04,06,13,14

DFT исследования нелинейно-оптических, пьезоэлектрических и фотоупругих свойств гексагональных $M_2(NO_3)(OH)_3$ (M=Sr,Ba)

© Ю.Н. Журавлев, Е.В. Гвоздикова

Кемеровский государственный университет, Кемерово, Россия

E-mail: zhur@kemsu.ru

Поступила в Редакцию 9 апреля 2025 г. В окончательной редакции 14 июля 2025 г. Принята к публикации 16 июля 2025 г.

В рамках теории функционала плотности методом связанных возмущений Хартри-Фока/Кона-Шэма в базисе локализованных орбиталей, с использованием градиентного PBE с дисперсионной поправкой D3(BJ) и гибридных PBE0, B3LYP функционалов вычисляются структурные, электронные, колебательные, диэлектрические, упругие и пьезоупругие свойства гексагональных $Sr_2(NO_3)(OH)_3$, $Ba_2(NO_3)(OH)_3$. На основании полученных из первых принципов данных устанавливаются корреляции между микроскопическими структурными и макроскопическими нелинейными оптическими, механическими, электромеханическими характеристиками.

Ключевые слова: функционал плотности, NLO кристаллы, диэлектрическая проницаемость, коэффициенты SGH, упругие постоянные, пьезоэлектрические константы, гидроксиды нитратов.

DOI: 10.61011/FTT.2025.07.61172.74-25

1. Введение

Ультрафиолетовые (UV) и глубоко ультрафиолетовые (DUV) лазеры имеют очень высокую энергию одиночного фотона, что обуславливает их широкое применение в полупроводниковой фотолитографии, медицинском и научном приборостроении, оптоэлектронных устройствах. Однако, необходимые для этих приложений длины волн не всегда могут быть получены непосредственно из лазерного источника. Поэтому генерация второй гармоники (SGH) из нелинейно-оптических (NLO) материалов является важным альтернативным средством их получения [1]. В настоящее время получение новых UV NLO материалов с хорошей характеристикой SHG и короткой длиной волны отсечки фазового синхронизма является важной и сложной задачей [2].

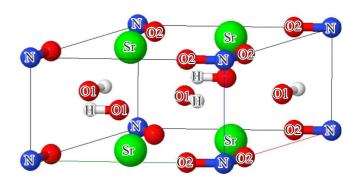
Используемые и планируемые к использованию NLO материалы с точки зрения их кристаллической структуры должны [3] иметь нецентросимметричные (NCS) пространственные группы симметрии, содержать анионы в π -делокализованных системах, активные катионы с неподеленными парами электронов. С точки зрения их оптических свойств требуется [4] короткий край поглощения или большая ширина запрещенной зоны. большие коэффициенты SGH (g_{ij}) , которые должны быть выше, чем у стандартного образца KH₂PO₄ (KDP, $\sim 0.39 \, \text{pm/V} \, [5]$), умеренное двойное лучепреломление $(\Delta n = 0.07 \div 0.1)$, поскольку оно нужно для реализации фазового синхронизма, а также низкая дисперсия показателей преломления. Кроме того, NLO материалы должны быть химически и механически стабильными, можно легко выращивать большие монокристаллы.

За последние три десятилетия в области DUV NLO материалов был достигнут значительный прогресс как в экспериментальных исследованиях, так и в теоретическом проектировании. Глубокое понимание корреляций "структура—свойство" позволяет строго и точно идентифицировать такие кристаллы [3,6]. В литературе накоплены обширные данные, как по общим вопросам новых NLO материалов [1,7–10] так и их отдельных представителей — нитратов [2,11].

Нитраты металлов могут быть получены относительно простыми и энергосберегающими синтетическими методами. Однако, они легко растворяются в воде и поэтому их исследования в качестве UV или DUV NLO материалов относительно немногочисленны. Кристаллические структуры состоят из плоских треугольных структур NO_3^- с π -сопряженными молекулярными орбиталями. В [2] показано, что многие нитратные материалы обладают более высокими откликами SHG 4-5x KDP, чем другие типы. Гидротермальным методом в [12] получен нецентросимметричный нитрат Sr₂NO₃(OH)₃. Благодаря особой координации соседние группы NO₃ располагаются идеально параллельно в плоскости, что дает максимальный вклад в нелинейно-оптический эффект. Методом Курца-Перри показано, что в порошковом образце коэффициент SHG в 3.6 раза больше, чем в KDP. Результат исследования спектроскопии диффузного отражения показал, что коротковолновый край поглощения был ниже 200 nm, что делает его многообещающим NLO материалом для DUV- излучения. Нитрат $Ba_2NO_3(OH)_3$ был синтезирован в [13], и он демонстрирует идеальный баланс большого коэффициента SHG, подходящего двойного лучепреломления,

3 1169

короткую границу поглощения UV-излучения и физикохимическую стабильность. Кристаллическая структура этих соединений ранее была изучена в [14].


В [15] гидротермальным методом был синтезирован новый гидрат нитрата стронция $SrNO_3(OH) \cdot H_2O$, в котором изолированные анионные группы NO_3 объединяются через полиэдры SrO_9 и образуют трехмерную сеть. Его спектры диффузного отражения указывают на то, что он имеет край отсечки UV-излучения 288 nm. В другом соединении $Sr(NO_3)_2 \cdot 4H_2O$ [16] нитратные группы образуют изолированные одномерные цепи. Нелинейные свойства проявляет также нитрат стронция [17], для которого были проведены различные исследования, в том числе рентгеновской дифракции, инфракрасной, рамановской, оптической спектроскопии в видимой области и различные механические измерения.

Эти нецентросимметричные соединения представляют большой интерес для материаловедения и техники, поскольку они, помимо NLO, обладают рядом других важных физических свойств и большинство из них имеют большой потенциал применения в пироэлектричестве, пьезоэлектричестве, сегнетоэлектричестве [18]. Так пьезоэлектрики — материалы способные на преобразование напряжения в механическую деформацию или наоборот, являются неотъемлемой частью многих медицинских приложений и устройств сбора энергии [19]. При деформации кристалла его оптические свойства изменяются и это описывается фотоупругим, пьезооптическим тензорами четвертого ранга, которые коррелируют с изменениями тензора диэлектрической проницаемости [20].

Первопринципные методы в настоящее время играют большую роль в описании и предсказании физических свойств кристаллов [21]. Поэтому в настоящей работе в рамках метода связанных возмущений Хартри-Фока/Кона-Шэма (СРНГ/КЅ) из первых принципов вычисляются структурные, электронные, упругие, диэлектрические, пьезоэлектрические, пьезооптические, фотоупругие и нелинейно-оптические свойства гексагональных гидроксидов нитратов стронция, бария, что позволит сделать прогноз их возможным применениям в качестве полифункциональных материалов.

2. Метод расчета

Структура и физические свойства кристаллов изучались методами теории функционала плотности (DFT) и Хартри-Фока (HF) в пакете программного обеспечения CRYSTAL17 [22]. Кристаллические орбитали задаются линейными комбинациями локализованных атомных функций гауссова типа, чьи экспоненты и коэффициенты определяются из полноэлектронных [23] и псевдопотенциальных наборов [24,25]. В качестве DFT функционалов использовался обменно-корреляционный РВЕ [26], дополненный эмпирической дисперсионной поправкой в форме D3(BJ) [27], а также гибридные трехпараметрический ВЗІХР, который сочетает в себе 20% обмен по

Рис. 1. Элементарная ячейка $Sr_2(NO_3)(OH)_3$.

Хартри-Фоку с обменным ВЗ [28] и корреляционным функционалом LYP [29] и РВЕО [30], в котором подгоночные параметры отсутствуют. Использование этих функционалов связано с тем, что в силу отсутствия экспериментальных данных по большинству изучаемых характеристик, теоретический прогноз должен включать достоверный интервал их значений.

Пороги, контролирующие точность кулоновских и обменных рядов, установлены равными 8, 8, 8, 8, 16 [31]. Обратное пространство дискретизируется с использованием сетки 12×12 [32] с 133 независимыми *k*-точками в неприводимой части зоны Бриллюэна. Точность процедуры самосогласования была не меньше чем 10^{-10} a.u. (1 a.u. = 27.21 eV).

3. Кристаллическая структура и химическая связь

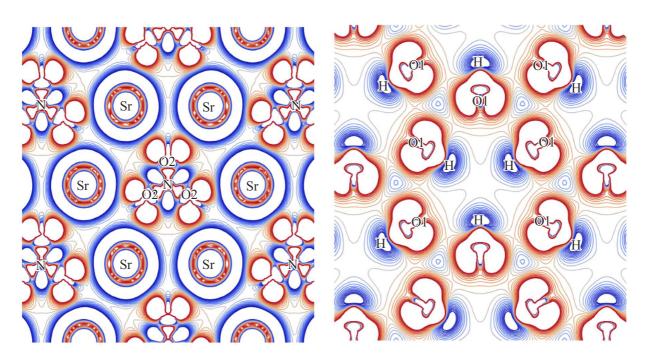
Гидроксиды нитратов $Sr_2NO_3(OH)_3$ (далее — SNOH), $Ba_2NO_3(OH)_3$ (далее BNOH) имеют гексагональную решетку с пространственной группой симметрии $P\bar{6}2m$. В элементарной ячейке содержится одна формульная единица с одним неэквивалентным атомом металла Sr, Ва (позиция Уайкова 2c), азота N (1a), водорода Н (3g) и двумя атомами кислорода O1 (3g), O2 (3f). Каждый атом металла имеет в своем окружении 6 атомов кислорода О1 из гидроксильной группы ОН и три атома кислорода О2 из нитратной NO₃. Дальнейшее его окружение состоит из 6 атомов водорода и двух металлов. Каждую нитратную группу окружают шесть гидроксильных. Атомы водорода, помимо ближайшего О1, имеют в окружении четыре атома О2. Рассчитанные с различными функционалами кристаллографические параметры, вместе с имеющимися экспериментальными данными, записаны в таблице 1. Элементарная ячейка SNOH приведена на рис. 1.

Вычисленные постоянные решетки и междуатомные расстояния удовлетворительно совпадают с экспериментальными. Среднеквадратичные отклонения Δ , рассчитанные по 12 параметрам указывают на более высокую точность с функционалом РВЕ0. Однако, он же имеет и

Таблица 1. Рассчитанные с функционалами РВЕ, РВЕ-D3, РВЕ0, ВЗLYР и измеренные экспериментально (Exp [Ref]) параметры кристаллической структуры $M_2(NO_3)(OH)_3$ (M=Sr,Ba): a,c — постоянные решетки, M-O расстояния между атомами металла и кислорода, H-O — водорода и кислорода, N-O — азота и кислорода. Все величины указаны в Å. Δ — среднеквадратичное отклонение (%) теоретических от экспериментальных данных

Method	$a, \mathrm{\AA}$	c, Å	<i>M</i> -O1	<i>M</i> -O2	H-O1	H-O2	N-O2	Δ
			Si	r ₂ NO ₃ (OH) ₃				
PBE	6.6780	3.6178	2.6572	2.8249	0.9804	2.5690	1.2741	5.98
PBE-D3	6.6146	3.5838	2.6338	2.7902	0.9799	2.5314	1.2728	6.10
PBE0	6.6192	3.5828	2.6344	2.8072	0.9698	2.5366	1.2531	5.48
B3LYP	6.6781	3.6154	2.6577	2.8328	0.9713	2.5656	1.2634	5.67
Exp [12]	6.6037	3.5585	2.6259	2.798	0.8193	2.5958	1.254	
			В	a ₂ NO ₃ (OH) ₃				
PBE	7.0098	3.8328	2.8078	3.0102	0.9856	2.6952	1.2764	6.49
PBE-D3	6.9443	3.8017	2.7862	2.9740	0.9851	2.6542	1.2753	6.44
PBE0	6.9622	3.8102	2.7907	2.9990	0.9745	2.6764	1.2553	5.97
B3LYP	7.0298	3.8535	2.8201	3.0293	0.9764	2.7085	1.2658	6.26
Exp [13]	6.9069	3.8028	2.7779	2.9785	0.8123	2.7468	1.241	

самую низкую временную производительность. Самый скоростной функционал PBE позволяет рассчитывать отклонения по постоянным решетки 2.4%, для расстояний *M*-O 1.8% и хуже всего для О-H в 15.1%. Подключение ван-дер-Ваальсового взаимодействия (vdW) в виде функционала PBE-D3 значительно улучшает постоянные (0.69%), *M*-O расстояния (1.37%) и ухудшает H-O (15.2%). Дисперсионная энергия составляет всего –1.44 eV в SNOH и –1.36 eV в BNOH. С функционалом PBE0, который в отличие от PBE дополнительно включает обмен по Хартри-Фоку, достигаются компромиссные значения Δ : 1.15, 1.33, 14.2%.


Рассмотрим микроскопические параметры кристаллической структуры и химической связи, которые затем можно будет использовать при анализе макроскопических свойств кристаллических систем. Для этого будем использовать для качественной оценки деформационную плотность, получаемую вычитанием из кристаллической, плотностей отдельных невзаимодействующих атомов, а для количественной — рассчитанную по схеме Малликена заселенность перекрывания электронных оболочек атомов $P_{\text{A-B}}$.

На рис. 2 приведено распределение деформационной плотности SNOH в плоскости, где располагаются $[SrNO_3]_{\infty}$ (xy, z=0) и в плоскости $[OH]_{\infty}$ (xy, z=1/2c). Система координат выбрана так, что ось z направлена вдоль оси c. Важными параметрами химической связи являются длины связей, величины зарядов и заселенностей перекрывания. Нитратная группа NO_3 в кристаллической решетке сохраняет свою геометрию с углом \angle O_2 -N- O_2 в 120° , длиной связи N-O2 $1.2728\,\text{Å}$ и заселенностью перекрывания $P_{N-O2}=0.458\,e$, с суммарным зарядом $-0.80\,|e|$ (здесь и далее по умолчанию приводятся данные расчета с PBE-D3 функционалом). Благодаря взаимодействию с атомами стронция все анионы

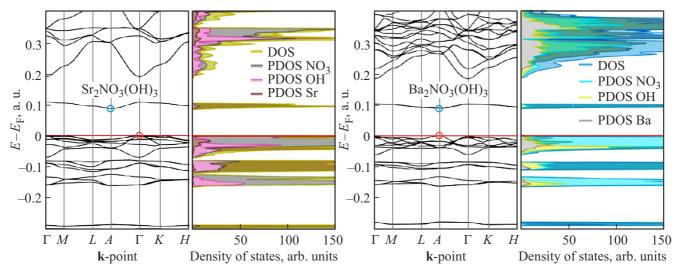
имеют параллельную ориентацию. Угол \angle Sr-N-Sr равен 120°, а расстояние Sr-N 3.8189 Å. Каждый атом стронция окружен шестью атомами кислорода O1 на расстоянии 2.6338 Å, угол между которыми \angle O1-Sr-O1 равен 85.7°, а заселенность $P_{\text{Sr-O1}}=0.007\,e$. Для трех атомов O2 расстояния Sr-O2 больше — 2.7902 Å, угол \angle O2-Sr-O2 120°, а заселенность меньше. В плоскости [OH] $_{\infty}$ заряд перетекает из области атома H и натекает в область O1, так что образуются ионы с зарядами $+0.13\,|e|$ и $-1.09\,|e|$ соответственно. Суммарный заряд атомов в этой плоскости, таким образом, отрицательный, тогда как в плоскости z=0, благодаря заряду иона Sr в $+1.84\,|e|$, он положительный. Параметры химической связи исследуемых кристаллов приведены в табл. 2.

Таким образом, в гидроксидах нитратов стронция и бария имеет место слоистая структура, когда два атома стронция и нитрогруппа распологаются в одной положительно заряженной плоскости, а гидроксильные группы в отрицательно заряженной плоскости. Связь между слоями электростатическая, о чем свидетельствует очень большая энергия взаимодействия подрешеток —31.8, —25.5 eV, которая вычисляется как разность полной энергии и суммы энергии отдельных [SrNO₃], [OH]. Слоистое строение приводит к анизотропии упругих и пьезоэлектрических свойств.

Поскольку химическая связь в SNOH, ВNOH преимущественно ионная, энергетическое распределение электронов характеризуется относительно узкими зонами в валентной области энергетического спектра $E_n(\mathbf{k})$ и узкими полосами в спектре плотности состояний — рис. 3. Здесь использованы следующие обозначения точек зоны Бриллюэна k в единицах основных векторов обратной решетки: Γ (0,0,0), M (1/2,0,0), L (1/2,0,1/2), A (0,0,1/2), K (1/3,1/3,0), H (1/3,1/3,1/2). Начало отсчета по шкале энергий совмещено с последним заполненным

Рис. 2. Распределение деформационной плотности в плоскости xy (z=0) (слева) и в плоскости xy (z=1/2c) (справа) в $Sr_2(NO_3)(OH)_3$.

Таблица 2. Параметры химической связи гидроксидов нитратов: E_g — ширина запрещенной зон (eV), Q_M , Q_H , Q_{HO} , Q_{NO_3} — заряды атомов металлов M =Sr, Ba, водорода H, анионной группы OH, NO₃ (все в |e|), P_{N-O_2} , P_{H-O_1} заселенности перекрывания между атомами (единицах e — заряд электрона)


Crystal	Method	E_g	Q_M	$Q_{ m H}$	$Q_{ m HO}$	$Q_{ m NO_3}$	$P_{ ext{N-O2}}$	$P_{ ext{H-O1}}$
_	PBE-D3	2.36	1.84	0.13	-0.96	-0.80	0.458	0.442
$Sr_2NO_3(OH)_3\\$	PBE0	5.21	1.87	0.20	-0.97	-0.84	0.468	0.431
	B3LYP	4.55	1.86	0.15	-0.96	-0.83	0.474	0.455
	PBE-D3	2.41	1.48	0.24	-0.75	-0.71	0.489	0.417
$Ba_2NO_3(OH)_3\\$	PBE0	5.18	1.55	0.30	-0.78	-0.76	0.503	0.409
	B3LYP	4.59	1.56	0.25	-0.79	-0.76	0.509	0.435

состоянием в точке Γ для SNOH и A в BNOH. Вклады отдельных атомов металла, нитратной NO_3 и гидроксильной группы в парциальной плотности состояний выделены цветом.

Для описания нелинейных оптических свойств и порога отсечения $\lambda_{\rm abs}$ важны характеристики верхних валентных и нижних зон проводимости. В верхней валентной области SNOH выделяются три группы зон с ширинами 1.92, 1.0, 1.0 eV и максимумами в плотности состояний при -0.3, -2.2, -4.1 eV. Две верхние валентные зоны образованы p_{xy} -состояниями атомов кислорода из гидроксильных групп, а следующая нижняя p-состояниями нитрогруппы. В нижней области незанятых состояний имеется обособленная слабо дисперсная зона шириной 0.55 eV, кристаллические орбитали, которой построены

из p_z -атомных орбиталей кислорода и азота NO_3 группы. Минимальный энергетический зазор между точками Γ и A в SNOH равен 2.36 eV. Только следующий переход с энергией 5.13 eV в точке Γ будет в s-состояния металлической природы. В ВNOH минимальный переход имеет место в точке A зоны Бриллюэна и ширина анионной запрещенной зоны 2.41 eV, а анион-катионной 4.95 eV.

Таким образом, химическая связь в гидратах нитратов обусловлена сильным ионным взаимодействием катионов металлов и анионов гидроксильных и нитратных групп, заряды которых больше для соединения стронция. Ковалентная связь внутри анионов будет иметь большую заселенность в NO₃ для соединения бария и меньшую в ОН для стронция. Между анионные электронные переходы характерны для нижней части и анион-катионные

Рис. 3. Зонная структура $E_n(k)$, полная (DOS) и парциальная плотность электронных состояний (PDOS) в $Sr_2NO_3(OH)_3$ (слева) и $Ba_2(NO_3)(OH)_3$ (справа).

Таблица 3. Параметры уравнения состояния в форме Берча-Мурнагана третьего порядка: E_0 — полная энергия (a.u.), V_0 — объем элементарной ячейки (ų), B_0 — объемный модуль сжатия (GPa), B_1 — его производная по давлению P.

Crystal	Method	$-E_0$	V_0	B_0	B_1
	PBE	568.4658	139.708	58.41	4.58
$Sr_2NO_3(OH)_3\\$	PBE-D3	568.5180	135.758	62.83	4.59
	PBE0	568.4375	135.950	62.13	4.71
Ba ₂ NO ₃ (OH) ₃	PBE	558.1497	163.131	51.18	4.22
	PBE-D3	558.1990	158.785	54.23	4.23
	PBE0	558.0844	160.010	53.27	4.36

для верхней части спектра электронных возбуждений. Такое строение энергетических зон гидратов нитратов проявляется в нелинейно-оптических свойствах.

4. Кристаллическая структура под давлением

При разработке новых NLO материалов необходимо исследовать их поведение под давлением, как фактор стабильности при внешних воздействиях. Для этого были рассчитаны зависимости постоянных решетки a(V), c(V) и полной энергии $E_{tot}(V)$ в интервале изменений V/V_0 от 0.95 до 1.04 с равномерным шагом. На каждом шаге проводилась полная оптимизация структурных параметров. Зависимость $E_{tot}(V)$ аппроксимирована уравнением состояния (EOS) в форме Берча-Мурнагана

третьего порядка [33]

$$E(V) = E_0 + \frac{9V_0B_0}{16} \left((x^{-2} - 1)^3 B_1 + (x^{-2} - 1)^2 (6 - 4x^{-2}) \right), \quad x = (V/V_0)^{1/3}$$

и определены его параметры: E_0 — полная энергия, V_0 — равновесный объем, $B_0 = -V(\partial P/\partial V)_T$ — изотермический модуль объемного сжатия и $B_1 = (\partial B/\partial P)_T$ его первая производная по давлению при x=1. Используя эти параметры рассчитана зависимость давления от объема

$$P(V) = \frac{3B_0}{2} \left(x^{-7} - x^{-5} \right) \left(1 + \frac{3}{4} \left(B_1 - 4 \right) (x^{-2} - 1) \right).$$

Параметры EOS приведены в табл. 3.

Для численного представления зависимостей постоянных решеток от давления a(P) и c(P) использовалось квадратичное разложение. Первые и вторые производные для a в единицах 10^{-3} равны для SNOH: -35 Å/GPa, 1.3 Å/GPa², для BNOH: –43 Å/GPa, 1.8 Å/GPa². Для оси c это будут $-20\,\text{Å/GPa}$, $0.56\,\text{Å/GPa}^2$ и $-23\,\text{Å/GPa}$, 0.63 Å/GPa², соответственно. Скорость убывания расстояний по оси a больше, чем по оси c. Это связано с тем, что вдоль c чередуются ионы одного знака заряда, а вдоль оси a — противоположного (рис. 1). Имеет место практически линейная зависимость, когда первый коэффициент много больше второго. Это означает, что для характеристики изменения под давлением междуатомных расстояний $R_{\text{A-O}}$ можно использовать линейный модуль $B_{\text{A-O}} = -R_{\text{A-O},0}/(dR_{\text{A-O}}/dP)$. В SNOH связь N-O является практически несжимаемой, поскольку соответствующий модуль равен 1714 GPa (в BNOH — 1648 GPa). Модуль $B_{\text{H-O}}$ имеет еще больше значение $\sim 2600\,\mathrm{GPa}$. Наоборот, связи Sr-O1 и Sr-O2 характеризуются гораздо большими сжимаемостями и соответствующие модули равны 197 (181) и 145 (124) GPa. Расстояния между центрами тяжести катиона и анионов в SNOH характеризуются модулями 287 GPa (Sr-H) и 189 GPa (Sr-N). Сжимаемость расстояний между анионами N-H является самой большой и соответствующий модуль равен 113 GPa.

Таким образом, под давлением наибольшая сжимаемость имеет место для расстояний между центрами тяжести NO₃ и OH, катионов Sr, Ва и анионов, тогда как связи N-O и H-O являются практически несжимаемыми. Это означает, что быстрее уменьшаются в объеме межмолекулярные пустоты, а сами молекулы практически не деформируются.

5. Колебательные спектры

Для описания свойств NLO материалов важную информацию имеют колебательные спектры рамановского рассеяния и инфракрасного поглощения. Частоты ν_n получаются путем диагонализации взвешенной по массе матрицы Гессе, которая определяется численным дифференцированием аналитических градиентов по декартовым координатам атомов: $W_{\alpha_i,\beta_j}(\Gamma) = \frac{H_{\alpha i}\beta_j}{\sqrt{M_\alpha M_\beta}}$. Здесь $H_{\alpha i,\beta_j}$ есть вторая производная энергии, которая вычисляется численно из аналитических градиентов, M_α и M_β — атомные массы; греческие и латинские индексы соответственно относятся к атомам и декартовым координатам. Подробности расчета колебательных частот можно найти в работах [34,35].

В рамановских спектрах и спектрах инфракрасного поглощения гидроксидов нитратов выделяется три области. Низкочастотная область с волновыми числами в интервале $0 \div 400\,\mathrm{cm}^{-1}$ обусловлена решеточными колебаниями с участием катионов, выше $600\,\mathrm{cm}^{-1}$ наблюдаются внутримолекулярные колебания нитрат-ионов и выше $3000\,\mathrm{cm}^{-1}$ — гидроксильных групп. Решеточная область для каждого соединения уникальная, тогда как внутримолекулярные имеют подобный вид.

Для внутримолекулярных колебаний NO_3 имеются четыре типа колебаний: ν_4 — плоскостная деформация аниона, ν_2 — внеплоскостная деформация, ν_1 — симметричное растяжение вдоль линии связи N-O, ν_3 — антисимметричная деформация в плоскости. Помимо этих мод в кристаллах будут наблюдаться трансляционные смещения анионов как целого и их вращения вокруг оси z.

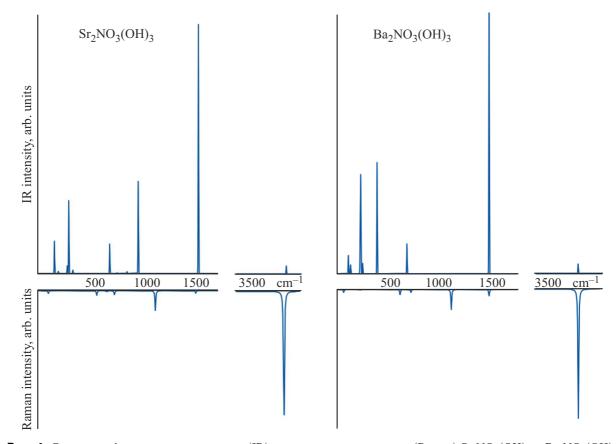
В SNOH, ВNOH распределение колебательных мод по неприводимым представлениям выглядит как: $\Gamma_{vib} = 3A_1'(\mathrm{RS}) + 3A_2' + A_1'' + 4A_2''(\mathrm{IRS}) + 8E' + 3E''(\mathrm{RS}).$ Цифра впереди символа неприводимого двукратно вырожденного представления E и однократного A указывает число колебаний, а в скобках вид активности: IRS — спектры инфракрасного поглощения, RS — рамановского рассеяния света. Для гидроксидов

нитратов имеется отрицательная мода, что свидетельствует об их динамической нестабильности. IRS и RS приведены на рис. 4, а волновые числа внутримолекулярных колебаний в табл. 4

Энергия нулевых колебаний $E_{\nu 0} = \sum_i^N h \nu_i/2$, где суммирование проводится по полному числу колебаний N, равному умноженному на 3 числу атомов в элементарной ячейке, будет принимать максимальные значения для PBE0 функционала. Удовлетворительное совпадение рассчитанных частот с экспериментальными данными [13,14] наблюдается для B3LYP функционала. Поэтому в дальнейшем для количественной оценки колебательных мод будут использованы его значения.

В IRS для SNOH самой интенсивной (1628 km/mol, $100\,\%$) является мода ν_3 симметрии E' с волновым числом $1501\,\mathrm{cm}^{-1}$ и мода ν_2 симметрии A''_2 (37 %) с волновым числом $927\,\mathrm{cm}^{-1}$. В BNOH это будут моды 1455 (1980 km/mol, $100\,\%$), 386 (37 %) и 230 (31 %) ст⁻¹. Последние образованы z-трансляционными колебаниями атомов бария и нитрогруппы, а также xy-колебаниями бария и гидроксильной группы. Мода $\nu_2 = 820\,\mathrm{cm}^{-1}$ имеет несравнимо меньшую интенсивность. Моды ν_4 симметрии E' при 726, $655\,\mathrm{cm}^{-1}$ образуют ,в SNOH две другие полосы разной интенсивности. Решеточные колебания с интенсивностью 16, $13\,\%$ при 265, $128\,\mathrm{cm}^{-1}$ относятся к xy-трансляционным колебаниям стронция и нитратной, гидроксильной групп.

В рамановском спектре выделяются три оптические колебания симметрии E' и A'_1 . Полносимметричное A'_1 колебание с волновым числом в SNOH 3831 cm $^{-1}$ (в BNOH 3772 cm $^{-1}$), является самым интенсивным (принято за 100 %,). Рядом с ним при 3825 cm $^{-1}$ (3770) с интенсивностью 67 % (33 %) находится мода симметрии E'. Первое образовано z-, в второе xy- смещениями атомов водорода и кислорода О1. Именно подавляющая интенсивность этих колебаний объясняет скудность спектра RS (рис. 4). Заметную интенсивность имеет полоса v_1 при 1116 (1095) cm $^{-1}$ и v_4 при 726 (710) cm $^{-1}$. Вращательная мода симметрии E'' с волновым числом 557 (605) cm $^{-1}$ и интенсивностью 5 % является слабозаметной.


Таким образом, колебательные спектры гидратов нитратов отражают анионное доминирование в частотном спектре выше $600\,\mathrm{cm}^{-1}$, разную атомную массу катионов в решеточном, а их поляризационная зависимость — слоистую структуру кристаллов.

6. Упругие и механические свойства

Кристаллические материалы NLO должны обладать механической стабильностью, твердостью, отсутствием расплывания, простотой обработки и т.п. Поэтому при их проектировании необходимо исследовать упругие свойства, как фактор статической механической устойчивости.

Таблица 4. Энергия нулевых колебаний $E_{\nu 0}$ (kJ/mol) и волновые числа внутримолекулярных мод ν_4 , ν_2 , ν_1 , ν_3 для NO₃ и $\nu_{\rm OH}$ для OH (все cm $^{-1}$), рассчитанные с PBE-D3, PBE0 и B3LYP функционалами для гидроксидов нитратов стронция и бария

Crystal	Method	$E_{\nu 0}$	ν_4	ν_2	ν_1	ν_3	$\nu_{ m OH}$
	PBE-D3	145.92	613, 706	736, 977	1079	1451	3716, 3722
$Sr_2NO_3(OH)_3\\$	PBE0	152.30	649, 726	806, 970	1079	1452	3867, 3877
	B3LYP	149.98	655, 726	820, 927	1116	1501	3825, 3831
	PBE-D3	138.22	637, 689	777	1059	1403	3667, 36677
$Br_2NO_3(OH)_3\\$	PBE0	149.75	697, 729	843	1147	1534	3802, 3804
	B3LYP	142.92	671, 710	850	1095	1455	3770, 3772

Рис. 4. Спектры инфракрасного поглощения (IR) и рамановского рассеяния (Raman) $Sr_2NO_3(OH)_3$ и $Ba_2NO_3(OH)_3$.

Компоненты матрицы упругости C_{ij} в обозначениях Фойгта $i, j \to \{1-xx, 2-yy, 3-zz, 4-yz, 5-xz, 6-xy\}$ имеет размерность 6×6 и определяются через вторую производную полной энергии по деформациям $C_{ij}=\frac{1}{V}\frac{\partial^2 E_{tot}}{\partial \eta_i \partial \eta_j}$. Программным пакетом CRYSTAL можно вычислять упругие тензоры с помощью автоматизированной процедуры, описанной в [36,37]. Сопутствующие формулы приведены в [38].

Для исследуемых кристаллов экспериментальные измерения упругих постоянных и модулей отсутствуют. Поэтому для сравнительной характеристики будем ори-

ентироваться на измеренные для кристаллов KDP, которые широко используются в установках лазерного зажигания в качестве компонентов оптического переключения и преобразования частоты. Эти кристаллы мягкие, хрупкие и чувствительные к внешним условиям [39]. Имеются также, выполненные пакетом CRYSTAL с PBE функционалом, расчеты упругих свойств $Sr(NO_3)_2$, $Ba(NO_3)_2$ в симметрии $Pa\bar{3}$ [40], а также их экспериментальные значения. Вычисленные уникальные упругие постоянные приведены в таблице 5. Константа $C_{66} = (C_{11} - C_{12})/2$.

Crystal	Method	ρ , g/cm ³	C_{11}	C_{12}	C_{33}	C_{13}	C_{44}
	PBE	3.432	98.7	48.8	119.1	29.4	22.0
$Sr_2NO_3(OH)_3$	PBE-D3	3.532	108.3	50.9	123.1	31.1	23.2
	PBE0	3.528	105.3	50.9	125.0	30.2	24.9
	PBE	3.958	79.4	43.3	98.4	30.0	16.4
$Ba_2NO_3(OH)_3\\$	PBE-D3	4.066	85.2	45.0	101.6	31.9	16.0
	PBE0	4.037	82.4	45.0	103.1	30.9	18.1
KDP	Exp. [41]		71.2	-5.0	56.8	14.1	12.6

Таблица 5. Упругие постоянные C_{ij} (GPa) и плотность ρ монокристаллов гидроксидов нитратов, рассчитанные с функционалами PBE, PBE-D3, PBE0 и экспериментальные значения для DP

Таблица 6. Объемный модуль упругости B_R , линейные модули Юнга E_a , E_c , линейные модули B_a , B_c вдоль осей a, c (все в GPa) монокристаллов гидроксидов нитратов

Crystal	Mehtod	B_R	B_a	\boldsymbol{B}_{c}	E_a	E_c
Sr ₂ NO ₃ (OH) ₃	PBE	59.1	176.6	178.5	72.6	107.4
	PBE-D3	62.8	191.9	182.0	82.1	111.0
	PBE0	62.0	186.8	184.7	78.6	113.3
	PBE	51.5	150.2	164.0	53.6	83.7
$Ba_2NO_3(OH)_3\\$	PBE-D3	54.4	160.6	168.6	59.0	85.9
	PBE0	53.3	155.5	171.3	55.7	88.1
KDP	Exp. [41]	27.3	78.8	88.5	66.6	50.8

Между упругими постоянными существуют соотношения, которые следуют из необходимости выполнения критерия устойчивости кристаллической решетки [42]. В [43] необходимые и достаточные условия упругой устойчивости записаны для всех типов симметрий. В гексагональном кристалле они имеют вид: $C_{44}>0$, $C_{11}>|C_{12}|,\;(C_{11}+C_{12})C_{33}>2C_{13}^2$. Еще одно условие $C_{33}>C_{13}$ получено в [44] из закона сохранения. Для кристаллов SNOH, BNOH упругие постоянные удовлетворяют требованиям механической стабильности для всех функционалов.

Упругие свойства гексагонального кристалла в плоскости слоя (xy) изотропны и описываются постоянными C_{11} и C_{12} , которые характеризуют модуль Юнга и коэффициент Пуассона. Постоянная C_{33} определяет модуль Юнга, а C_{13} — коэффициент Пуассона в перпендикулярном (z) направлении. Постоянная упругости C_{11} , которая отражает меру жесткости против однонаправленной деформации вдоль оси a, меньше константы C_{33} , позволяющей оценить упругую реакцию материала на однонаправленное напряжение вдоль оси c. Постоянная C_{44} описывает напряжения при сдвиге слоев друг относительно друга. Из таблицы 5 видно, что наибольшее

сопротивление сжатию/растяжению вдоль оси a будут оказывать SNOH, а BNOH меньшее. Сдвиговые постоянные C_{44} меньше, чем константы сжатия/растяжения, и это означает, что слои $[M_2\mathrm{AO_3}]_\infty$ и $[\mathrm{OH}]_\infty$ могут относительно свободно смещаться друг относительно друга.

В табл. 6 приведены рассчитанные с различными функционалами объемный модуль монокристалла $B_{\rm R}$ (характеризует способность изменять объем под воздействием всестороннего напряжения, одинакового по всем направлениям) и линейные модули B_a и B_c (характеризуют способность кристалла изменять свой объем под воздействием напряжения по направлениям осей a и c). Модуль B_R хорошо согласуется с данными таблицы 3, и он мало отличается для разных функционалов. Упругая анизотропия кристаллов имеет важное значение, поскольку она тесно связана с возможностью возникновения микротрещин в монокристаллах. Для количественной оценки упругой анизотропии монокристаллов используется коэффициент сдвига [45]: $A = 4C_{44}/(C_{11} + C_{33} - 2C_{13})$. Для изотропного кристалла A = 1, а величина отклонения в ту или другую сторону является мерой упругой анизотропии. В SNOH этот показатель равен 0.55, BNOH 0.52, а в KDP 0.51. Учет vdW в функционале PBE-D3 приводит к тому, что оба кристалла имеют для него самые большие модули, что означает их большое противодействие деформации и, следовательно, меньшую сжимаемость.

Вычисленные с различными функционалами упругие постоянные имеют близкие значения, они больше для SNOH, чем для BNOH. Константы растяжения/сжатия превышают сдвиговые, а линейные модули Юнга вдоль оси с значительно больше, чем для оси с. Таким образом упругие свойства монокристаллов отражают их слоистую структуру.

Большинство материалов являются поликристаллическими, состоящими из агрегированных кристаллитов. Расчет их упругих свойств проводился в модели Фойгта (V)-Реуса (R)-Хилла (H) [46–48]. Фойгт и Реус установили границы для объемного модуля $B_{\rm V}$,

Crystal	Method	$B_{ m H}$	$G_{ m H}$	$E_{ m H}$	μ	Θ_{D}	$k_{ m min}$
Sr ₂ NO ₃ (OH) ₃	PBE	59.1	26.8	69.8	0.303	410	1.05
	PBE-D3	62.9	29.2	75.8	0.299	426	1.10
	PBE0	62.0	29.5	76.3	0.295	428	1.11
Ba ₂ NO ₃ (OH) ₃	PBE	51.5	19.7	52.5	0.330	312	0.77
	PBE-D3	54.4	20.5	54.7	0.333	317	0.79
	PBE0	53.5	21.0	55.8	0.326	321	0.79

Таблица 7. Упругие свойства поликристаллических гидроксидов нитратов: $B_{\rm H}$ — объемный модуль, $G_{\rm H}$ — модуль сдвига, $E_{\rm H}$ — модуль Юнга (все в GPa), μ — соотношение Пуассона, $\Theta_{\rm D}$ — температура Дебая (K), $k_{\rm min}$ — коэффициент теплопроводности (W/mK), рассчитанные с функционалами PBE, PBE-D3, PBE0

 $B_{
m R}$ и модуля сдвига $G_{
m V},~G_{
m R},$ которые определяются из статистических моделей для описания упругой деформации поликристаллических материалов. Фойгт исходил из того, что усредняется матрица упругости $C_{
m V}=\langle C \rangle$, а по Реусу усредняется матрица податливости $S_{
m R}=C_{
m R}^{-1},~S_{
m R}=\langle S \rangle$. Границы Фойгта и Реуса сходятся, когда кристаллиты внутри агрегата изотропны. Хилл предложил в качестве модулей использовать их средние значения $B_{
m H}=(B_{
m V}+B_{
m R})/2,~G_{
m H}=(G_{
m V}+G_{
m R})/2,$ которые лучше согласуются с экспериментом. Кроме того, модуль Юнга и коэффициент Пуассона можно получить как $E_{
m H}=9B_{
m H}G_{
m H}/(3B_{
m H}+G_{
m H}),$ $\mu=(3B_{
m H}-2G_{
m H})/(6B_{
m H}+2G_{
m H}).$ Соответствующие значения приведены в табл. 7.

Объемный модуль жесткости поликристаллов $B_{\rm H}$, а также модуль сдвига $G_{\rm H}$, который характеризует способность материала сопротивляться изменению формы при сохранении его объема, принимают наибольшие значения в SNOH и меньшие в BNOH. Значения $B_{\rm H}$, $G_{\rm H}$ не превышают таковые в нитратах [40], где они равны 32.2, 27.1 GPa для $Sr(NO_3)_2$ и 27.1, 9.1 GPa для $Ba(NO_3)_2$. Относительно небольшие значения GH свидетельствуют о том, что при определенном напряжении происходит деформация сдвига и именно она является фактором, ограничивающим устойчивость гексагональных NLO материалов.

Хрупкое или пластичное поведение имеет решающее значение для возможного применения NLO материала. В [49] предложен экспериментальный критерий их различия в форме отношения модуля объемного сжатия к модулю сдвига: если оно больше 1.75, то материал будет пластичным, в противном случае — хрупким. Из таблицы 7 следует, что отношение $B_{\rm H}/G_{\rm H}$ больше, чем в два раза, и это указывает на пластичность гидратов нитратов. Известно [50], что коэффициент Пуассона ковалентных материалов мал ($\mu \sim 0.1$), в то время как типичное значение для ионных составляет 0.25. Кроме того, коэффициент Пуассона также характеризует пластичность или хрупкость. Его значение меньше 1/3 характерно для хрупких материалов и больше — для пластичных [51]. Значения μ в таблице 7 указывают на

преимущественно ионный характер химической связи с небольшой долей ковалентности, с одной стороны, а с другой стороны на пластичность.

Зная модули $B_{\rm H}$, $G_{\rm H}$ можно рассчитать скорости упругих волн [52], а уже через нее определить температуру Дебая [53]:

$$heta_D = rac{h}{k_{\mathrm{B}}} \left(3 \, rac{N}{4\pi} \, N_{\mathrm{A}} \, rac{
ho}{M}
ight)^{1/3} v_{cp},$$

где h — постоянная Планка, $k_{\rm B}$ — константа Больцмана, $N_{\rm A}$ — постоянная Авагадро, N, M — числа атомов в формульной единице и ее молекулярный вес. Температура Дебая это физическая константа, которая характеризует многие свойства кристаллов — теплоемкость, электропроводность, теплопроводность, температуру плавления и т.п. Более высокая температура Дебая подразумевает более высокую теплопроводность. В условиях работы лазера его рабочее вещество неизбежно нагревается, поэтому, чтобы узнать, является ли материал потенциальным кандидатом для NLO, необходимо исследовать его теплопроводность. С использованием существующих теорий минимальной теплопроводности в [54] разработан теоретический минимум, который может быть рассчитан после замены различных атомов эквивалентным атомом со средней атомной массой:

$$k_{\min} = k_{\rm B} N_A^{2/3} N^{2/3} \rho^{-1/2} M^{-2/3}.$$

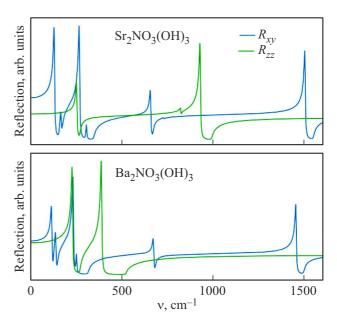
Вычисленные значения температуры Дебая и коэффициента теплопроводности приведены в таблице 7. Для KDP экспериментальные значение теплопроводности составляет по данным [55] 1.21 для параллельного направления и $1.34\,\mathrm{m^{-1}K^{-1}}$ для перпендикулярного. В нитратах стронция и бария по данным [40] температура Дебая равна соответственно 282, 243 K, а коэффициент теплопроводности 0.55, 0.45 Wm⁻¹K⁻¹. Экспериментальные данные для Θ_{D} в этих соединениях из термодинамических данных равны 249, 196 K и 237, 218 K из рентгеновской дифракции [56].

Crystal	Method	$A_2^{\prime\prime}$	E'
Sr ₂ NO ₃ (OH) ₃	PBE-D3	240(0.5)	163(20), 185(11), 344(69), 302(-0.5)
$Sr_2NO_3(OH)_3$	B3LYP	274(23)	155(27), 170(6), 344(78), 301(-3)
Ba ₂ NO ₃ (OH) ₃	PBE-D3	251(34)	126(7), 156(11), 320(74), 243(1)
Da211O3(O11)3	B3LYP	268(43)	122(10), 143(9), 312(82), 246(-2)

Таблица 8. Рассчитанные с функционалом РВЕ-D3, ВЗLYР волновые числа решеточных LO мод симметрии $A_2^{\prime\prime}$ и E^{\prime} (LO-TO расщепление, cm $^{-1}$) в гидратах нитратов

Таким образом, поликристаллические гидраты нитратов стронция и бария являются пластическими материалами с более высокой температурой Дебая и коэффициентом теплопроводности, чем соответствующие нитраты.

7. Диэлектрические свойства


В случае ионных соединений дальнодействующими кулоновскими эффектами из-за когерентного смещения ядер пренебрегают. Следовательно, матрицу Гессе необходимо скорректировать для получения продольных оптических (LO) мод [57]. Этот дополнительный вклад, так называемый неаналитический член, зависит от тензора динамической диэлектрической проницаемости и тензора эффективного заряда Борна. Зная их можно вычислить соответствующее LO-TO расщепление. В программном коде CRYSTAL для каждого неэквивалентного направления поляризации на основе классической модели Друде-Лоренца. вычисляются действительная и мнимая части комплексной диэлектрической проницаемости $\varepsilon_{ij}(v) = \varepsilon_{1,ij}(v) + i\varepsilon_{2,ij}(v)$. Максимумы $\varepsilon_2(v)$ и $Im(-1/\varepsilon(\nu))$ (функции потерь) соответствуют ТО и LO частотам и соответственно. Кривая коэффициента отражения рассчитывается для каждого неэквивалентного направления поляризации с помощью формулы

$$R_{ii}(v) = \left| \frac{\sqrt{\varepsilon_{ii}(v) - \sin^2 \theta} - \cos \theta}{\sqrt{\varepsilon_{ii}(v) - \sin^2 \theta} + \cos \theta} \right|^2,$$

где θ — угол между падающим лучом и нормалью к поверхности кристалла [58].

Тензор статической диэлектрической проницаемости имеет электронную ε_{ij}^{el} и ионную ε_{ij}^{vib} составляющие. Ядерные вклады в диэлектрическую проницаемость вводятся [20] суммированием по фононным модам эффективных векторов Борна [59], в которых тензор динамического заряда определяется умноженной на объем ячейки первой производной поляризации по смещениям атомов, когда приложенное электрическое поле равно нулю.

Частотные зависимости коэффициента отражения приведены на рис. 5. В гексагональных кристаллах $\varepsilon(\nu)$ является диагональным тензором, так что только

Рис. 5. Коэффициент отражения с поляризацией в плоскости xy (R_{xy}) и в направлении оси z (R_{zz}) для $Sr_2NO_3(OH)_3$ (сверху) и $Ba_2NO_3(OH)_3$ (снизу).

компоненты xx = yy и zz отличны от нуля. Ширина полос определяется LO-TO расщеплением, а максимумы и минимумы отвечают частотам TO, LO мод. Основные особенности спектров обусловлены решеточными колебаниями и колебаниями внутри нитрат-ионов. Область спектров выше $3000\,\mathrm{cm^{-1}}$ и имеет очень низкую интенсивность и поэтому на рис. 5 она отсутствует. Колебательные моды симметрии A_1' , E'' LO-TO сдвига не испытывают. Волновые числа LO решеточных колебательных мод, вместе с величиной LO-O расщепления (в скобках) приведены в табл. 8.

Модель ионных соединений, в рамках которой выполнены исследования диэлектрических свойств, чувствительны к выбору функционала. Поэтому вычисления функций комплексной диэлектрической проницаемости и коэффициента отражения проведены с РВЕ-D3 и ВЗІХР функционалами. Далее по тексту числовая информация приводится для РВЕ-D3, а ВЗІХР значения приводятся в скобках для сравнения.

Таблица 9. Электронные (el) и ионные (vib) компоненты тензора диэлектрической проницаемости ε , рассчитанные с функционалами РВЕ-D3 и ВЗLYР

Crystal	Method	E.	хх	$oldsymbol{arepsilon}_{zz}$		
Crystar	Wicthou	el	vib	el	vib	
	PBE-D3	2.33	3.54	1.91	0.28	
$Sr_2NO_3(OH)_3\\$	PBE0	2.17	3.63	1.80	0.26	
	B3LYP	2.13	3.94	1.78	0.52	
Ba ₂ NO ₃ (OH) ₃	PBE-D3	2.78	3.82	2.58	4.49	
	B3LYP	2.51	4.14	2.32	3.84	

В SNOH имеется слабоинтенсивная в спектре отражения OH^- полоса в области $3715\,\mathrm{cm}^{-1}\,(3825\,\mathrm{cm}^{-1})$ для B3LYP), ширина которой с учетом LO-TO расщепления $(\Delta \nu)$ для моды E' симметрии равна $0.7 (0.6) \, {\rm cm}^{-1}$. Малое значение $\Delta \nu$ обусловлено тем, что это колебание образуется противоположно направленными смещениями относительно тяжелых атомов кислорода и легких атомов водорода. Остальатомы в нем участия не принимают. Также не обнаруживают заметного расщепления $\sim 1\,{\rm cm}^{-1}$ моды с максимумами 732 (820), 703 (726) cm⁻¹, токак моды 1449, 1078 (1501, 927) cm⁻¹ имеют $\Delta \nu = 45, 69 \, \mathrm{cm}^{-1} \, (47, 68 \, \mathrm{cm}^{-1})$. Большие поляризационные (xx, zz) различия в волновых числах однотипных колебательных мод обусловлены анизотропией тензора динамического заряда атомов кислорода и водорода.

Решеточные колебания также испытывают различные LO-TO расщепления. К большим $(70-80\,\mathrm{cm}^{-1})$ значениям $\Delta\nu$ приводят трансляционные моды при 274 $(265)\,\mathrm{cm}^{-1}$. Особый интерес имеют моды с отрицательным значением, когда волновое число LO меньше, чем у TO моды. Таковым является колебание E' симметрии на $301~(304)~\mathrm{cm}^{-1}$, при котором атомы нитрогруппы движутся синхронно в плоскости xy, а гидроксильные группы асинхронно.

Значения статического тензора диэлектрической проницаемости приведены в табл. 9. Здесь указаны электронные (el) и ионные с учетом колебаний решетки (vib) компоненты. Они определяют крайние точки на рис. 5. Как правило, релаксированные компоненты ε больше электронных для xx- и меньше для zz-, что отражает вклады электронной и колебательной подсистем кристалла. Тяжелые катионы бария вносят значительный вклад в решеточные моды, что значительно усиливает zz-составляющую в BNOH. Полная диэлектрическая проницаемость получается суммированием вкладов.

Таким образом, диэлектрические свойства гидроксидов нитратов описываются с помощью частотной зависимости диэлектрической проницаемости и коэффициента отражения. Значительную интенсивность в них имеют решеточные колебания до $400 \, \mathrm{cm}^{-1}$ с выраженной поляризационной зависимостью. Ионный вклад в диэлектрическую проницаемость доминирует для xx-компонент в обоих соединениях, тогда как zz- только для BNOH.

8. Пьезоэлектрические свойства

Математическое описание пьезоэлектричества связывает деформацию (или напряжение) с электрическим полем через тензор третьего порядка. В линейном приближении прямой е и обратный d пьезоэлектрические тензоры выражают поляризацию Р, индуцированную деформацией $\pmb{\eta}$ $P=e imes \eta|_{E=\mathrm{const}},$ и деформацию, индуцированную внешним электрическим полем Е $\eta = d^T \times E|_{\sigma=\text{const}}$, соответственно. Пьезоэлектрические константы можно вычислить в обозначениях Фойгта как $e_{ij} = \partial P_i/\partial \eta_i|_{\rm E} = \partial \sigma_i/\partial E_i|_{\eta}$, где **P**, **E**, η , σ представляют поле электрического смещения, электрическое поле, тензор деформации, тензор напряжения, соответственно. В литературе часто используются константы пьезоэлектрической деформации, обозначаемые как $d_{ki} = \partial P_k/\partial \sigma_i|_{\rm E} = -\partial \eta/\partial E_k|_{\sigma}$. Их легко связать с константами e_{ij} через постоянные матрицы податливости $d_{ik} = e_i l \times S_{lk}$. Пьезоэлектрические константы можно разложить на вклады электронных "зажатых ионов" и ядерных "внутренних деформаций" [60] $e_{ij}=e_{ij}^{\mathit{clamp}}+e_{ij}^{\mathit{relax}}.$ Ядерный член измеряет пьезоэлектрический эффект из-за релаксации относительных положений атомов, вызванных деформацией. Автоматизированная вычислительная процедура описана в [61,62]. Прямая константа в стандартном пьезоэлектрическом материале α -кварце e_{11} равна $0.15\,\mathrm{C/m^2}$ при комнатной температуре и $0.07 \, \text{C/m}^2$ при температуре до $5 \, \text{K}$ [63]. Обратная константа $d_{11} = 2.0 \, 2.3 \, \text{pm/V}$ [64].

В табл. 10 приведены прямые и обратные пьезоконстанты для гидратов нитратов. Отдельно указаны электронные и ядерные компоненты. Полные пьезоэлектрические константы получаются суммированием.

Величина константы $e_{11} \equiv e_{xxx}$ измеряет поляризацию, индуцированную вдоль x деформацией η_{xx} . Ее максимальное значение для PBE0 функционала 0.13 C/m² приходятся на SNOH и меньшее 0.09 C/m² на BNOH. Такой пьезоэлектрический отклик несколько меньше, чем у α-кварца. Обратные константы являются результатом связи между прямыми пьезоэлектрическими константами и константами податливости S_{ij} . Обратная пьезоконстанта $d_{11} = d_{22}$ примерно одинакова для этих соединений, а константа d_{26} больше в BNOH. Значительная разница между электронной и колебательной составляющей пьзоэлектрических констант является закономерной. Так в типичном сегнетоэлектрике SrTiO₃ симметрии *Ima* 2 по данным [60] установлено, что, например, электронная составляющая константы e_{11} равна $0.02 \,\mathrm{C/m^2}$, а релаксированная $9.28 \,\mathrm{C/m^2}$. Для обратной константы d_{11} соответствующие компоненты равны 0.02 и 33.51 pm/V. Знак здесь не играет роли, так

Crystal	Method	e_{22}		d	22	d_{16}		
Crystar	Wichiod	el	vib	el	vib	el	vib	
Sr ₂ NO ₃ (OH) ₃	PBE-D3	0.13	-0.29	2.24	-5.06	4.49	-10.13	
5121403(011)3	PBE0	0.13	-0.29	2.30	-5.31	4.59	-10.62	
Ba ₂ NO ₃ (OH) ₃	PBE-D3	-0.08	0.25	-1.99	6.30	-3.97	12.61	
	PBE0	-0.09	0.27	-2.32	7.15	-4.65	14.26	

Таблица 10. Прямые e_{ij} (C/m²) и обратные d_{ij} (pm/V) пьезоэлектрические константы гидроксидов нитратов стронция и бария. Приведены электронные (el) и ядерные (vib) вклады в константы

Таблица 11. Независимые фотоупругие ріј константы для гидроксидов нитратов

Crystal	Method	<i>p</i> ₁₁	<i>p</i> ₁₂	<i>p</i> ₃₃	<i>p</i> ₁₃	<i>p</i> ₃₁	p ₄₄
	PBE	0.369	0.248	0.151	0.191	0.298	-0.124
$Sr_2NO_3(OH)_3\\$	PBE-D3	0.371	0.248	0.152	0.179	0.303	-0.146
	PBE0	0.295	0.221	0.198	0.222	0.260	-0.192
	PBE	0.269	0.233	0.111	0.234	0.285	-0.049
$Ba_2NO_3(OH)_3\\$	PBE-D3	0.269	0.234	0.114	0.227	0.285	-0.094
	PBE0	0.264	0.233	0.154	0.254	0.278	-0.065

как в эксперименте определяется величина константы по модулю [65].

Как это следует из табл. 10, эффекты ядерной релаксации играют большую роль, вплоть до смены знака. Рассмотрим это на примере SNOH. Рассчитанный в СРНГ/КЅ приближении с РВЕО функционалом электронный пьезоэлектрический тензор имеет единственную отличную от нуля компоненту $e_{22}=0.13~\mathrm{C/m^2}$. С учетом колебательной структуры кристалла ионная составляющая будет равна $-0.29~\mathrm{C/m^2}$. Самый большой вклад $(-0.335~\mathrm{C/m^2})$ в ее формирование вносят решеточная мода симметрии E' с волновым числом $136~\mathrm{cm^{-1}}$, внутримолекулярная мода на $1565~\mathrm{cm^{-1}}~(-0.163~\mathrm{C/m^2})$. Моды с волновыми числами $169~\mathrm{cm^{-1}}$, $272~\mathrm{cm^{-1}}$ дают положительный вклад $0.101~\mathrm{C/m^2}$ и $0.109~\mathrm{C/m^2}$ соответственно. Вклад других колебаний менее заметен.

Таким образом, обладая нецентросимметричной решеткой, гидраты нитратов проявляют пьезоэлектрические свойства, с величинами прямых констант не больше, а обратных не меньше таковых в типичном среди таких материалов α -кварце.

9. Фотоупругие свойства

Изменение компонентов обратного тензора диэлектрической проницаемости ε^{-1} , под действием деформации задается деформационно-оптическими коэффициентами (т.е. элементами упругооптического

или фотоупругого тензора Поккельса четвертого ранга р): $\Delta \varepsilon_{ij}^{-1} = p_{ijkl} \times \eta_{kl}$. В обозначениях Фойгта константы фотоупругости могут быть получены как $p_{ij} = (\partial_i^{-1})/\partial \eta_j$). Пьезооптический тензор четвертого ранга π , элементами которого являются напряженнооптические коэффициенты π_{ij} , может быть получен из фотоупругого p и упругого как $\pi = p \times S$ или $p = \pi \times C$. В отличие от тензоров упругости и податливости тензоры p и π несимметричны, поэтому число определяемых компонент для тензоров оптических напряжений и оптических деформаций больше, чем для тензоров упругости. Фотоупругие константы p_{ij} безразмерны, тогда как пьезооптические π_{ij} , обычно, выражаются в единицах Брюстера: $1 \operatorname{Br} = 10^{-12} \operatorname{Pa}^{-1} = 1 \operatorname{TPa}^{-1}$.

В работе [20,66] разработана автоматизированная схема теоретического *ab initio* расчета фотоупругого и пьезооптического тензора четвертого ранга кристаллов, принадлежащих к любой пространственной группе симметрии, которая требует одновременного определения тензоров упругой жесткости *C*, податливости *S*.

В табл. 11 приведены рассчитанные независимые компоненты тензора фотоупругостии гидроксидов нитратов металлов.

Экспериментальные данные по фотоупругим константам отсутствуют, поэтому для сравнения можно использовать константы для α -кварца [67]. Другой известный материал, для которого имеются расчетные и экспериментальные данные это CaWO₄ [68], а также для ионных MgO, NaCl [20]. Фотоупругие константы для

Crystal	Method	π_{11}	π_{12}	π_{33}	π_{13}	π_{31}	π_{44}
	PBE	3.170	0.761	0.300	0.630	1.960	-5.648
$Sr_2NO_3(OH)_3\\$	PBE-D3	2.906	0.778	0.303	0.523	1.844	-6.299
	PBE0	2.125	0.758	0.858	1.077	1.498	-7.707
	PBE	2.229	1.216	-0.336	1.324	2.408	-2.962
$Ba_2NO_3(OH)_3\\$	PBE-D3	2.074	1.193	-0.308	1.213	2.268	-5.911
	PBE0	2.007	1.157	0.218	1.517	2.127	-3.619

Таблица 12. Независимые пьезооптические π_{ij} (ТПа $^{-1}$) константы для гидроксидов нитратов

 $Sr(NO_3)_2$, $Ba(NO_3)_2$ вычислены нами ранее в [40]. Так для $Sr(NO_3)_2$ экспериментальные (расчетные) значения констант равны для $p_{11}=0.18\,(0.20),\; p_{12}=0.36\,(0.38),\; p_{44}=-0.00\,(-0.01).$

Фотоупругие постоянные в плоскости xy принимают наибольшие значения. Для направления z значение p_{33} примерно в три раза меньше, чем в плоскости, и оно чуть выше, чем экспериментальное и теоретическое в кварце. Сдвиговые коэффициенты отрицательные и их наибольшие значения в кристаллах SNOH. В ВNОН значение p_{44} сопоставимо с кварцем и значительно выше, чем в нитрате бария.

Пьезооптические коэффициенты π_{ij} , где i,j=1,2,3, описывают связь между главным преломляющими индексами и нормальным напряжением (таблица 12). Они называются главными коэффициентами. Коэффициенты π_{ij} , где i=1,2,3 и j=4,5,6, связывают главные показатели преломления с касательными напряжениями и называются коэффициентами сдвига. Пьезооптические коэффициенты π_{ij} , где $i=4,5,6,\ j=1,2,3$ соответствуют вращению оптической индикатрисы и называются вращательными. Они всюду равны нулю. Вращательно-сдвиговым коэффициентам соответствуют индексы $i=4,5,6,\ j=4,5,6.$ Единственный таковой имеется у всех кристаллов, но он не приводится в таблицах, так как выражается через π_{11} и π_{12} .

Вычисленные фотоупругие и пьезооптические коэффициенты указывают на существенные различия тензоров оптических напряжений и оптических деформаций в гидратах нитратов стронция и бария.

10. Нелинейно оптические коэффициенты

Поляризуемость α , первая гиперполяризуемость β , вторая гиперполяризуемость γ могут быть аналитически оценены с помощью процедуры СРНF/KS [69,70]. Соответствующие тензоры связаны с диэлектрической восприимчивостью первого $\chi^{(1)}=4\pi\alpha/V$, второго $\chi^{(2)}=2\pi\beta/V$, третьего $\chi^{(3)}=2\pi\gamma/3V$ порядков, которые представляют собой коэффициенты линейной связи

Таблица 13. Коэффициент генерации второй гармоники g (pm/V) и двойного лучепреломления Δn , вычисленные с функционалами PBE-D3, PBE0, B3LYP

Crystal	$g, \Delta n$	PBE-D3	PBE0	B3LYP
Sr ₂ NO ₃ (OH) ₃	g	2.172	0.696	0.769
	Δn	0.143	0.125	0.126
Ba ₂ NO ₃ (OH) ₃	g	0.597	0.282	0.341
	Δn	0.062	0.060	0.061

между поляризованностью диэлектрика и внешним электрическим полем: $P=\varepsilon_0(\chi^{(1)}E+\chi^{(2)}E^2+\chi^{(3)}E^3+\dots$ Электрическая восприимчивость первого порядка позволяет определить тензор показателя преломления $\chi^{(1)}=n^2-1$, второго порядка — коэффициент генерации второй гармоники $g=\chi^{(2)}/2$ (a. u.) и третьего — интенсивность рамановского спектра.

Требования к нелинейным материалам предусматривают, в частности, наличие большого коэффициента SHG и умеренного двойного лучепреломления. Для одноосных гексагональных систем двойное лучепреломление есть разность показателей преломления обыкновенного и необыкновенного лучей, т.е. $\Delta n = |n_o - n_e|$. Здесь индекс e соответствует возбуждению поляризованной электромагнитной волной, электрическое поле которой параллельно оптической оси кристалла (оси c), а индекс o соответствует возбуждению поляризованной электромагнитной волной, электрическое поле которой перпендикулярно c.

Рассчитанные с помощью функционалов РВЕ-D3, РВЕО и ВЗLYР коэффициенты генерации второй гармоники g и двойного лучепреломления Δn приведены в табл. 13.

Эксперименты [12,13] показывают, что SNOH, BNOH являются фазово-согласованными и коэффициенты SHG составляют 3.6 и 4 единиц KDP на длине волны 1064 nm. По данным [2] двойное лучепреломление в BNOH равно 0.082 на длине волны 532 nm и 0.080 при 589.6 nm. Рассчитанные в таблице 13 коэффициенты *g* больше для

SNOH, чем в BNOH, что противоречит эксперименту. Наоборот, двойное лучепреломление меньше в BNOH, и оно близко к экспериментальному [13]. Приведенные здесь теоретические результаты указаны для случая бесконечной длины волны. Были проведены также вычисления зависимостей показателя преломления от длины волны и расчеты коэффициентов эффективности SHG на длине волны 1064 nm.

Дисперсия показателей преломления n_o и n_e рассчитана в интервале 400-1200 nm. Показано, что зависимость $n(\lambda)$ достаточно сильная на относительно коротких волнах и она практически отсутствует на длинных. В частности, на длине волны 532 nm двойное лучепреломление будет равно в SNOH и BNOH 0.174 и 0.063. Двойное лучепреломление Δn на длине волны 1064 nm равно 0.148 и 0.063 соответственно. Для BNOH наблюдается низкая дисперсия показателей преломления, что и требуется от NLO материалов. Для длины волны 1064 nm коэффициенты SHG в единицах KDP равны 1.61 в SNOH и 1.57 в BNOH. Таким образом, из расчетных данных высокие значения SHG в гидратах нитратов стронция и бария не следуют.

11. Заключение

В рамках теории функционала плотности с РВЕ, РВЕО, ВЗІУР функционалами в базисе ЛКАО проведены расчеты кристаллической структуры и физических свойств гидратов нитратов стронция и бария. Получено удовлетворительное согласие с имеющимися кристаллографическими и оптическими данными.

Слоистая структура обуславливает анизотропию сил связей в кристаллах, которая приводит к специфическим особенностям упругих, диэлектрических, пьезоэлектрических, фотоупругих свойств. Модуль объемного сжатия в два и более раз больше модуля сдвига, что делает кристаллы пластичными. Различный характер колебаний атомов в плоскости слоя и между слоями приводит к LO-TO фононным сдвигам и обеспечивает больший ионный, нежели электронный вклад в диэлектрическую проницаемость и пьезоэлектрические константы. Расчеты компонентов тензоров поляризуемости, гиперполяризуемости и электрической восприимчивость второго порядка позволяют рассчитать коэффициенты генерации второй гармоники, которые удовлетворительно коррелируют с экспериментальными на длине волны 1064 nm.

Установленные корреляции между структурой и электронными, колебательными, механическими, пьезоэлектрическими, нелинейно-оптическими свойствами исследуемых гидратов нитратов стронция, бария могут быть использованы для прогнозирования новых NLO материалов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C. Wu, G. Yang, M.G. Humphrey, C. Zhang. Coord. Chem. Rev. 375, 459 (2018).
- [2] X. Liu, P. Gong, Y. Yang, G. Song, Z. Lin. Coord. Chem. Rev. 400, 213045 (2019).
- [3] Y. Liu, Y. Shen, S. Zhao, J. Luo. Coord. Chem. Rev. 407, 213152 (2020).
- [4] R.A. Kumar. Journal of Chemistry 2013, 154862 (2013).
- [5] D.A. Roberts. IEEEJ. Quantum Electron. 28, 2057 (1992).
- [6] L. Kang, Z. Lin. Light: Science & Applications. 11, 201 (2022).
- [7] B.I. Kidyarov. Crystals. 7, 109 (2017).
- [8] W. Wang, D. Mei, S. Wen, J. Wang, Y. Wu. J. Chinese Chemical Letters, **33**, *5*, 2301 (2022).
- [9] P.S. Halasyamani, W. Zhang. Inorg. Chem. 56, 20, 12077 (2017).
- [10] Y. Zhuravlev, V. Atuchin. Molecules 27, 20, 6840 (2022).
- [11] S. Yun-Xia, L. Min, Y. Ning. Chinese J. Struct. Chem. 39, 12, 2148 (2020).
- [12] L. Huang, G. Zou, H. Cai, S. Wang, C. Lin, N. Ye. J. Mater. Chem. C. 3, 5268 (2015).
- [13] X. Dong, L. Huang, Q. Liu, H. Zeng, Z. Lin, D. Xu, G. Zou. Chemical Communication **54**, *45*, 5792 (2018).
- [14] S. Dill, K. Gibson, J. Glaser, S. Tragl, H.-J. Meyer. Z. Anorg. Allg. Chem. 633, 274 (2007).
- [15] L. Liu, Y. Yang, L. Li, Z. Yang, S. Pan. Journal of Alloys and Compounds 695, 1719 (2017).
- [16] B. Ribar, B. Matkovic, B. Prelesni, R. Herak, F. Gabela, Acta Crystallogr. A. 28, 560 (1972).
- [17] S. Kavitha, R.E. Vizhi. Journal of Molecular Structure 1276, 134746 (2023).
- [18] M.A. Khainovsky, E.V. Boldyreva, V.G. Tsirelson. Acta Cryst. B. 80, 51 (2024).
- [19] G. Clementi, F. Cottone, A. Di Michele, L. Gammaitoni, M. Mattarelli, G. Perna, M. López-Suárez, S. Baglio, C. Trigona, I. Neri. Energies 15, 6227 (2022).
- [20] A. Erba, R. Dovesi. Phys. Rev. B 88, 045121 (2013).
- [21] Р.А. Эварестов, С.С. Новиков. ФТТ, 67, 2, 262 (2025).
- [22] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput Mol Sci. 8, 4, e1360 (2018).
- [23] D.V. Oliveira, M.F. Peintinger, J. Laun, T. Bredow. J. Comput. Chem. 40, 2364 (2019).
- [24] J. Laun, D.V. Oliveira, T. Bredow. J. Comput. Chem. 39, 19, 1285 (2018).
- [25] J. Laun, T. Bredow. J. Comput. Chem. 42, 15, 1064 (2021).
- [26] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [27] S. Grimme, S. Ehrlich, L. Goerigk. Comput. Chem. 32, 7, 1456 (2011).
- [28] A.D. Becke. J. Chem. Phys. 98, 5648 (1993).
- [29] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 785 (1988).
- [30] C. Adamo, V. Barone. J. Chem. Phys. 110, 6158 (1999).
- [31] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush Ph. D'Arco, M. Llunel, M. Caus, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassal., CRYSTAL17 User's Manual, Universitá of Torin, Torino, Italy (2018).

- [32] H.J. Monkhorst, J.D. Pack. Phys. Rev. B. 13, 5188 (1976).
- [33] F. Birch. Journal Geophysical Research **83**, *B3*, 1257 (1978).
- [34] F. Pascale, C.M. Zicovich-Wilson, F.L. Gejo, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem. 25, 888 (2004).
- [35] C.M. Zicovich-Wilson, J. Torres, F. Pascale, L. Valenzano, R. Orlando, R. Dovesi. J. Comput. Chem. 29, 2268 (2008).
- [36] W.F. Perger, C. Criswell, B. Civalleri, R. Dovesi. Comp. Phys. Comm. 180, 10, 1753 (2009).
- [37] A. Erba, A. Mahmoud, R. Orlando, R. Dovesi. Phys. Chem. Minerals 41, 151 (2014).
- [38] Ю.Н. Журавлев, Д.В. Корабельников. ФТТ **58**, *6*, 1129 (2016).
- [39] Z. Hu, M. Lan, D. Huang, P. Huang, S. Wang. Crystals 12, 1323 (2022).
- [40] Ю.Н. Журавлев, Д.В. Корабельников. Известия высших учебных заведений. Физика 60, 1, 123 (2017).
- [41] H. Jia, F. Wang, J. Wu, X. Tan, Y. Cao. International Journal of Modern Physics B 34, 30, 2050286 (2020).
- [42] M. Born, K. Huang. Dynamics Theory of Crystal Lattices. Oxford University Press, Oxford, UK (1954).
- [43] F. Mouhat, F.-X. Coudert. Phys. Rev. B 90, 224104 (2014).
- [44] Н.А. Абдуллаев. ФТТ. 48, 4, 623 (2006).
- [45] Z. Sun, S. Li, R. Ahuja, J.M. Schneider. Solid State Commun. 129, 9, 589 (2004).
- [46] W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig (1928). 978 p.
- [47] A. Reuss. Z. Angew. Math. Mech. 9, 1, 4958 (1929).
- [48] R. Hill. Journal of the Mechanics and Physics of Solids. 11, 5, 357 (1963).
- [49] S.F. Pugh. Philos. Mag. J. Sci. 45, 823 (1954).
- [50] J. Haines, J.M. Léger, G. Bocquillon. Annual Review of Materials Research, 31, 1 (2001).
- [51] Д.С. Сандитов, В.В. Мантатов, Б.Д. Сандитов. ЖТФ, **79**, *4*, 150 (2009).
- [52] J.P. Castagna, M.L. Batzle, R.L. Eastwood. Geophysics, 50, 571 (1985).
- [53] O.L. Anderson, J. Phys. Chem. Solids. 24, 909 (1963).
- [54] D.R. Clarke. Surf. Coat. Technol. 163, 67 (2003).
- [55] P. Huang, S. Wang, J. Ding, D. Wang, B. Wang, H. Liu, L. Xu, L. Zhang, X. Li, Y. Liu. RSC Adv. 9, 20706 (2019).
- [56] K.A. Hussain, P.M. Kumar, A. Saritha. Int. J. Innov. Res. Sci. Eng. Tech., 4, 11146 (2015).
- [57] R. Dovesi, M. De La Pierre, A.M. Ferrari, F. Pascale, L. Maschio, C.M. Zicovich-Wilson. Am. Miner. 96, 1787 (2011).
- [58] C. Carteret, M. De La Pierre, M. Dossot, F. Pascale, A. Erba, R. Dovesi. J. Chem. Phys. 138, 014201 (2013).
- [59] X. Gonze, C. Lee. Phys. Rev. B 55, 10355 (1997).
- [60] A. Erba, Kh.E. El-Kelany, M. Ferrero, I. Baraille, M. Rerat. Phys. Rev. B. 88, 035102 (2013).
- [61] J. Baima, A. Erba, L. Maschio, C.M. Zicovich-Wilson, R. Dovesi, B. Kirtman, Z. Phys. Chem. 230, 719 (2016).
- [62] A. Erba. Phys. Chem. Chem. Phys., 18, 13984 (2016).
- [63] R. Tarumi, K. Nakamura, H. Ogi, M. Hirao. Journal of Applied Physics. 102, 113508 (2007).
- [64] A.J. Lovinger. Ferroelectric Polymers. Science. 220, 1115 (1983).
- [65] А.В. Сотников, R. Kunze, H. Schmidt, M. Weihnacht, M. Hengst, J. Gotze. ФТТ **51**, *2*, 261 (2009).

- [66] A. Erba, M.T. Ruggiero, T.M. Korter, R. Doves. J. Chem. Phys. 143, 144504 (2015).
- [67] L. Levien, C.T. Prewitt, D.J. Weidner. American Mineralogist. 65, 9–10, 920 (1980).
- [68] A. Erba, M.T. Ruggiero, T.M. Korter, R. Dovesi. J. Chem. Phys. 143, 144504 (2015).
- [69] M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys. 128, 014110 (2008).
- [70] M. Ferrero, B. Civalleri, M. Rérat, R. Orlando, R. Dovesi. J. Chem. Phys. 131, 214704 (2009).

Редактор Т.Н. Василевская