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Solitons in the semi-bounded two-sublattice ferrimagnet
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The new soliton solutions of the model of semi-bounded ferrimagnet with two crystallographycally different

magnetic sublattices are found and analyzed in the exchange approximation. The boundary conditions for free

surface spins on the edge of the sample are taken into account. It is established, that the localization of solitons
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with the edge of the sample their cores undergo significant changes, which are accompanied by remagnetization
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1. Introduction

The simplest model of a ferrimagnet contains two mag-

netic sublattices with magnetizations M1(r, t) and M2(r, t),
where r and t are the radius vector and time,

M2
i = M2

0i = const (i = 1, 2), M01 6= M02. In the ground

state, the vectors M1 and M2 are antiparallel. However,

there is an uncompensated magnetization of the medium:

M = M1 + M2 6= 0. The presence of two non-equivalent

magnetic sublattices with strong geometric nonlinearity of

fields M1,2(r, t) complicates the theoretical description of

ferrimagnets. The Landau−Lifshitz equation of a single-

lattice ferromagnet with magnetization M(r, t) is often used

to simplify the problem. This approximation is justified

when the vectors M1 and M2 remain antiparallel in the ex-

cited states of the medium: M2 = (M01−M02)
2 = const or

when the magnetizations of the sublattices differ markedly

in magnitude [1,2]. Near the compensation point of

sublattice magnetizations, ferrimagnets inherit the additional

properties of antiferromagnets [3,4], due to the so-called

”
exchange enhancement“ of their dynamical properties.

Then they gain a number of advantages over ferromagnets.

First, having magnetic structure and high susceptibility to

external fields, ferrimagnets have small magnetization and

do not produce large magnetostatic fields. This makes

them easier to describe from theoretical point of view.

Ferrimagnetic particles interact weakly with each other from

an applied point of view. Therefore, it is possible to

create dense arrays of particles in which the long-range

dipole-dipole interaction does not prevent the use of the

bistable states of an individual particle to record information.

Second, the characteristic frequencies of ferrimagnets, and

hence the characteristic switching frequencies between

different magnetic states, are several orders of magnitude

higher than those of typical ferromagnetic materials (see for

example [5,6]). This opens up the prospect of creating

highspeed devices that no longer operate in the gigahertz

(as ferromagnets do), but in the tetrahertz range. Possible

applications of tetrahertz waves include applications in 4G
and 5G — telecommunications systems and space commu-

nications, security and search for illicit materials, biology

and medicine, information technology, and ultrafast data

processing [7]. Finally, ferrimagnetic order in semiconduc-

tors is observed much more frequently and under much

milder conditions than ferromagnetic ordering, making it

possible to combine the advantages of both electronics

(fast performance, easy controllability) and spintronics (high
sensitivity, low power consumption) in the same device.

In addition, ferrimagnets can have metallic conductivity,

allowing the use of standard magnetoresistance effects to

read signals in information systems or to convert the energy

of spin oscillations into alternating electric current. Equally

as important, modern methods of growing single crystals on

substrates make it possible to vary the magnetic anisotropy

and obtain ferrimagnetic materials with any pre-determined

properties [6,8].

The mentioned features of ferrimagnetic materials are

extremely useful for applications, the theoretical description

of the nonlinear dynamics of ferrimagnets is an urgent task.

Modern methods of soliton theory open new possibilities for
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its solution. It is found that the Landau−Lifshitz equations

for the magnetizations of a two-sublattice ferrimagnet

are reduced to a simpler model in the basic exchange

approximation, which correctly takes into account the main

interactions and, at the same time, admits an analytical

description by the method of inverse scattering problem [9].
In unbounded ferrimagnets, quasi-one-dimensional solitons

are constructed and analyzed in detail in Refs. [9–11].
Particle-like excitations in finite-size magnets are still

poorly understood because of the essential nonlinearity of

the basic equations and the lack of developed methods

for their integration. We have been able to apply the

inverse scattering problem method to study the nonlinear

dynamics of semi-bounded single-sublattice ferromagnets

with different types of bulk crystallographic anisotropy and

unidirectional surface anisotropy due to film coating [12–15].
It is found that the magnetization in the nuclei of ferro-

magnetic solitons during their interaction with the sample

boundary changes by an order of saturation magnetization,

and this determines the remagnetization of the surface layers

of the sample. In addition, solitons acquire dynamical

properties that are absent in an infinite medium and are

interesting for applications.

In this paper, we study the peculiarities of nonlinear

dynamics of solitons in a semi-bounded two-sublattice

ferrimagnet with free edge spins. The dependence of

the ferrimagnetic energy on the magnetization distribution

has the following form in the exchange approximation [16]:

W =

∫

d3r

(

1

2

3
∑

i=1

[

α1(∂iM1 ∂iM1) + α2(∂iM2 ∂iM2)

+ 2α3(∂iM1 ∂iM2)
]

+ η(M1M2)

)

,

where η > 0 is the homogeneous exchange constant be-

tween sublattices, αs is the inhomogeneous exchange

constants (s = 1, 2, 3), α1 + α2−2α3 > 0. By order of

magnitude αs ∝ ηa2, where a is the lattice constant.

Instead of sublattice magnetization, we introduce norma-

lized ferro- and antiferromagnetism vectors:

m =
M1 + M2

√

2(M2
01 + M2

02)
, l =

M1 −M2
√

2(M2
01 + M2

02)
.

They satisfy the constraints:

m2 + l2 = 1, (m · l) =
M2

01 − M2
02

2(M2
01 + M2

02)
.

The evolution equations for the vectors m and l follow

from the Landau−Lifshitz equations [17–20] for the sublat-

tice magnetizations [3,17,21]:

∂tMν = γν

[

Mν ×
δW
δMν

]

, M2
ν = M2

0ν , ν = 1, 2. (1)

where γν is the magnetomechanical ratio for the ν -th sub-

lattice. Let us assume that the characteristic size of

the magnetic inhomogeneities λ (spin wavelength, soliton

size) is much larger than the lattice constant: λ ≫ a .
Furthermore, assuming m2 ≪ l2, we will assume that the

length of the vector l does not change: l2 = 1. Then the

vector m can be expressed through l from equations (1) in

the main small parameter approximation a/λ [9–11]:

m = −
√

2

M2
01 + M2

02

[l× ∂t l]

η(γ1 + γ2)
+

M2
01 − M2

02

2(M2
01 + M2

02)
l

+
γ1(α3 − α1) + γ2(α2 − α3)

2η(γ1 + γ2)

[

l× [l× 1̂l]
]

, (2)

and we obtain the closed equation for the vector l:

[l× (c−2∂2t l− 1̂l)] + βc−1∂t l = 0, l2 = 1, (3)

where 1̂ = ∂2x + ∂2y + ∂2z is the Laplace operator,

c2 =
1

2
(M2

01 + M2
02)ηγ1γ2(α1 + α2 − 2α3).

β =

√

η

γ1γ2(α1 + α2 − 2α3)

×
[(

M2
02 − M2

01

M2
01 + M2

02

)

(γ1 + γ2)

2
+ γ1 − γ2

]

.

In the formal limit c → ∞ (βc−1 = const), which

corresponds to a tight coupling between the sublattices

(η → ∞), the effective equation (3) coincides with the

Landau−Lifshitz equation of the Heisenberg ferromag-

net [17,18]. The system (2), (3) describes waves

in isotropic two-sublattice antiferromagnet at M01 = M02,

γ1 = γ2 [6,22].
Thus, the considered model of ferrimagnet (2), (3) model

is the missing link between the ferro- and antiferromagnetic

models.

We next consider nonlinear excitations in a semi-bounded

ferrimagnet propagating along an axis Ox perpendicular

to the boundary x = 0 of the sample. In this case,

l = l(x , t). After scale transformations: x → x/β, t → t/cβ,
the equation for calculating l will look as follows:

[l× (∂2t l− ∂2x l)] + ∂t l = 0, l2 = 1, (4)

where 0 < x < ∞, t > 0.

The choice of solutions is defined by the boundary

conditions:

[l× ∂x l]
∣

∣

x=0
= 0; (5)

∂t l, ∂x l → 0, l → (0, 0, 1) by x → ∞ (6)

and initial conditions:

∂t l(x , t = 0) = ∂t l0(x), l(x , t = 0) = l0(x), 0 < x < ∞.

(7)
The relation (5) corresponds to the absence of spin

anchoring on the surface x = 0 of the sample [21]. The
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second condition (6) corresponds to the minimum of the

energy density of the medium:

w =
1

2

[

(∂x l)
2 + (∂t l)

2
]

in the depth of the sample. The initial distribution of

the vector field l(x , t) (7) should be consistent with the

boundary conditions (5), (6). We will show in Section 2 that

the initial-boundary value problem (4)−(7) can be extended

by a certain symmetry from the semi-axis 0 < x < ∞
to the entire axis −∞ < x < ∞. Then its solution is

obtained by a special modification of the method for the

inverse scattering problem on the interval −∞ < x < ∞.

The procedure constitutes a nonlinear generalization of

the
”
image method“ used in electrostatics to solve linear

boundary value problems with certain spatial symmetry.

In the context of the inverse scattering problem method,

an auxiliary system of linear differential equations is

compared to the essentially nonlinear model (4)−(7).
Transformation, analytical and asymptotic properties of its

solutions are determined in Section 2. Spectral expansions

of the integrals of motion of a semi-bounded sample are

obtained on this basis in Section 3 and it is shown that

any initial perturbation of a ferrimagnet can be described in

terms of an ideal gas of solitons and magnons.

The spectral data of an auxiliary linear system are used

in Section 4 to recover solutions to the original nonlinear

initial boundary value problem for a ferrimagnetic.

Explicit solutions are constructed in Section 5 for the

particle-like solitons of a semi-bounded ferromagnet. Their

dynamical properties and features of interaction with the

sample surface are analyzed.

2.
”
Image method“ and direct scattering
problem

For further analysis, let us recall some facts related to the

integration of the ferrimagnetic equation:

[

n× (∂2t n− ∂2x n)
]

+ ∂tn = 0, n2 = 1, (8)

on the interval −∞ < x < ∞ with asymptotic behavior:

∂tn, ∂xn → 0, n → (0, 0, 1) by |x | → ∞ (9)

and initial conditions:

∂tn(x , t = 0) = ∂tn0(x), n(x , t = 0) = n0(x),

−∞ < x < +∞. (10)

When the vector function n(x , t) is differentiable on the

variables x and t the nonlinear equation (8) is equivalent to

the compatibility condition:

[

∂x −U(u), ∂t −V (u)
]

= 0 (11)

of the system of linear differential equations:

∂x9 = U(u)9, ∂t9 = V (u)9− i(γ2/2)9σ3 (12)

for auxiliary matrix functions 9(x , t, u). The operators U
and V look as follows:

U = − i
2

(

γ[n× ∂tn]a + δ[n× ∂xn]a + 3na
)

σa ,

V = − i
2

(

δ[n× ∂tn]a + γ[n× ∂xn]a − γ2na

)

σa , (13)

where σa are the Pauli matrices, the indices occurring twice

imply summation (a = 1, 2, 3). The coefficients γ, δ, 3 are

related by algebraic equations:

(δ − 1)2 − γ2 = 1, 3 = γ(1− δ). (14)

The uniformization of relations (14) by rational functions of

the spectral parameter u was used in Ref. [9,11]. A different

parameterization is introduced in this paper to simplify the

formulas:

δ = 1− coth u, γ = − sinh−1 u, 3 = − cosh u sinh−2 u.

Therefore, the domain of definition of the parameter u will

be the surface of the cylinder:

u = ρ + iϕ, −∞ < ρ < +∞, −π < ϕ ≤ π (mod 2π).
(15)

To incorporate the initial boundary value prob-

lem (4)−(7) into the scheme of the inverse scattering

problem, let us extend the field l(x , t) in an even manner

over the whole interval −∞ < x < +∞:

n(x , t) =

{

l(x , t), 0 ≤ x < ∞,

l(−x , t), −∞ < x < 0.
(16)

The extension is continuous at the point x = 0:

n(−0, t) = n(+0, t) = l(+0, t),

but its first derivative at the point x = 0 has a jump:

∂xn
∣

∣

x=+0
− ∂xn

∣

∣

x=−0
= 2∂x l

∣

∣

x=+0
.

This fact allows treating the boundary condition (5) for

l(x , t) at x = 0 as an additional constraint on the choice

of the vector function n(x , t):

1n
∣

∣

x=0
= 0, [n× 1∂xn]

∣

∣

x=0
= 0, (17)

where 1 f
∣

∣

x=0
= f (x = +0)− f (x = −0). Importantly, the

commutation representation (11) is equivalent to equa-

tion (8) for calculation of the field n(x , t) at x 6= 0 and the

additional constraint (17) at x = 0. This allows including

the problem for the ferrimagnetic on the semi-axis (4)−(7)
in the traditional scheme of the method for the inverse scat-

tering problem on the entire axis −∞ < x < +∞ [11]. The
derivatives ∂x9 and ∂t9 in equations (12) are continuous at

the point x = 0 with the constraint (17).
It is necessary to analyze the solutions of the aux-

iliary linear system (12) for integrating the nonlinear
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model (8)−(10), (16), (17). Let us introduce the funda-

mental Jost solutions of the matrix equation:

∂x9± = U9± (18)

with asymptotic boundary conditions:

9± → exp

(

− i3
2

xσ3

)

by x → ±∞, (19)

which are consistent with the field behavior l(x , t) at

x → +∞. It should be noted that the last term in the

right-hand side of the second equation (12) is introduced

to preserve the condition (19) at all values t . In

view of the tracelessness of the matrix U , we conclude

from (18), (19), that

det9± = 1. (20)

On the set

Ŵ = {u | 0 < ρ < +∞, ϕ=0, π;−∞ < ρ < 0, ϕ=0,−π;

ρ = 0,−π < ϕ < π} (21)

when x → ±∞ the Jost functions oscillate. Therefore Ŵ

corresponds to the continuous spectrum of the scattering

problem (18), (19).
Two sets of basis solutions are connected on the con-

tour Ŵ:

9−(x , t, u) = 9+(x , t, u)T (u, t), u ∈ Ŵ. (22)

The transition matrix T depends only on the spectral

parameter u and time t . To simplify the formulas, we further

omit the dependence on t where it is not confusing.

As in the unbounded environment [9,11], the matrix

solutions satisfy involutions:

σ29
∗
±(u∗)σ2 = 9±(u), naσa9±(−u) = 9±(u)σ3. (23)

The parity of continuation (16) gives rise to a restriction on

the choice of Jost functions [13–15]:

9+(x , u) = σ29
∗
−(−x , u∗ ± πi)σ2. (24)

Next, we will number the columns of matrices 2× 2

with upper indices: 9 = (9(1), 9(2)). The vector functions

9
(1)
− (u) and 9

(2)
+ (u) continue analytically from the contour Ŵ

into the region D1 (see Figure 1):

D1={u|0<ρ<∞, 0 < ϕ<π;−∞<ρ< 0,−π<ϕ< 0},

and the columns 9
(1)
+ (u) and 9

(2)
− (u) will be analytical

functions in the region D2:

D2={u|0<ρ<∞,−π<ϕ< 0;−∞<ρ< 0, 0<ϕ<π}.

The traversal of the contour lines Ŵ is chosen so in Figure 1

that the region D1 remains to the left of contour Ŵ.

D2

D2D1

D1

j

p

r0

–p

Figure 1. The analyticity regions D1 of functions 9
(1)
−

(u), 9
(2)
+ (u),

a(u) and D2 functions 9
(1)
+ (u), 9

(1)
−

(u), ā(u) on the surface of a

cylinder. The contour Ŵ is represented by a thick line.

The reductions (23), (24) can be continued from the

contour Ŵ in the analyticity region of the corresponding

columns of the Jost matrices. They concretize the form

of the transition matrix:

T (u) =

(

a(u) − b̄(u)

b(u) ā(u)

)

, a(u)ā(u) + b(u)b̄(u) = 1,

ā(u) = a∗(u∗), b̄(u) = b∗(u∗);

a(u) = a(−u) = a∗[(u + πi)∗], u ∈ D1;

b(u) = −b(−u) = b∗[(u + πi)∗], u ∈ Ŵ. (25)

Here we have considered that the matrix elements a(u)
and ā(u) admit representations [11]:

a(u)= det
(

9
(1)
− (u), 9

(2)
+ (u)

)

, ā(u)=det
(

9
(1)
+ (u), 9

(2)
− (u)

)

,

(26)
and thus can be analytically extended from the contour

Ŵ to the regions D1 and D2, respectively. The reflection

coefficients b(u) and b̄(u) are determined only on Ŵ.

The matrix elements a(u) and ā(u) may have zeros

in their analyticity regions, which we will assume to be

simple. If u = u j ∈ D1 is zero of the function a(u), then
u = u∗

j ∈ D2 will be zero of the function ā(u). As in [14],
the reductions (23), (24) combine zeros of the coefficient

a(u) into
”
quartets“:

u = µk, −µk, µ
∗
k + πi, −µ∗

k −πi, k = 1, 2, . . . , N;

µk = τk + i

(

π

2
+ εk

)

, 0 < τk < ∞, −π

2
< εk <

π

2
.

(27)
According to (26), if a(u j) = 0, then the columns

9
(1)
− (u j) and 9

(2)
+ (u j) are proportional:

9
(1)
− (u j) = c(u j)9

(2)
+ (u j). (28)

The formulas (28) define the vector solutions of the

system (18), which are exponentially decreasing when

|x | → ∞. Therefore, the set {u j} corresponds to the

discrete spectrum of the scattering problem (18), (19).

Physics of the Solid State, 2025, Vol. 67, No. 4



Solitons in the semi-bounded two-sublattice ferrimagnet 647

Reductions to Jost solutions (23), (24) define the choice

of multipliers c(u j) for each group of zeros (27):

c(µk), c(−µk) = −c(µk), c(µ∗
k + πi) = − 1

c∗(µk)
.

c(−µ∗
k − πi) =

1

c∗(µk)
, k = 1, 2, . . . , N. (29)

Since the functions 9±(u) are continuous at the point

x = 0, there is a useful representation of the transition

matrix:

T (u) = 9−1
+ (x = 0, u)9−(x = 0, u).

From here, in particular, we find:

a(u)=[9+(0, u)]22[9−(0, u)]11−[9+(0, u)]12[9−(0, u)]21.
(30)

For further analysis, we need asymptotic expansions

of the functions 9±(u) near the singular point u = 0 of

equation (18). Let x > 0 for definiteness. Let’s represent

9+(u) in the following form:

9+(u) = [I + 8(x , u)] exp

(

− i
2
3(u)xσ3 + Z(u, x)

)

,

(31)
where 8 and Z are the antidiagonal and diagonal matrix

functions such that

8, Z → 0 by x → +∞.

The special symmetry of the operator U in equation (18)
allows concluding that

8 =

(

0 −ω∗

ω 0

)

, Z =

(

ξ 0

0 ξ∗

)

. (32)

After substituting the expressions (31), (32) into (18) and

separating the diagonal and non-diagonal parts, we obtain a

system for calculating the functions ω(x , u), ξ(x , u):

∂xξ =
i3
2

+ U11 + U12ω, ∂xω + 2ωU11 + ωU12ω −U21=0.

(33)
Let us decompose the coefficients of γ, δ, 3 into series by

powers of u:

γ = −1

u
+

∞
∑

k=0

u2k+1γ2k+1, δ = −1

u
+ 1 +

∞
∑

k=0

u2k+1δ2k+1.

3 = − 1

u2
− 1

6
+

∞
∑

k=1

u2k32k .

We will look for functions ω(x , u), ξ(x , u) in the following

form:

ω =

∞
∑

k=0

ωk uk, ξ =

∞
∑

k=0

ξkuk . (34)

Then the system (33) gives a chain of equations for

recurrently determining the coefficients ωk(x), ξk(x). The

computation is simplified in the parameterization of the unit

vector l by the angles 2, 8:

l = (sin2 cos8, sin2 sin8, cos2). (35)

Here are the expressions for the first coefficients:

ω(0) = tan
2

2
exp(i8),

ξ (0) = − i
4

+∞
∫

x

dx ′
[

(∂x ′2 + ∂t2)2 + sin2 2(∂x ′8 + ∂t8)2

+ 2(cos2− 1)∂x ′8
]

+ ln cos
2

2
. (36)

The expansion of the function 9−(u) at x < 0 by powers

of u is obtained from that for the function 9+(u) at x > 0

by formal substitution:

l(x) → l(−x),

+∞
∫

x

dx ′ →
−∞
∫

x

dx ′. (37)

The formulas (18), (19) lead to the relation:

9+(Re u → +∞) → I, (38)

where I is a unit matrix. Then we obtain from the

representation (30):

a(Re u → +∞) = 1. (39)

The explicit form of the analytical function a(u) is

recovered from its zeros (27) in the region D1, the

asymptotic behavior (39), and the reflection coefficient [11]:

a(u) =
N
∏

k=1

(

cosh u − cosh µk

cosh u − cosh µ∗
k

)(

cosh u + cosh µ∗
k

cosh u + cosh µk

)

×exp

[

1

2πi

∞
∫

0

dν ln(1−|b(ν)|2)
(

1

sinh(ν−u)
+

1

sinh(ν+u)

)

]

× exp

[

− 1

2πi

π
∫

0

dϕ ln(1 + |b(iϕ)|2) sinϕ

(cosh u − cosϕ)

]

.

(40)
Here we have used the Cauchy kernel on the surface of

the cylinder (exp u′− exp u)−1 exp u′ [23] and the symmetry

properties of the functions a(u) and b(u) (25).
Thus, using the auxiliary linear system (18), we have

mapped the vector field l(x , t) of the semi-bounded ferri-

magnet into the scattering data set. It contains the spectral

densities b(λ) (λ ∈ Ŵ) of the scattering problem (18), (19),
the discrete zeros {u j} of functions a(u), and the normal-

ized coefficients {c(u j)}. The evolution of the scattering

data is found using the standard method [11] by means of

the second equation (12):

b(u, t) = b0(u) exp[−iγ2(u)t],
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c(u j, t) = c0(u j) exp[−iγ2(u j)t], a(u, t) = a0(u). (41)

The integration constants b0(u), c0(u j), a0(u) are deter-

mined from equation (18) by the given initial condition (10)
at t = 0.

The described scheme represents a nonlinear generaliza-

tion of the Fourier method, which is widely used in the

analysis of small-amplitude spin waves. For weakly excited

states of the medium, the spectral densities b(u, t) of the

scattering problem are exactly the same as the Fourier

harmonics of the linear modes of the ferrimagnetic. In

general case, the b(u, t) functions describe the weakly

nonlinear dynamics of dispersive wave trains. Data of the

discrete spectrum {u j} parameterize particle-like normal

modes — solitons, which form only under strong external

forcing and have no analogues in linear theory.

3. Integrals of the motion
of a semi-infinite ferrimagnet

As in the unbounded medium, the time-independent

element a(u) of the transition matrix serves as the derivative

function of an infinite series of motion integrals for a

nonlinear dynamics of the semi-infinite ferrimagnet. Physi-

cally meaningful local integrals of motion coincide with the

coefficients of the expansion of the function ln a(u) in a

series by powers u. It is not difficult to obtain it by using

the formulas (30)−(37) of the previous section.

Let us give the first term of the power series:

ln a(u) = iE + O(u).

It coincides with the energy of the semi-bounded sample:

E =
1

2

+∞
∫

0

dx
[

(∂t2)2 + (∂x2)2 + sin2 2[(∂x8)2 + (∂t8)2]
]

=
1

2

+∞
∫

0

dx
[

(∂x l)
2 + (∂t l)

2
]

.

On the other hand, we obtain the dispersion relation (40)
for the function a(u). It can also be written as a series

of powers u. Comparing the two expansions allows

expressing all integrals of motion in terms of spectral

data. In particular, the energy of a semi-infinite ferrimagnet

admits the following representation:

E =

∞
∫

0

dρNG(ρ)ωG(ρ) +

π
∫

0

dϕNa(ϕ)ωa (ϕ)

+ 4

N
∑

k=1

arctan

(

cos θk

sinh τk

)

, (42)

where the values

NG(ρ) = − sinhρ

π
ln[1− |b(ρ)|2] > 0,

Na(ϕ) =
sinϕ

2π
ln[1 + |b(iϕ)|2] > 0

represents of the densities of zero-gap (Goldstone) and

activation magnons with frequencies

ωG(ρ) = sinh−2 ρ, ωa(ϕ) = sin−2 ϕ. (43)

Let us justify this statement by proceeding from the

parameters ρ and ϕ to the quasi-momentums pG and pa

of magnons [11]:

p2
G =

cosh2 ρ

sinh4 ρ
, p2

a =
cos2 ϕ

sin4 ϕ
. (44)

Then the formulas (43), (44) will exactly coincide with the

laws of dispersion of linear modes of ferrimagnetic [11]:

ωG(ρ)=
1

2

[

√

1 + 4p2
G − 1

]

, ωa(ρ)=
1

2

[

√

1 + 4p2
a + 1

]

.

The discrete terms in representation (42) correspond to

the contributions to the sample energy of individual solitons.

Hence we conclude that any nonlinear excitation of a

semi-bounded ferrimagnet can be described in terms of an

ideal gas of discrete essentially nonlinear modes — solitons,

and quasiparticles of a continuous spectrum of dispersive

waves — magnons.

4. Inverse spectral transformation

To solve the original initial boundary value prob-

lem (4)−(7) for a ferrimagnetic, we need to find the inverse

transformation of the scattering data (41) into the vector

field l(x , t). With this purpose, we first construct the

solution of the auxiliary linear system (12).
Let us proceed from the Jost matrices to the new

fundamental solutions 5+(u) and 5−(u) of the system (12):

5+(u) =
(

9
(1)
− (u), 9

(2)
+ (u)

)

ϕ−1
0 (u),

5−(u) =
(

9
(1)
+ (u), 9

(2)
− (u)

)

ϕ−1
0 (u), (45)

where ϕ0(u) = exp[−i3(u)xσ3/2]. According to the results

of Section 3, 5+(u) and 5−(u) will be analytical functions

of the parameter u in the regions of D1 and D2, respectively.

Therefore, the problem of their computation is reduced to

solving the following Riemann problem of the theory of

functions of a complex variable. We need to construct

matrix functions 5+(x , u) and 5−(x , u), analytical with

respect to u in the regions analytical with respect to u

in the regions ¡.¿, which are connected by the conjugacy

condition, which are connected by the conjugacy condition

on the contour Ŵ:

5−(x , u) =
5+(x , u)

a(u)
ϕ0(x , u)

×
(

1 −b̄(u)

−b(u) 1

)

ϕ−1
0 (x , u), (46)
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satisfy the constraints:

na(x)σa5±(x , u) = 5±(x ,−u)σ3, (47)

5±(x , u) = σ25
∗
±

(

−x , (u + πi)∗
)

σ2, u ∈ D1,2;

5∗
+(x , u) = σ25−(x , u)σ2, u ∈ Ŵ (48)

and the normalization condition:

5±(x , u = +∞) = I. (49)

The Riemann problem (46)−(49) is a reformulation of

the analytical and transformation properties of the Jost

basis functions of Section 3 and their connection (22)
on contour Ŵ.

The following equality is true for any nondegenerate

matrix A of order 2× 2:

A−1 detA = σ2 ATσ2.

Therefore, equality (48) can be reduced to the following

form:

5−1
+ (x , u)a(u) = 5

†
−(x , u∗).

Here, the upper indices
”
T“ and † denote the transpose and

Hermitian conjugation operations. This allows rewriting the

conjugacy condition (46) in terms of the function 5−(x , u)
alone:

5
†
−(x , u∗)5−(x , u) = ϕ0(x , u)

×
(

1 −b̄(u)

−b(u) 1

)

ϕ−1
0 (x , u), u ∈ Ŵ. (50)

At large times, weakly nonlinear waves become blurred

due to dispersion effects and only long-lived solitons

”
survive“. They determine the basic physical properties of

a ferrimagnet under strong external influences. Therefore,

in what follows, we will limit our discussion to purely

soliton states, where there are no dispersive waves. Then

b(u) = b̄(u) ≡ 0, and the conjugacy condition (50) is

simplified:

5
†
−(x , u∗)5−(x , u) = 5−(x , u)5†

−(x , u∗) = I, u ∈ Ŵ.

(51)
The Riemann problem is reduced to constructing a ma-

trix function 5−(u) meromorphic on the surface of the

cylinder (15) with poles at points u = u j ∈ D1 (27) and

normalization condition (49). We’ll look for it in the

following form:

5−(u) = I +

4N
∑

j=1

A j

exp u − exp u j
. (52)

The condition of absence of poles in the left-hand side

of equality (51) leads to 4N independent matrix equa-

tions [11,24]:

5−(u∗
j )A

+
j = 0, j = 1, 2, . . . , 4N. (53)

Their nontrivial solution is possible only when both matri-

ces A j and 5−(u∗
j ) are degenerate. Let us represent A j in

the following form [24]:

(A j)αβ = (X j)α(ξ
∗
j )β , α, β = 1, 2.

Then equations (53) will have the form:

5−(u∗
j )ξ j = 0, j = 1, 2, . . . , 4N. (54)

The formulas of the previous section reveal the algebraic

structure of the matrix 5−(u∗
j ) when x > 0 [12–15]:

5−(u∗
j ) = iσ2

(

9
(2)
+ (u j),−c∗(u j)9

(2)
+ (u j)

)

ϕ−1
0 (u∗

j ).

From here, we immediately find the vectors ξ j up to the

irrelevant common multiplier:

ξ j =

(

ν∗
j (x , t)
1

)

,

ν j(x , t) = c0(u j) exp
[

−i
(

γ2(u j)t − 3(u j)x
)]

, (55)

where c0(u j) are the integration constants in formulas (41).
Here we have recovered the dependence on time.

We would like to remind that discrete spectrum data are

combined into
”
quartets“:

{u j} ≡ {u(1,2)
k , u(3,4)

k }, {c0(u j)} = {c(1,2)
k , c(3,4)

k },
j = 1, 2, . . . , 4N, k = 1, 2, . . . , N.

Within each group the parameters are related to each other:

u(1,2)
k = ±µk , u(3,4)

k = ±(µ∗
k + πi), µk = τk + i

(

π

2
+ εk

)

,

0 < τk < ∞, −π/2 < εk < π/2;

c(1,2)
k = ±c(0)

k , c(3,4)
k = ∓(c(0)∗

k )−1. (56)

Here c(0)
k = c(0)(µk) is the complex integration constant.

Substituting ξ j (55) into (54) results in a linear system

for calculating the vectors X j :

ξ j +

4N
∑

k=1

M jkXk = 0, M jk =
(ξ∗k · ξ j)

exp u∗
j − exp uk

.

Its solution determines the soliton matrix 5−(x , t, u) at

x > 0:

(5−)αβ = δαβ −
4N
∑

k, j=1

(M−1)k j(ξi )α(ξ
∗
k )β

exp u − exp uk

(M−1)k j =
∂ ln detM
∂M jk

. (57)

Then the first formula (47) with the normalization con-

dition (49) and the explicit form of the matrix function

5−(u) at x > 0 (57) immediately gives N−soliton solution

of the original essentially nonlinear model (4)−(6) for the

ferrimagnet on the semi-axis 0 < x < ∞:

laσa = 5(u = −∞)σ3. (58)

It describes elastic pairwise collisions of solitons with each

other and their reflection from the sample boundary.
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5. Interaction of solitons with the surface
of a ferrimagnet

Let us analyze the typical features of multisoliton inter-

action on the example, of a single-soliton solution that is

parameterized by four zeros (56) of function a(u):

u(1,2) = ±µ, u(3,4) = ±(µ∗ + πi), µ = τ + i

(

π

2
+ ε

)

,

0 < τ < ∞, |ε| < π

2
.

The corresponding vectors ξ j (55) have the form:

ξ1,2 =

(

±ν∗
1

1

)

, ξ3,2 =

(

±ν∗
3

1

)

.

The field distribution of l(x , t) in single-soliton excitation is

given by the formulas (57), (58) when N = 1. The following

form of writing is convenient for further analysis:

l3 = 1− 2| f |2
| f |2 + |g|2 , l1 + il2 =

2 f ∗g
| f |2 + |g|2 . (59)

After simple but tedious transformations, we find the

functions f and g :

f = i tan ε coth τ
[

ν∗
1 (ν1ν

∗
3 − 1) tanh µ − ν∗

3 (ν∗
1 ν3 − 1) tanh µ∗

]

,

g =
1

2

[

(

1 + |ν1ν3|2
)

| tanh µ|2 tan2 ε coth2 τ

+ | tanhµ|2(ν1ν∗
3 + ν∗

1 ν3) +
sinh2 µ|ν1|2 + sinh2 µ∗|ν3|2

cos2 ε sinh2 τ

]

.

(60)
Here

ν1 = c0 exp
[

−d−1(x −Vt) − ikx − iωt
]

,

ν3 = −(c∗
0)

−1 exp
[

−d−1(x + Vt) + ikx − iωt
]

, (61)

c0 — complex integration constant. Parameters d and V :

d =
1

Im3(µ)
=

(sinh2 τ + cos2 ε)2

cos ε sinh τ (cosh2 τ + sin2 ε)
> 0,

V =
Im γ2(µ)

Im3(µ)
=

2 sin ε cosh τ

cosh2 τ + sin2 ε

determine, respectively, the size of the soliton and its

velocity as a whole. The frequency ω and wave number k
of the oscillations of the vector l inside the soliton have the

form:

ω = Re γ2(µ) =
sin2 ε sinh2 τ − cosh2 ε cos2 ε

(sinh2 τ + cos2 ε)2
,

k = −Re3(µ) = −cosh τ sin ε(sinh2 τ − cos2 ε)

(sinh2 τ + cos2 ε)2
.

The particle-like formation (59)−(61) satisfies the boundary
conditions (5), (6) as expected. Its spatial localization

and dynamical properties are determined by the exponential

multipliers in formulas (61).
We assume, that the parameter V > 0 (0 < ε < π/2)

for definiteness. Then it is possible to put assume ν3 = 0

(ν1 = 0) at large distances from the sample edge (at x ≫ 1)
in the limit t → +∞ (t → −∞) in the soliton reference

frame, where x−Vt = const (x + Vt = const). In result,

the formulas (59)−(61) for the vector l are simplified:

(l3)± = 1− 2

1±

, 1± =
cosh2 y±

cos2 ε
+

sinh2 y±

sinh2 τ
,

(l1 + il2)± =
i exp(−is±)

1± sinh τ cos ε

×
[

sinh µ∗ exp(±y±) + sinh µ exp(∓y±)
]

,

(62)
where

y± = d−1(x ∓Vt − x (0)
± ), s± = ωt ± kx + s (0)

± ,

x (0)
+ = d ln

∣

∣

∣

∣

c0 coshµ

cosh τ sin ε

∣

∣

∣

∣

, x (0)
− = d ln

∣

∣

∣

∣

cosh µ

c0 cosh τ sin ε

∣

∣

∣

∣

,

s (0)
+ = − arg

(

cosh τ sin ε

c0 cosh µ

)

, s (0)
= = arg

(

c∗
0 cosh τ sin ε

cosh µ∗

)

.

The limit solution (62) corresponds to a typical soliton

of an infinite ferrimagnet [9,11]. It can be interpreted

as a bound state of two spatially localized magnetization

waves propagating along the sublattices of the ferrimagnetic.

Due to the sublattice non-equivalence, in the soliton

formation region, the uncompensated magnetization makes

an inhomogeneous circular precession around the axis Oz .
A precession wave with frequency ω and wave number k
nucleates at one edge of the soliton, propagates through its

core, and vanishes at the opposite edge. In soliton reference

frames at its center, where y± = 0, we have:

(l3)± = − cos(2ε),

(l1 + il2)± = −i sin(2ε) exp
[

−i(�t ± kx (0)
± + s (0)

± )
]

. (63)

Here � = ω + kV is the frequency of internal precession

in the soliton reference frame associated with the soliton.

When ε → ±π/2, the deviations of the vector l from the

equilibrium position l = (0, 0, 1) decrease and the soliton

length increases. In this limit in the laboratory reference

frame, the excitation (62) is similar to
”
cut off“ spin wave

of linear theory with wave number k = ∓ cosh τ / sinh2 τ

and the law of dispersion:

ω(k) = sinh−2 τ =

√
1 + 4k2 − 1

2
.

In the general case, the only result of the interaction of

the soliton with the sample boundary as it moves away from

the surface are the shift of the soliton center by the value
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Figure 2. Dependence of the l3 soliton component on the

coordinate at the moment of collision with the sample surface

(solid line) and at large distances from the surface at V > 0

(0 < ε < π/2) t → +∞ (dashed line): a) 0 < ε ≤ π/8, b)
π/8 < ε ≤ π/4, c) π/4 < ε ≤ 3π/8, d) 3π/8 < ε ≤ π/2.

1x = 2d ln |c0| and the change in the initial phase of its

precession:

1s = 2kd ln

∣

∣

∣

∣

coshµ

cosh τ sin ε

∣

∣

∣

∣

+ arg
cosh µ∗

cosh µ
.

Solitons (62) can also be stationary in the depth of the

sample. Their velocity is V → 0 with ε → 0, x (0)
± = const,

s (0)
± = const. Meanwhile, localization of the particle-

like formation (59)−(61) near the sample boundary is

impossible, since, in formulas (59), (60) the multiplier f
goes to zero at ε = 0.

When the soliton collides with the edge of the sample

at time t0 = −(d/V ) ln |c0|, its center coincides with the

boundary x = 0 of the sample, and the vector field

l(x , t0) on the semi-axis 0 < x < ∞ is described by the

formulas (59), where

g =
2 exp(−2d−1x)

sinh2 τ + sin2 ε

(

cosh2 τ (tan2 ε−1) + (sinh2 τ + cos2 ε)

× [sinh2(d−1x) tan2 ε coth2 τ + sin2(kx)]
)

,

f = −2i tan ε coth τ exp[−2d−1x + i(ωt0 − arg c0)]

sinh2 τ + sin2 ε

×
[

sinh(2τ ) cos(kx) cosh(d−1x) + sin(2ε) sin(kx) sinh(d−1x)
]

.

At the boundary x = 0 of the sample at t = t0 we have:

l3 = cos(4ε), l1 + il2 = −i sin(4ε) exp[−i(ωt − arg c0)].
(64)

A comparison of the formulas (63), (64) shows that near

the surface the soliton core changes thoroughly. Thus at

values ε = π/4 at the center of the soliton in the depth of

the sample, the component l3 = 0, and at the moment of

collision with the surface: l3 = −1.

The processes of remagnetization of the surface layers of

the material during the soliton reflection are accompanied

by a boundary magnetization spike with the duration of the

order of 1x/V . Scenarios for changes in the order parameter

l(x , t) significantly depend on the values of ε (Figure 2).
When 0 < |ε| < π/4 at the moment of collision with

the surface, the component l3 reaches a global minimum

l3 = −1 near the edge of the sample at some point x0

determined by the condition: g(x0, t0) = 0. We note, that

in Figure 2, a, b: cos(4ε) = 0 with ε = π/8; The values of

cos(4ε) and − cos(2ε) coincide at ε = π/6 in Figure 2, b,

and at ε = π/4 in Figure 2, b, c: cos(4ε) = −1. In

the interval 0 < ε < π/2, the soliton size increases with

the increase of ε. The extended small-amplitude soliton

corresponds to Figure 2, d.

6. Conclusion

New soliton states of a substantially nonlinear model of

a semi-bounded ferrimagnet with two crystallographically

non-equivalent sublattices are found in this paper. Boundary

conditions corresponding to the absence of surface spin

anchoring were taken into account. It is shown that any

initial excitation of a ferrimagnet can be described in

terms of an ideal gas of solitons and quasiparticles of a

continuous spectrum of spin waves. The spectral energy

decomposition of a semi-bounded ferrimagnet is the sum of

independent contributions from strongly nonlinear normal

modes — solitons and magnons from the two branches

of the dispersive wave spectrum. Discrete frequencies of

the internal precession of solitons lie outside the region

of the continuous spin wave spectrum. It is found that

soliton nuclei are not rigid formations. When interacting

with the sample surface, they undergo significant changes,

which are accompanied by remagnetization of the surface

layers of the material. Therefore, the particle-like excitations
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we obtained cannot be described by previously known

perturbative methods for solitons of an unbounded medium.

Such assume small changes in the structure and properties

of solitons under the action of perturbations. After

the reflection from the surface, the resulting particle-like

excitations, as they move deeper into the sample, acquire

a stationary form, typical for the precessing solitons of an

unbounded ferrimagnetic [9–11].

The position changes and initial phase shift of the internal

oscillations of the soliton after its reflection from the edge

of the sample are calculated.

The experimental confirmation of elastic reflection of

solitons from the sample edge and observation of the

processes of remagnetization of the boundary layers of the

medium during the collision of a soliton with surface are

relevant.

The results obtained should be taken into account when

choosing a strategy for modeling soliton modes in real

samples of finite sizes. They are useful for verification

of numerical calculations. These results may serve as a

basis for planning new experiments to study the nonlinear

dynamics of bounded ferrimagnets under strong external

forcing.
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