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Peculiarities of electrodispersion of metal microdroplets in laser torch
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The paper considers the conditions for the development of electrocapillary instability on the surface of micron

and submicron metal droplets in laser torch plasma. Using a numerical model of the Langmuir layer, it is shown that

the condition for the development of electrocapillary instability on the droplet surface in plasma differs significantly

from the Rayleigh criterion. A dispersion relation was obtained for waves on the surface of the melt under the

influence of plasma.
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Earlier experiments on nanosecond laser ablation of

metals in vacuum have revealed a special ablation regime [1]
with structures consisting of amorphous nanoparticles of

the ablated metal, which are several nanometers in diam-

eter and are characterized by an extremely narrow size

dispersion, forming on a substrate located at a distance

of several centimeters from the target surface. A method

for synthesis of similar nanostructures from various metals

(the laser electrodispersion method) has been developed

based on this effect and has found application, e.g., in

the production of catalysts with high catalytic activity and

chemical stability [2].
The method of laser electrodispersion of metals relies on

cascade fragmentation of submicron metal droplets ejected

from the target surface into laser torch plasma, where they

are charged by the flux of plasma electrons (Fig. 1, a). If

the droplet charge exceeds critical value qR (Rayleigh limit),
droplets become unstable and produce a large number

of daughter nanodroplets under the influence of Coulomb

forces.

To formulate the requirements for plasma parameters at

which fragmentation may occur, one needs to determine

the value of critical droplet charge qR in plasma. One way

to estimate this value is to use the classical Rayleigh limit

obtained for a charged droplet in vacuum [3]:

qR = 4π
(

(N + 2)ε0σR3
d

)1/2

. (1)

Here, Rd is the droplet radius, ε0 is the dielectric constant,

σ is the surface tension coefficient, and N > 2 is the

number of the mode entering an unstable state. Since the

critical charge in this approximation increases with the mode

number, the droplet stability may be analyzed by examining

the transition to an unstable state of mode N = 2 only.

The authors of [4] have analyzed the plasma parameters for

droplets of different sizes at which criterion (1) is satisfied

in the case of N = 2. However, further research revealed

that the development of Rayleigh instability on the surface

of submicron droplets in laser torch plasma has significant

features that limit the applicability of criterion (1).

Let us illustrate this by examining in more detail the

conditions for the development of electrocapillary insta-

bility on the surface of a droplet in plasma. It is

known that when a metal droplet is charged in plasma

(Fig. 1, b), a positively charged layer, which screens the

droplet charge (Langmuir layer), forms. Langmuir layer

thickness Lsh is several times larger than Debye radius of

plasma rD = (ε0kBTe/q2
enpl)

1/2, where kB is the Boltzmann

constant, Te is the plasma electron temperature, qe is the

electron charge, and npl is the plasma density. Note that

the Debye radius for dense laser torch plasma assumes

the values of rD ∼ 10−8 m, which are significantly smaller

than droplet radius Rd ∼ 10−7−10−6 m. Therefore, in the

present study, we neglect the intrinsic curvature of the

droplet surface and consider the condition for instability

development in the planar approximation.

The transition of a charged metal droplet into an unstable

state occurs when the negative pressure of the electric field

overcomes the influence of capillary forces and the pressure

of plasma ions at the peaks of the disturbed surface. Since

Rayleigh limit (1) was obtained for a charged droplet in

vacuum, it is applicable only if the influence of ion pressure

may be neglected and the electric field lines are effectively

focused at the peaks of the disturbed surface.

The distribution of electric field pressure PE = ε0E2/2

(E is the electric field strength) and plasma ion pressure

P i = mi niv
2
i /2 (mi is the ion mass, ni is the ion density,

and v i is the ion velocity) along the droplet surface is

governed by the charge distribution in the Langmuir layer

and the value of floating potential U f l of a droplet. In

the planar case, the floating potential value is determined

from relation qeU f l = kBTe ln(mi/2πme)
1/2, where me is the

electron mass.
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Figure 1. a — Diagram of the laser electrodispersion method. The incidence of laser radiation on the metal surface is accompanied

by the ejection of droplets into plasma. Their charging in plasma leads to cascade electrodispersion and the formation of nanoparticles.

The laser pulse parameters are as follows: power, 1−3GW/cm2; duration, 25 ns; radiation wavelength, 1064 nm. The pulse rate is 60Hz.

b — Langmuir layer forming around a droplet with radius Rd in laser torch plasma. The droplet charge is determined from the balance of

currents of plasma ions i+ and electrons e−. At typical laser torch plasma parameters, layer thickness Lsh is significantly smaller than the

droplet radius (Lsh ≪ Rd).
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Figure 2. a — Diagram of computational region �. b — Example calculation of the Langmuir layer in the vicinity of a curved melt

surface. The color gradient denotes the ni − ne charge density. Darker regions correspond to higher charge densities. The curves with

arrows are ion current lines, while the curves without arrows are electric field lines. A color version of the figure is provided in the online

version of the paper.

The region of the Langmuir layer near the disturbed melt

surface (�) is shown in Fig. 2, a. Cartesian xy -coordinates
are used to characterize the geometry of this region.

Disturbed metal surface Ŵm has the form of a plane wave:

ym ∼ A cos(2πx/λ), where λ is the wavelength. The choice

of this type of disturbance allows one to use this model to

obtain a dispersion relation for waves on the melt surface.

The characteristic width of the layer region is chosen in the

calculation process in accordance with the surface charge

screening condition (the electric field strength at tentative

boundary Ŵpl between the layer and plasma should be

significantly lower than the field strength at the surface of

melt Ŵm).

In order to determine the field strength and the density

and velocity of ions on the metal surface, one needs to

solve the system of layer equations that consists of the

continuity equation for the ion flux in the layer, the Newton

equation for acceleration of ions under the influence of an

electric field, and the Poisson equation for the distribution

of electric field potential U in the layer. It is assumed

below that the transport of ions in the layer is collisionless

and the distribution of plasma electrons in the layer follows

the Boltzmann distribution (Bohm approximation [5]). It is
convenient to solve the problem in dimensionless quantities:

ξ =
x
λ
, η =

y
λ
, ρ =

ni

npl
, v =

v i

c i
, ϕ =

qeU
kBTe

, (2)

where c i = (kBTe/mi)
1/2 is the ion-sound velocity equal to

the velocity of ions entering the layer (Bohm criterion). The
system of layer equations has the following dimensionless

form:

div(ρv) = 0, (3)

(v∇)v = ∇ϕ, (4)

α21ϕ = ρ − e−ϕ, (5)

where parameter α = rD/λ characterizes the layer thickness

relative to a given wavelength. Conditions ρ = 1, vξ = 0,

vη = −1, and ϕ = 0 are fulfilled at boundary Ŵpl . Since

ion transport equations (3), (4) are first-order hyperbolic

Technical Physics Letters, 2025, Vol. 51, No. 5



Peculiarities of electrodispersion of metal microdroplets in laser torch plasma 83

ones and require boundary conditions on just one boundary

to be defined, only the Dirichlet conditions for electric

field potential equation (5) are specified on metal surface

Ŵm: ϕ = ϕ0, where ϕ0 = qeU f l/kBTe is the dimensionless

floating potential. Periodic conditions are satisfied at vertical

boundaries ξ = ±1/2. Since the floating potential depends

logarithmically on the ion mass, it varies little when different

metals are examined. The ϕ0 value for metals used in

applied research (Ni, Cu, Pt, Pd, etc.) falls within the range

of 4−6. In the present study, ϕ0 assumes a fixed value

ϕ0 = 6 in order to reduce the number of free parameters.

The dimensionless amplitude of surface disturbance has the

form β = A/λ and assumes values β = 0−0.2. This range

was chosen out of necessity of examining small disturbances

of the droplet surface, which enables one to analyze the

calculation results in a linear approximation.

The Bohm equations system was solved by the DG

method [6] in Comsol Multiphysics. An example solution is

illustrated in Fig. 2, b.

The calculation results revealed that the pressure of

ions and the electric field is modulated along the sur-

face at a small amplitude of surface disturbance; i.e.,

P i,E ≈ P i0,E0 + δP i,Eβ cos(2πξ), where P i0,E0 is the pres-

sure on a flat surface and δP i,E is the pressure modulation

amplitude. The ion pressure on an undisturbed surface

compensates completely for the electric field pressure;

i.e., P i0 = PE0. The amplitudes of modulation of electric

field pressure δPE , ion pressure δP i , and total pres-

sure δP tot = δPE − δP i normalized to thermal pressure of

plasma P0 = nplkBTe corresponding to different values of

parameter α are presented in Fig. 3.

It follows from the analysis of calculation data that both

the ion pressure and the effect of limited focusing of electric

field lines at the disturbance peaks, which is caused by the

small thickness of the Langmuir layer, need to be taken into

account at α < 1 (long waves). Ion pressure is the most

effective when the disturbance amplitude is greater than

(or comparable to) the layer thickness. At α > 1 (short
waves), the ion pressure and the effect of limited focusing

of field lines may be neglected. The amplitude of the electric

field pressure modulation then approaches the vacuum case,

enabling the use of classical Rayleigh limit (1) for qualitative
assessments.

The restriction on the wavelength at which expression (1)
is applicable leads to its modification. The wavelength on

the droplet surface is determined based on mode number

N of the natural droplet oscillation: Nλ = 2πRd . With the

α > 1 constraint taken into account, the lowest mode is

N ≈ 2πRd/rD . The expression for the Rayleigh limit for

large droplets (Rd ≫ rD) in plasma then takes the form

qR ≈ 4π

(

(

2πRd

rD
+ 2

)

ε0σR3
d

)1/2

≈ 4
√
2π3/2Rd

(

ε0σ

rD

)1/2

. (6)
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Figure 3. Plasma pressure modulation amplitude normalized to

thermal pressure P0 = nplkB Te . The vertical dashed line marks

the value of α at which the amplitude reaches the layer thickness

(β = α).

It should be noted that condition (6) allows one to obtain

the conditions for transition to an unstable state of high

modes only. However, despite the fact that the efficiency of

focusing of electric field lines is reduced in the long-wave

region, the development of electrocapillary instability in this

region is also possible [7]. The expression for the critical

charge of a droplet valid within the entire wavelength range

will be derived in future studies.
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