08,02,04

Транспорт носителей тока в тонких пленках иридата стронция и в сверхпроводящих гетероструктурах

© Ю.В. Кислинский¹, И.Е. Москаль¹, В.А. Байдикова^{1,2}, К.И. Константинян¹, Н.В. Дубицкий^{1,3}, А.М. Петржик¹, Г.Д. Ульев^{1,3}, А.В. Шадрин^{1,4}, В.А. Шмаков¹, Г.А. Овсянников¹

Москва, Россия

Москва, Россия

Долгопрудный, Московская обл., Россия

E-mail: yulii@hitech.cplire.ru

Поступила в Редакцию 6 марта 2025 г. В окончательной редакции 6 марта 2025 г. Принята к публикации 5 мая 2025 г.

По температурным зависимостям сопротивлений установлены механизмы транспорта носителей тока в тонких пленках иридата стронция с сильным спин-орбитальным взаимодействием, изготовленные тремя технологическими методами: путем распыления на постоянном токе, с использованием импульсного источника напряжения и лазерной абляцией. Определены модели сверхпроводящего транспорта в переходах на основе купратного сверхпроводника $YBa_2Cu_3O_{7-x}$ и ниобия с барьерами из иридатов стронция.

Ключевые слова: иридат стронция, прыжковая проводимость, спин-орбитальное взаимодействие, электронэлектронное взаимодействие, эффект Джозефсона.

DOI: 10.61011/FTT.2025.07.61198.24HH-25

1. Введение

Разработка джозефсоновских переходов, в которых спин-зависимые процессы играют определяющую роль, привлекает повышенный интерес [1,2]. В частности, было теоретически показано, что спин-орбитальное взаимодействие (СОВ) приводит к генерации спинтриплетного сверхпроводящего тока [3–6]. Слои Рt (металла с высоким атомным весом) включались в ферромагнитную прослойку для изучения влияния СОВ на свойства контактов Nb/Pt/Co-Ru/Pt/Nb. Характерные напряжения полученных контактов были около 1 nV [7].

В последнее время большой интерес привлекают контакты оксидного сверхпроводника с иридатами стронция (ИС) — материалами серии Руддлесдена-Поппера $Sr_{n+1}Ir_nO_{3n+1}$, обладающим сильным СОВ [8] и приводящим к образованию нетривиальных поверхностных состояний [9]. В эксперименте это проявляется в возникновении пика проводимости при нулевом смещении [10], отличием сверхпроводящей ток-фазовой зависимости от синусоидальной [10,11]. В композитных джозефсоновских контактах на основе купратного сверхпроводника $YBa_2Cu_3O_{7-x}$ с прослойкой из иридата и верхнего сверхпроводящего слоя из Nb важна роль слоя иридата стронция, который при n=1 (Sr_2IrO_4) является скошенным (canted) антиферромагнетиком с намагниченностью $\sim 10^{-2}\,\mu\text{B}$ /атом Ir, а при $n=\infty$ ($SrIrO_3$) —

металлическим парамагнетиком. Вследствие этого, электрофизические характеристики контактов с различными ИС прослойками оказываются существенно различными. На вольт-амперных характеристиках (ВАХ) структур с прослойками из диэлектрика Sr₂IrO₄ наблюдались ступени Фиске [12] и туннельная особенность щели Nb [10], что означает наличие туннельного транспорта куперовских пар в них. Контакты с прослойками SrIrO₃ обладали существенно более низкими характерными сопротивлениями R_NA (R_N — нормальное сопротивление перехода, А — его площадь), что присуще джозефсоновским контактам с непосредственной проводимостью [13]. Согласно данным удельных сопротивлений пленок SrIrO₃ и Sr₂IrO₄ [13,14], их использование в качестве прослоек в джозефсоновских переходах с базовым сверхпроводящим электродом из купратного сверхпроводника УВа₂Си₃О_{7-х} должно сказываться в отличиях характерных напряжений $I_{\rm C}R_{\rm N}$ ($I_{\rm C}$ — критический ток). В эксперименте эти напряжения были $I_{\rm C}R_{\rm N}\approx 50\,\mu{\rm V}$ для Sr_2IrO_4 барьеров, и $I_CR_N \approx 0.5 \,\mu V$ в случае $SrIrO_3$ прослоек. В данной работе будут приведены данные по электронным транспортным характеристикам прослоек из ИС. Сравнение ВАХ джозефсоновских переходов с прослойками из различных иридатов и соответствующих зависимостей критического тока от магнитного поля ранее в литературе не обсуждалось и проводится в данном сообщении впервые.

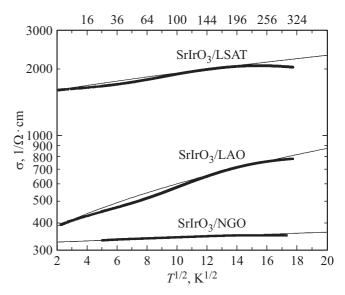
¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия

² Российский технологический университет (МИРЭА),

³ Национальный исследовательский университет, Высшая школа экономики,

⁴ Московский физико-технический институт (МФТИ),

2. Методика эксперимента


Тонкие пленки SrIrO₃ наносились методами лазерной абляции и импульсного катодного распыления на различные подложки из (001) (LaAlO₃) $_{0.3}$ (Sr₂TaAlO₆) $_{0.7}$ — (LSAT), (001) LaAlO₃ — (LAO) и (110) NdGaO₃ (NGO). Основной для эпитаксии a-параметр SrIrO₃, равный $0.396 \,\mathrm{nm}$, больше, чем a-параметры подложек: $0.387 \,\mathrm{nm}$ y LSAT, 0.385 nm y NGO, 0.379 nm y LAO. Поэтому решетка SrIrO₃ испытывала сжатие, что увеличивает удельные сопротивления пленок [15]. В мезагетероструктурах (МГС) пленки прослойки напылялись на сверхпроводящий купрат УВа₂Си₃О₇ с а-параметром 0.386 nm. Условия эпитаксии при напылении прослоек в МГС близки к условиям напыления на подложки NGO. Параметры импульсного катодного напыления $SrIrO_3$ на эти подложки были: температура T = 770 °C, общее давление 0.25 mBar, отношение потоков Ar и O₂ 1:3.5, скорость напыления 10 nm в час. Для диэлектрика Sr_2IrO_4 *а*-параметр составляет 0.55 nm [16], что при эпитаксии под 45 градусов к решетке подложки дает эффективный параметр $a/2^{1/2} = 0.389$ nm. Типично для напыления иридатов используются подложки SrTiO₃ с а-параметром 0.391 nm, что дает наименьшее рассогласование а-параметров. Пленки Sr₂IrO напылялись как эксимерным лазером при T = 780 °C и давлении О₂ 0.5 mBar, так и импульсным катодным распылением при $T = 820\,^{\circ}$ С, давлении Ar 0.5 mBar.

После формирования геометрии [10] критическая температура МГС определялась пленкой Nb и составляла $T_{\rm C}=8.4\,{\rm K}$, что много ниже критической температуры YBa2Cu3O7-x $T_{\rm C}=61\,{\rm K}$ [11]. Электротранспортные измерения тонких пленок выполнены по четырехточечной схеме с верхним пределом измерения сопротивлений около $5\,{\rm G}\Omega$, что при толщинах пленок около 20 nm давало максимальные значения удельных сопротивлений $\rho\sim10^4\,{\rm \Omega}\,{\rm cm}$ или минимальные значения $\sigma=1/\rho\sim10^{-4}\,({\rm \Omega}\,{\rm cm})^{-1}$. Измерения BAX у МГС с прослойками иридатов выполнялись на стенде с шумом по току около $2\,{\mu}$ A, что давало минимальную величину обнаружимого критического тока около $0.5\,{\mu}$ A [10].

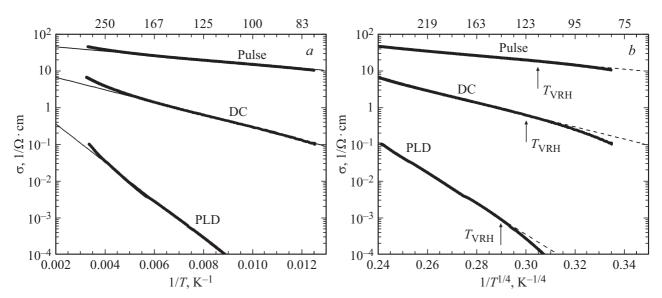
3. Результаты электрических измерений тонких пленок

Сопротивления пленок $SrIrO_3$ измерялись от комнатной температуры до $4\,\mathrm{K}$ на постоянном токе. Температурные зависимости удельных проводимостей $\sigma=1/(R\cdot t)$, где R — сопротивление, а t — толщина пленки показаны на рис. 1.

Общая особенность этих зависимостей в том, что σ растет с повышением температуры от 20 до 200 К. Образцы, напыленные на подложки LSAT и LAO имели удельные сопротивления при комнате $0.5\,\mathrm{m}\Omega\,\mathrm{cm}$ и $1.3\,\mathrm{m}\Omega\,\mathrm{cm}$ соответственно, а напыленная на NGO

Рис. 1. Температурные зависимости проводимостей эпитаксиальных пленок SrIrO $_3$ на подложках: LSAT при толщине t=90 nm, на LAO — при t=90 nm, на NGO — при t=35 nm показаны точками. Аппроксимации вида $\sigma \sim T^{1/2}$ — сплошные пинии

пленка — около $3\,\mathrm{m}\Omega\,\mathrm{cm}$. Максимальное сопротивление металла — предел Мотта-Регеля при электрон-электронном взаимодействии в нем составляет порядка $\rho\sim10\,\mathrm{m}\Omega\mathrm{cm}$ [17], что больше, чем у исследуемых образцов. В модели металла с электрон-электронным взаимодействием диффузная поправка к проводимости растет с температурой [18]:


$$\Delta\sigma = \frac{e^2}{4\pi^2\hbar^2} \left(\frac{4}{d} + 1.5\lambda_\sigma\right) \left(\frac{T}{D}\right)^{d/2-1} \sim T^{1/2}, \quad (1)$$

где размерность d=3 для случая трехмерной проводимости, D — коэффициент диффузии носителей, λ_{σ} — амплитуда рассеяния носителя. Аппроксимации температурных зависимостей проводимостей по формуле (1) показаны на рис. 1.

Пленки Sr_2IrO_4 наносились тремя методами: распылением на постоянном токе (DC), импульсным напряжением (PULSE), лазерной абляцией (PLD) на подложку NGO [14]. На рис. 2, a. приведены зависимости $\sigma(T)$ полученных нами пленок Sr_2IrO_4 . Преобладающие механизмы проводимости Sr_2IrO_4 зависят от толщины пленок t и температуры T. Наблюдались: і) трехмерная прыжковая проводимость с переменной длиной прыжка (VRH) и радиусами локализации носителей заряда $\alpha \sim 0.3$ nm, іі) термическая активация носителей заряда с энергией активации $\Delta E \sim 0.1$ eV [19]. На рис. 2, b приведены аппроксимации в модели VRH по формулам [19]:

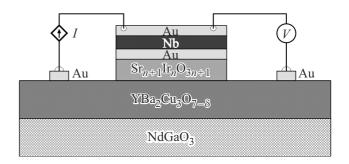
$$\sigma(T) = \sigma_0 \exp\left[-\left(\frac{T_0}{T}\right)^{1/4}\right]; \ T_0 = \frac{\beta}{\lg(\mu)\alpha^3},$$
 (2)

где T_0 — константа определяемая из эксперимента, $g(\mu)$ — плотность состояний на уровне Ферми, α —

Рис. 2. Зависимости $\sigma(T)$ для пленок Sr_2IrO_4 на подложках NGO, полученных лазерной абляцией — PLD, распылением на постоянном токе — DC, импульсами напряжения — PULSE: a — в зависимости от обратной температуры 1/T и b — от обратной температуры в степени $1/T^{1/4}$, где стрелки — температуры T_{VRH} .

Параметры эпитаксиальных пленок Sr₂IrO₄ в модели VHR

Образцы	Толщина <i>t</i> , nm	Плотность состояний $g(\mu)$, $eV^{-1} \mathrm{cm}^{-3}$	Радиус α , nm
PLD	35	$1 \cdot 10^{17}$	1-1.5
DC	15	$3 \cdot 10^{18}$	1 - 1.5
PULSE]	40	$3 \cdot 10^{17}$	9-12
Зависимость $R_{\rm N}$ от	5-7	_	1.2 - 1.7
толщин барьеров, [13]			


радиус локализации, β — коэффициент, k — константа Больцмана.

Механизм VRH преобладает при температурах $T>T_{\rm VRH}$, при радиусе прыжка меньше толщины r< t. Радиус спадает с ростом температуры, как $r\sim \alpha (T_0/T)^{1/4}$. Мы оценивали радиусы локализации носителей заряда соотношением $\alpha\sim t(T_{\rm VRH}/T_0)^{1/4}$. Параметры полученных нами пленок ${\rm Sr_2IrO_4}$ показаны в таблице.

Заметим, для изготовления сверхпроводящих гетероструктур нами использовались подложки NGO, на которые наносилась пленка сверхпроводника $YBa_2Cu_3O_7$ и затем уже слой иридата стронция. Использовался PLD метод напыления.

4. Электрофизические свойства мезагетероструктур

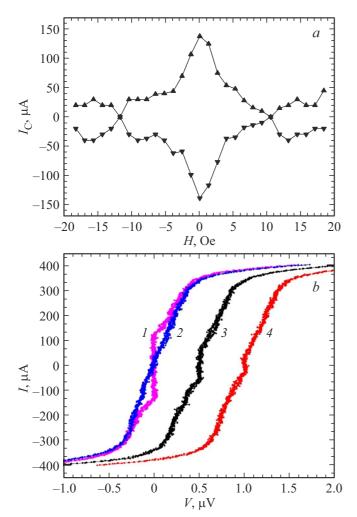
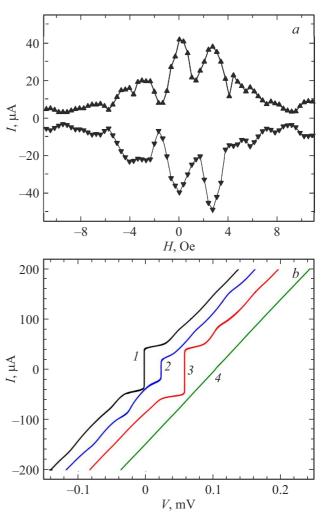

На рис. 3 приведено послойное изображение сверхпроводящей меза-гетероструктуры $(M\Gamma C)$ с прослойками из иридатов стронция.

Рис. 3. Изображение сверхпроводящей гетероструктуры с ИС и электрические подводы для измерения ВАХ. Толщина YBa₂Cu₃O_{7- δ} $t_{\rm YBCO}=60-70\,{\rm nm},~{\rm Nb}~t_{\rm Nb}=200\,{\rm nm},~{\rm тонкий}$ слой Au под Nb $t_{\rm Au}=10-20\,{\rm nm}$ (более, чем в 5 раз меньше длины свободного пробега в золоте) прослойки SrIrO₃ $t=14\,{\rm nm},$ для Sr₂IrO₄ $t=5\,{\rm nm}.$

Сверхпроводящий бислой Au/Nb имел критическую температуру $T_{\rm C}=8.4\,{\rm K}$, которая определяла температуру перехода в сверхпроводящее состояние всей МГС. Были изготовлены и исследованы МГС двух типов Nb/Au/Sr₂IrO₄/YBa₂Cu₃O₇ и Nb/Au/SrIrO₃/YBa₂Cu₃O₇. На чипе $5\times 5\,{\rm mm}$ изготавливалось $5\,{\rm M\Gamma C}$ с планарными размерами от $10\times 10\,{\mu}{\rm m}^2$ до $50\times 50\,{\mu}{\rm m}^2$. На обеих типах МГС наблюдался сверхток. Температурная зависимость критического тока $I_{\rm C}(T)$ следовала температурной зависимости щели Nb [10].

На рис. 4, a приведены магнитно-полевая зависимость критического тока $I_{\rm C}(H)$ и ВАХ для МГС с ИС прослойкой SrIrO₃ для случая $t=14\,\mathrm{nm}$ и размера $50\times50\,\mu\mathrm{m}$. Видно, что экспериментальная зависимость $I_{\rm C}(H)$ имеет выраженный центральный максимум и нулевые минимумы, что типично для фраунгоферовой за-


Рис. 4. a — зависимость $I_{\rm C}(H)$ при $T=4.2\,{\rm K}$ для гетероструктуры с прослойкой SrIrO₃ $t=14\,{\rm nm},\ L=50\,\mu{\rm m}.\ b$ — серия BAX, цифры соответствуют: $I-H=0,\ 2-H=10\,{\rm Oe},\ 3-H=2.5\,{\rm Oe},\ 4-H=14.5\,{\rm Oe}.$ Кривые 3 и 4 смещены по оси абсцисс относительно V=0.

висимости $I_{\rm C}(H)\sim abs[\sin(\pi HA)/(\pi HA)]$, для сосредоточенных джозефсоновских переходов [20]. На рис. 4, b приведены 4 BAX МГС с ИС прослойкой толщиной $t=14\,\mathrm{nm}$.

Из-за малого отличия плотности сверхпроводящего критического тока $j_{\rm C}$ МГС от плотности тока распаривания $j_{\rm S}$ подводящих сверхпроводниковых электродов на ВАХ наблюдались загибы при $I>300\,\mu{\rm A}$ (рис. 4, b), поэтому величина $R_{\rm N}$ определялась по наклону резистивного участка. Из рис. 4, b видно, что ВАХ I и 2 при I=0 пересекают V=0 и практически сливаются при $I>300\,\mu{\rm A}$ до области распаривания сверхпроводящих берегов. Для МГС с прослойками SrIrO3 средняя плотность тока $j_{\rm C}=5-10\,{\rm A/cm^2},$ сопротивление $R_{\rm N}A=(3-5)\cdot 10^{-8}\,\Omega{\rm \,cm^2}.$

Обсудим экспериментальные BAX МГС Nb/Au/Sr₂IrO₄/YBa₂Cu₃O_x с толщиной ИС прослойки Sr₂IrO₄ t=5 nm и размером $L=40\times40\,\mu\text{m}$. На рис. 5, a

приведена магнитно-полевая зависимость критического тока $I_{\rm C}(H)$, полученная из семейства BAX, некоторые из которых показаны на рис. 5, b. ВАХ снимались в режиме задания тока по 4-х точечной схеме измерений. Магнитное поле, параллельное плоскости подложки, задавалось соленоидом, находившимся вместе с измеряемым образцом внутри полого экрана из многослойного аморфного пермаллоя, понижающего геомагнитное поле на порядок. Расчетное значение по фраунгоферовой зависимости $I_{\rm C}(H)$ дает значение первого минимума $H_1 = \Phi_0/\Lambda L \simeq 2\,\mathrm{Oe}\,$ при $\lambda_{L1} = 150\,\mathrm{nm}\,$ для $\mathrm{YBa_2Cu_3O}_x$ и $\lambda_{L2} = 90 \,\mathrm{nm}$ для Nb, хотя форма экспериментальной зависимости $I_{\mathbb{C}}(H)$ на рис. 5, a отличается от фраунгоферовой. Имела место асимметрия формы ВАХ, проявляющаяся, как в отличии "положительных" и "отрицательных" амплитуд критического тока относительно I = 0, так и по возникновению волнообразных особенностей,

Рис. 5. a — зависимость $I_C(H)$ для гетероструктуры с $\mathrm{Sr_2IrO_4}$ прослойкой t=5 nm, $L=40\,\mu\mathrm{m}$. b — серия BAX, для магнитного поля: I — H=0, 2 — $H=+2.7\,\mathrm{Oe}$, 3 — $H=-2.5\,\mathrm{Oe}$, 4 — $H=-9.6\,\mathrm{Oe}$. Изменение знака магнитного поля соответствует изменению направления тока в катушке. Кривые смещены по оси абсцисс.

хорошо видных на кривых I-3 на рис. 5, b. При $H \neq 0$, следуя аналогии с туннельными SIS (сверхпроводникизолятор-сверхпроводник) переходами, возникновение волнообразных особенностей объясняется резонансами Фиске [21,22], а при H=0 влиянием "внутренного" магнитного поля из-за СОВ прослойки $\mathrm{Sr}_2\mathrm{IrO}_4$ [11,12]. Ступени Фиске на SIS переходе возникают при напряжениях $V_n=n\Phi_0c/2L$, где n-номер ступени, Φ_0 — квант магнитного потока) $c=c(t/\varepsilon\Lambda)^{1/2}$ — скорость Свайхарта [23], c — скорость света в вакууме, L — ширина перехода, t — толщина изоляторного слоя с диэлектрической проницаемостью ε , Λ — глубина проникновения магнитного поля.

В случае SI_FS туннельного перехода с магнитным изолятором I_F глубина проникновения магнитного поля составляет $\Lambda = \mu t + \lambda_{L1} \coth(d_1/2\lambda_{L1}) + \lambda_{L2} \cot(d_2/2\lambda_{L2})$, где μ — магнитная проницаемость, $d_{1,2}$ и $\lambda_{L1,2}$ — толщины сверхпроводящих пленок и их лондоновские глубины проникновения магнитного поля, соответственно. Судя по отсутствию отклонения характеристик I(V) от линейной зависимости при V>2 mV на всех BAX (рис. 5, b), первое — отсутствовал избыточный ток через структуру, второе — под воздействием электромагнитного облучения возникали ступени Шапиро, осциллирующие с мощностью облучения [12]. Эти две особенности ВАХ указывают на отсутствие закороток в структурах.

5. Заключение

Из экспериментальных данных по температурным характеристикам установлены механизмы транспорта носителей тока в тонких пленках иридата стронция с сильным спин-орбитальным взаимодействием, изготовленные тремя технологическими методами: путем распыления на постоянном токе, с использованием импульсного источника напряжения и лазерной абляцией. Изготовлены и исследованы сверхпроводящие мезагетероструктуры с двумя типами прослойки из иридата стронция — с проводящим $SrIrO_3$ и диэлектрическим антиферромагнитным Sr_2IrO_4 . На обеих типах гетероструктур наблюдался эффект Джозефсона.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 23-49-10006, https://rscf.ru/project/23-49-10006/

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

[1] M. Eschrig. Rep. Prog. Phys. **78**, 104501 (2015). DOI: 10.1088/0034-4885/78/10/104501

- [2] J. Linder, J.W.A. Robinson. Nat. Phys. 11, 307 (2015).DOI: https://doi.org/10.1038/nphys3242
- [3] M. Horsdal, G. Khaliullin, T. Hyart, B. Rosenow. Phys. Rev. B 93, 220502(R) (2016). DOI: 10.1103/PhysRevB.93.220502
- [4] F.S. Bergeret, I.V. Tokatly. Phys. Rev. B 89, 134517 (2014).DOI: 10.1103/PhysRevB.89.134517
- [5] S.H. Jacobsen, J. Linder. Phys. Rev. B 92, 024501 (2015).DOI: 10.1103/PhysRevB.92.024501
- [6] F. Konschelle, I.V. Tokatly, F.S. Bergeret. Eur. Phys. J. B 87, 119 (2014). DOI: 10.1140/epjb/e2014-50143-0
- [7] N. Satchell, N.O. Birge. Phys. Rev. B 97, 214509 (2018).DOI: 10.1103/PhysRevB.97.214509
- [8] G. Cao, P. Schlottmann. Rep. Progress in Phys. 81, 042502 (2018). DOI: 10.1088/1361-6633/aaa979
- [9] Yige Chen, Hae-Young Kee. Physical Rev. B 97, 085155 (2018). DOI: 10.1103/PhysRevB.97.085155
- [10] A.M. Petrzhik, K.Y. Constantinian, G.A. Ovsyannikov, A.V. Zaitsev, A.V. Shadrin, A.S. Grishin, Yu.V. Kislinskii, G. Cristiani, G. Logvenov. Phys. Rev. B 100, 024501 (2019). DOI: 10.1103/PhysRevB.100.024501
- [11] K.Y. Constantinian, A.M. Petrzhik, G.A. Ovsyannikov, A.V. Shadrin, Yu.V. Kislinskii, G. Cristiani, G. Logvenov. Journal of Physics Conference Series 1559, 012023 (2020). DOI: 10.1088/1742-6596/1559/1/012023
- [12] К.И. Константинян, Г.А. Овсянников, А.М. Петржик, А.В. Шадрин, Ю.В. Кислинский, G. Cristiani, G. Logvenov. ФТТ 62, 9, 1385 (2020).

 DOI: 10.21883/FTT.2020.09.49758.03H

 [K.Y. Constantinian, G.A. Ovsyannikov, A.M. Petrzhik, A.V. Shadrin, Yu.V. Kislinskii, G. Cristiani, G. Logvenov. Physics of the Solid State 62, 9, 1549 (2020).

 DOI: 10.1134/S1063783420090152]
- [13] Y.V. Kislinskii, K.Y. Constantinian, I.E. Moskal, N.V. Dubitskiy, A.M. Petrzhik, A.V. Shadrin, G.A. Ovsyannikov. Russian Microelectronics 52, S53 (2023). DOI: 10.1134/S1063739723600802
- [14] Ю.В. Кислинский, К.И. Константинян, И.Е. Москаль, А.М. Петржик, А.В. Шадрин, Г.А. Овсянников. ФТТ 64, 10, 1412 (2022). DOI: 10.21883/FTT.2022.10.53082.32HH [Yu.V. Kislinskii, K.Y. Constantinian, I.E. Moskal, A.M. Petrzhik, A.V. Shadrin, G.A. Ovsyannikov. Physics of the Solid State 64, 10, 1394 (2022).]
- [15] A. Biswas, K.S. Kim, Y.H. Jeongl. Journal of Appl. Phys. 116, 213704 (2014). http://dx.doi.org/10.1063/1.4903314
- [16] M.K. Crawford, M.A. Subramanian, R.L. Harlow. Phys. Rev. B 49, 9198 (1994).
- [17] N.E. Hussey, K. Takenaka, H. Takagi. Philosophical Magazine 84, 2847 (2004). http://dx.doi.org/10.1080/14786430410001716944
- [18] B.L. Altshuler, A.G. Aronov. Electron–Electron Interactions In Disordered Conductors. In the book Electron–Electron Interactions in Disordered Systems. Eds by A.J. Efros, M. Pollack. De Gruyter, Amsterdam, North Holland (1986). https://doi.org/10.1515/9783112494721-070
- [19] Chengliang Lu, Andy Quindeau, Hakan Deniz, D. Preziosi, D. Hesse, M. Alexe. Appl. Phys. Lett. 105, 082407 (2014). http://dx.doi.org/10.1063/1.4894465
- [20] A. Barone, G. Paterno. Physics and Applications of the Josephson Effect, Wiley (1982).
- [21] D.D. Coon, M.D. Fiske. Phys. Rev. 138, A744 (1965).
- [22] И.О. Кулик. Письма в ЖЭТФ 2, 134 (1965).
- [23] J.C. Swihart. J. Appl. Phys. 32, 461 (1961). https://doi.org/10.1063/1.1736025

Редактор Т.Н. Василевская