. Matter, 13, 77 (2001).
- [12] A.N. Caruso, C.N. Borca, D. Ristoiu, J.P. Nozieres, P.A. Dowben. Surf. Sci. Lett., **525**, L109 (2003).
- [13] О.И. Бодак, В.А. Ромака, Ю.В. Стаднык, М.Г. Шеляпина, Д. Фрушарт, Л.П. Ромака, В.Ф. Чекурин, Ю.К. Гореленко. Укр. физ. журн. (2005) в печати.
- [14] L. Romaka, Yu. Stadnyk, M.G. Shelyapina, V.S. Kasperovich, D. Fruchart, A. Horyn. J. Alloys Comp., **396**, 64 (2005).
- [15] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982) [Пер. с англ.: N.F. Mott, E.A. Davis. Electron processes in non-crystalline materials (Oxford, Clarendon Press, 1979)].
- [16] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [17] Ф.Г. Алиев, Н.Б. Брандт, В.В. Козырьков, В.В. Мощалков, Р.В. Сколоздра, Ю.В. Стаднык. Письма ЖЭТФ, 45, 535 (1987).
- [18] Yu.V. Stadnyk, V.A. Romaka, Yu.K. Gorelenko, L.P. Romaka, D. Fruchart, V.F. Chekurin. J. Alloys Comp., (2005) to be published.
- [19] R.V. Skolozdra, Yu.V. Stadnyk, L.P. Romaka, F.G. Aliev. J. Termoelectricity, 3, 29 (1994).
- [20] R.V. Skolozdra. J. Termoelectricity, 2, 55 (1997).
- [21] Ю.В. Стаднык, А.М. Горынь, Л.П. Ромака, Ю.К. Гореленко, Р.В. Сколоздра. Патент Украины, № 25472 А (1998).
- [22] M. Schroter, P.H. Ebert, H. Akai, P. Entel, E. Hoffmann, G.G. Reddy. Phys. Rev. B, 52, 188 (1995).
- [23] L.G. Akselrud, Yu.N. Grin, P.Yu. Zavalii, V.K. Pecharsky, V.S. Fundamenskii. Proc. 12th Eur. Crystallofraphic Meeting (М., Наука, 1989) р. 155.

- [24] K. Durcewski, M. Ausloos. J. Magn. Magn. Mater., 51 (1-3), 230 (1985).
- [25] В.А. Ромака, Ю.В. Стаднык, М.Г. Шеляпина, Д. Фрушарт, В.Ф. Чекурин, Л.П. Ромака, Ю.К. Гореленко. ФТП, 40 (6), 665 (2005).
- [26] F.G. Aliev, V.V. Kozyrkov, V.V. Moshchalkov, R.V. Skolozdra, K. Durczewski. J. Phys. B: Condens. Matter, 80, 353 (1990).

Редактор Т.А. Полянская

The role of the impurity band in insulator-metal transition due to composition change in highly doped and compensated semiconducting $TiCo_{1-x}Ni_xSb$ solid solution. Donor impurities

V.A. Romaka^{*,†}, M.G. Shelyapina[∧], Yu.V. Stadnyk[●], D. Fruchart[◊], L.P. Romaka[●], V.F. Chekurin^{*}

* Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 79053 Lviv, Ukraine
† National University "Lvivska Politekhnika", 79013 Lviv, Ukraine
^ I.V. Fock Institute of Physics St. Petersburg State University, 198504 St. Petersburg, Russia
• Ivan Franko Lviv National University, 79005 Lviv, Ukraine
^ Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France

Abstract The role of the impurity donor band in the conductivity of dopped and compensated intermetallic semiconductors TiCoSb was investigated. A simulation of the electronic structure for TiCo_{1-x}Ni_xSb semiconducting solid solution was carried out. A scheme of the impurity band transformation in TiCoSb semiconductor due to donor impurities doping was advanced. A transition of conductivity from activated to metallic type while TiCo_{1-x}Ni_xSb solid solution composition changes was observed. We relate this transition with Anderson-type transition.