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This work is devoted to the theoretical study of the elastic properties of nanocomposites with an amorphous

matrix, taking into account its strong local heterogeneity. The dependence of the stiffness of the nanocomposite

on parameters such as the thickness of the amorphous layer, the scale of heterogeneity of the amorphous matrix,

the radius of inclusions, and the distance between them is investigated. It is shown that the heterogeneity of the

amorphous matrix leads to an increase in its elastic moduli near the interfaces with stiffer layers and inclusions.

This results in an increase in the elastic moduli of the composite as a whole, which is determined by the ratio of

the heterogeneity length scale of the amorphous matrix to the characteristic geometric size of the composite, which

can be either the thickness of the amorphous layer or the radius of the nanoparticles.
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1. Introduction

Composite materials are a unique category of materials

that are composed of two or more components with dif-

ferent physical and chemical properties. These components

typically include a matrix and a reinforcing element that

interact with each other to create a material with improved

performance over the individual components. Composites

have a wide range of applications in a variety of industries,

including aviation, automotive, construction, sports, and

medicine [1,2].

The high strength with low weight is the advantage of

composites from the point of view of mechanical properties.

This makes composites ideal for applications where light

weight and strength are critical. Reinforcing elements,

such as fibers or particles, ensure high tensile and flexural

strength, while the matrix is typically responsible for load

distribution and protection of the reinforcing components

from external influences. In addition, composite materials

can exhibit excellent stiffness, impact strength, and corrosion

resistance characteristics.

Polymer composites obtained by adding various kinds

of reinforcing particles to the polymer matrix play a

major role among composite materials [3–6]. Since there

are a number of polymers (polystyrene, polycarbonate,

polymethylmethacrylate, etc.) that are in an amorphous

state at room temperature [7–9], the study of the properties

of composite materials with an amorphous matrix is an

important practical task.

One of the key physical and mechanical properties of a

composite material is the set of its elastic moduli (bulk
modulus of elasticity, shear modulus, and etc.), which

describe the linear relationship between stress and strain

at small strains. It has been found that the addition of

nanoparticles, even at low concentrations, can lead to a

significant change in the elastic properties of the original

polymer material [10–14]. For example, adding as little as

3mass.% of SiO2 nanoparticles to polymethyl methacrylate

can increase the elastic modulus of the nanocomposite

by 50% [15].

It should be noted that not only polymers, but also

various inorganic materials (amorphous SiO2, amorphous

Si, etc.) and metals can be in an amorphous state. The

nature of the amorphous (glassy) state of a substance

and the transition from the liquid state to the amorphous

state remains one of the unsolved problems of condensed

matter physics for decades [16–19]. Meanwhile, the

study of nanocomposites with amorphous components (not
necessarily polymer) opens up a number of new questions

related to the description of the behavior of amorphous

matter at scales of a few nanometers [20].

Amorphous materials exhibit spatially inhomogeneous

microscopic elastic properties due to their disordered struc-

ture [21–24]. Deformation of such systems results in

the formation of a complex inhomogeneous structure of

atomic displacements, termed non-affine deformations in

the literature. Such deformations have been observed in a

wide variety of amorphous materials: metallic glasses [25],
polymer hydrogels [26], supercooled liquids [27], Lennard-
Jones glasses [28], and quartz glass [29]. The typical spatial

scale of non-affine deformations has been estimated to be

tens of particle sizes for Lennard-Jones glasses [30]. For

smaller spatial scales, the classical continuum theory of

elasticity cannot be applied [31].

If the size of an amorphous medium is much larger than

the scale of its inhomogeneity, macroscopic elastic moduli

can be used to describe the mechanical properties of this

system. However, in composite systems containing amor-
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phous materials, some regions may have small characteristic

dimensions. An important example is nanocomposites, in

which the size of the nanoinclusions can be comparable

to the scale of inhomogeneity of the amorphous matrix.

Therefore, it is important to study the local elastic properties

of amorphous solids, especially near the interface with other

materials.

It has been proposed that the elastic properties of

nanocomposites can be described by the so-called three-

phase model [32]. The model suggests that the structure

of the polymer changes around the nanoparticle, leading

to the formation of an effective interfacial region around

the nanoparticle with intermediate elastic properties. The

interfacial region has a strong influence on the macroscopic

stiffness of the nanocomposite due to the large total surface

area of the nanoparticles. At present, the three-phase

model is commonly used as a phenomenological model to

match the effect of inclusions on macroscopic elastic moduli

obtained experimentally or by molecular dynamics [33–38].
There is direct experimental evidence showing an increase

in the elastic moduli of polymeric materials near nanoparti-

cles using atomic force microscopy [39–43]. However, such
experiments are hampered by the fact that the radius of

curvature of the probe can be comparable to the thickness

of the interfacial region.

Molecular dynamics allows a more detailed study of the

microscopic structure and properties of an amorphous ma-

terial. Recent calculations have determined the spatial distri-

bution of the local elastic moduli of the amorphous matrix

and have shown their increase near different nanoparticles:

epoxy resin near the boehmite nanolayer [44], polystyrene
near the SiO2 nanoparticle [45], and polyethylene oxide

also near the SiO2 nanoparticle [46]. It was shown for

polystyrene that the increase in stiffness has an exponentially

decreasing character with a characteristic scale of 1.4 nm,

while the density of polystyrene saturates to its bulk value

at much smaller distances [45].
In our previous paper [47], we proposed a theoretical

method for determining the elastic properties of amorphous

composite materials based on random matrix theory and

derived an equation that determines the distribution of

local elastic moduli. The aim of this paper is to study

the elastic properties of amorphous composites in more

detail. The main points of the theory used are summarized

in Section 2. A thin layer of amorphous medium enclosed

between two stiffer layers is considered in Section 3.

An amorphous composite with rigid spherical particles is

considered in Section 4. In both cases, the scale of

inhomogeneity of the amorphous medium ξ can be either

smaller or larger than other characteristic dimensions of the

problem.

2. Elastic properties of an amorphous
composite

The problem of determining the elastic properties of a

composite material consisting of an amorphous matrix and

nanometer-sized inclusions is nontrivial, since the classical

continuum theory of elasticity is inapplicable at the scale of

individual inclusions due to the strong fluctuations in the

elastic properties of the amorphous matrix. It is possible to

speak about a certain strain tensor ε̂(r) and stress tensor

σ̂ (r) only when averaging the corresponding characteristics

over a minimal representative volume, the size of which can

significantly exceed the interatomic distances and can be

comparable to the size of inclusions.

In an amorphous body under load, atoms are displaced in

an irregular manner at the microscopic level to minimize the

elastic energy which results in non-affine deformations. The

relationship between non-affine deformations and local elas-

tic properties is also important. The number of degrees of

freedom of the atoms of the amorphous material decreases

near the boundary of an amorphous body with a stiffer

material (inclusion or layer), which leads to suppression

of non-affine deformations and an increase in the minimum

possible elastic energy, i. e., an increase in the elastic moduli

of the amorphous material in the boundary regions.

In order to describe this effect, it is necessary to take into

account that the arrangement of atoms of an amorphous

body and their displacements under the application of

mechanical stress are not completely random, but obey

certain rules. First of all, atoms tend to minimize elastic

energy, and so the system is near a stable equilibrium

position. Therefore, the matrix of force constants that

describes the interaction of atoms is positively semi-definite

and can be described using the Wishart ensemble within the

framework of random matrix theory [48,49]. This approach
allows determining the effective local elastic moduli of

an amorphous material, taking into account boundary

effects [47]. When speaking of effective moduli, we mean

the following: a strongly fluctuating amorphous medium

is replaced by a fictitious non-fluctuating medium whose

response to an arbitrary mechanical action coincides with

the average response of the amorphous medium to the

same mechanical action. The behavior of such an effective

averaged medium can be described using the classical

continuum theory of elasticity.

The obtained bulk and shear elastic moduli of the

amorphous body are K(r) = α(r)K0 and µ(r) = α(r)µ0,
where K0 and µ0 are elastic moduli of the amorphous body

away from its boundaries, and α(r) is the elastic contrast

and obeys the differential equation [47]

α(r) = 1 + ξ21 lnα(r). (1)

Here ξ is the scale of inhomogeneity of the amorphous body

in this equation, and 1 denotes the Laplacian. The elastic

contrast becomes much larger than 1 near the boundary

with a stiffer body. When an amorphous medium is

in contact with a non-deformable medium, the boundary

condition takes the form α(r) → ∞. Such a condition is

well suited to describe polymer composites in which the

elastic moduli of the inclusions significantly exceed the

elastic moduli of the polymer matrix.
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As shown in Ref. [47], the local elastic moduli K(r) and

µ(r) found can be used to describe the elastic properties

even at a scale smaller than the scale of inhomogeneity

because they are obtained by finding the average response

of the medium to mechanical stress. Thus, knowing K(r)
and µ(r) we can apply the classical elasticity equations to

find the response to external stress and the corresponding

macroscopic elastic properties of the composite medium.

Let us consider two cases as an example. In first

case, let us consider a thin layer of amorphous medium

enclosed between two rigid planes at a distance w apart

(Figure 1, a). Such a problem is one-dimensional and allows

us to analytically investigate the stiffness of a thin layer

of amorphous material. The more complicated case of a

composite material with spherical inclusions of radius R will

then be examined using numerical methods (Figure 1, b).

3. One-dimensional problem

3.1. Local elastic contrast distribution

Let us consider in more detail a one-dimensional problem

in which the properties of the medium depend on only one

direction. In this case, equation (1) for the local elastic

contrast has the form

α(x) = 1 + ξ2
d2

dx2
lnα(x). (2)

For an amorphous medium enclosed between two rigid

planes at a distance w apart (Figure 1, a), the coordinate x
takes values from −w/2 (left boundary) to w/2 (right
boundary), and the boundary conditions are of the form

α(±w/2) = ∞.

In the case ξ ≫ w the elastic contrast α(x) ≫ 1 and

equation (2) has an exact solution in the form of

α(x) =
ξ2

w2

4π2

1 + cos(2πx/w)
. (3)

For the more general case, the solution to equation (2)
cannot be written explicitly, but it can be written in

quadrature. To do this, we make the substitution

α(x) = es(t), t = x/ξ. (4)

Then equation (2) takes the form

d2s
dt2

= es
− 1. (5)

The solution of such an equation is expressed in quadrature:

t(s) = ±

s
∫

s 0

1
√

2(es 1 − s1) − E0

ds1, (6)

where E0 = 2(es 0 − s0), since the function s(t) takes its

minimum value s0 at t = 0 due to the symmetry of the

Amorphous Amorphous

a

R

a b

Figure 1. a — amorphous material between two infinite rigid

planes at a distance w . b — an amorphous material with

rigid spherical inclusions of radius R . The characteristic distance

between the centers of the inclusions is a .

problem. Figure 2 shows the solutions (6) in the form of

the dependence s(t) for different values of the parameter s0.
Each value of the parameter s0 corresponds to a different

value of the ratio w/ξ , which can be calculated based on the

condition that near a rigid boundary the local elastic contrast

α(x) tends to infinity. Therefore, the function s(t) diverges

at t = ±w/2ξ . Extending s to infinity in equation (6),
we get

w = 2ξ

∞
∫

s 0

1
√

2(es 1 − s1) − E0

ds1. (7)

For a fixed thickness of the amorphous layer w, the family of

curves (6) for different values of the parameter s0 describes

the spatial distribution of the elastic contrast α(x) at different
values of the inhomogeneity scale ξ (Figure 3). If the

medium is homogeneous and ξ = 0, we obtain the trivial

solution α(x) = 1 drawn by the dashed line. If the scale of

the inhomogeneity ξ is different from zero, then near the

boundaries the solution has the form

α(x − w/2) = α(w/2− x) =
2ξ2

x2
, 0 < x ≪ ξ, w, (8)

where x is the distance to the boundary. Thus, if ξ ≪ w ,

we have a region with exponential tails of elastic contrast

α(x − w/2) = α(w/2− x) = 1 + c1e
−x/ξ , ξ ≪ x ≪ w,

(9)
where

c1 = exp

∞
∫

0

(

1
√

2(es − s − 1)
−

1

es − 1

)

ds ≈ 2.5527.

(10)
If ξ ≫ w, the tails merge and the solution is described by

the previously derived analytic formula (3).

3.2. Macroscopic elastic moduli

An important characteristic of an amorphous layer is

its stiffness, which we will feel if we move one of the
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Figure 2. a — curves s(t) for different values of the parameter s0 . The vertical dashed lines indicate the positions ±w/2ξ at which the

function s(t) goes to infinity. The dots indicate the position of s0 = s(0). b — the dependence of the parameter s0 on the ratio of the

distance between the boundaries w to the scale of the inhomogeneity ξ .
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Figure 3. Distribution of local elastic contrast α(x) for different

values of heterogeneity scale ξ . All distances are normalized by

the thickness of the amorphous layer w .

boundaries relative to the other. The resulting stresses and

strains can only depend on the coordinate x . The stress

tensor has the form

σi j(x) =
(

K(x) −
2

3
µ(x)

)

δi jεkk(x) + 2µ(x)εi j (x). (11)

At the same time, the strain tensor εi j(x) in the framework

of the linear theory of elasticity has the form

εi j(x) =
1

2

(

∂ui(x)

∂r j
+

∂u j(x)

∂r i

)

, (12)

where r i is the coordinate x , y or z , and ui(x) is the

displacement of the substance points, which depends only

on the coordinate x . Hereinafter, the displacement refers

to the displacement of the points of the effective medium

obtained by the averaging procedure.

Substituting K(x) = α(x)K0 and µ(x) = α(x)µ0 into

equation (11), we obtain

σ̂ (x) = α(x)

×

















(

K0+
4

3
µ0

)∂ux(x)

∂x
µ0

∂uy(x)

∂x
µ0

∂uz (x)

∂x

µ0
∂uy(x)

∂x

(

K0−
2

3
µ0

)∂ux(x)

∂x
0

µ0
∂uz (x)

∂x
0

(

K0−
2

3
µ0

)∂ux(x)

∂x

















.

(13)
The displacement ui(x) is determined from the force

balance condition
∂σi j(x)

∂r j
= 0, (14)

integrating which we obtain a constant value of the stress

tensor σi j(x) = σi j . Hence,

∂ui(x)

∂x
=

Ai

α(x)
, (15)

where

Ax =
σxx

K0 + 4/3µ0
, Ay =

σxy

µ0
, Az =

σxz

µ0
. (16)

Then we can write the displacement difference of the

amorphous layer boundaries as

ui(w/2) − ui(−w/2) = Ai

w/2
∫

−w/2

dx
α(x)

. (17)

In describing the composite, it is convenient to pass

from the spatially inhomogeneous elastic moduli K(x) and
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Figure 4. Dependence of the macroscopic elastic contrast of the

amorphous layer αma on the ratio of the inhomogeneity scale ξ

to the layer thickness w . The dashed lines show the asymptotics

given by equations (20) and (21).

µ(x) to the macroscopic elastic moduli Kma = αmaK0 and

µma = αmaµ0, which will give the same stiffness of the

considered layer. The notion of macroscopic elastic moduli

will be particularly relevant for the three-dimensional case

considered next.

It should be noted that we obtain the same displacement

difference ui(w/2) − ui(−w/2) for a given stress σi j if the

elastic contrast is everywhere equal to

αma = w

(

w/2
∫

−w/2

dx
α(x)

)

−1

. (18)

Thus, αma is the macroscopic elastic contrast of the

amorphous layer. Thus σma denotes how many times the

stiffness of the layer increases due to the influence of the

boundaries, taking into account the disordered structure of

the amorphous material.

The macroscopic elastic contrast αma can be expressed

through quadratures as the following integral

αma =
w

ξ

(

w/2ξ
∫

−w/2ξ

e−s dt

)

−1

=
w

2ξ

(

∞
∫

s 0

e−s ds
√

2(es − s) − E0

)

−1

, (19)

where the relation s0 and ξ/w is defined by formula (7).
The resulting dependence of αma on ξ/w is shown in

Figure 4.

When ξ ≪ w, we have a linear growth

αma = 1 + c2

ξ

w
, (20)

where c2 ≈ 3.47. When ξ ≫ w there is an exact solu-

tion (3) for α(x), which gives a macroscopic elastic contrast

αma =
4π2ξ2

w2
. (21)

Thus, when the disorder is small, the macroscopic elastic

contrast grows linearly with increasing ξ , and then —
quadratically when the disorder becomes strong and ξ ≫ w .

4. Three-dimensional problem

The behavior of the amorphous layer discussed in the

previous section can be generalized to the case of more

complex composites. For example, to the case of solid

spherical inclusions in an amorphous matrix, shown in

Figure 1, b. In this case, the local elastic contrast is

determined by the three-dimensional equation (1).
If ξ = 0, we have a classical problem with a homo-

geneous medium and spherical inclusions in it. Such a

problem was considered by Mori and Tanaka [50,51]. For

the case of small volume fraction of rigid spherical particles,

the macroscopic elastic moduli of the composite are as

follows

KMT = K0

(

1 + 3φ
1− ν0

1 + ν0

)

, (22)

µMT = µ0

(

1 +
15φ

2

1− ν0

4− 5ν0

)

, (23)

where ν0 = (3K0 − 2µ0)/(6K0 + 2µ0) is the Poisson’s ratio

of the matrix, and φ is the volume fraction of spherical

inclusions.

If the matrix is inhomogeneous, the problem becomes sig-

nificantly more complicated and requires analyzing the local

elastic contrast α(r) for a given scale of inhomogeneity ξ . If

the distance between inclusion centers a much larger than

the scale of inhomogeneity ξ and particle radius R, the local
elastic contrast α(r) can be found around each inclusion

independently in spherical coordinates and obtain a stepped

behavior near the particle boundary

α(r) =
2R2ξ2

r2(r − R)2
, r − R ≪ R, ξ (24)

and exponential decay away from the boundary

α(r) = 1 + c3

R
r

e−(r−R)/ξ , r − R ≫ ξ, (25)

where c3 is a coefficient depending only on the ratio R/ξ .
Thus, a shell with high values of elastic moduli is formed

around each particle, whose thickness is of the order of the

scale of the inhomogeneity ξ . Such a case is discussed in

more detail in Ref. [47]. If ξ ≪ R, a , the effective radius
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Figure 5. Distribution of elastic contrast α(r) in the plane passing through inclusion centers for composites with different values of ξ .

Gray circles indicate rigid spherical inclusions with volume fraction φ = 3%.

of the inclusions increases by an amount of the order of ξ ,

giving an effective increase of φ and macroscopic elastic

moduli proportional to ξ , which repeats the result of the

one-dimensional case.

In the opposite case of extremely strong disorder, the

scale of inhomogeneity is much larger than all other scales,

ξ ≫ R, a . Then α(r) ≫ 1 and equation (1) becomes

α(r) = ξ21 lnα(r). (26)

It is possible to see from this equation that for a given

boundary g eometry of amorphous body α(r) ∼ ξ2. As

a result, the macroscopic elastic moduli of the composite

will be proportional to ξ2, which also repeats the result of

the one-dimensional case.

However, the general case where the elastic shells around

the inclusions can overlap and there is an arbitrary ratio

of parameters R, ξ and a is interesting. Such a problem

is considerably more complicated than the one-dimensional

problem discussed above. However, from general consi-

derations, it is possible to expect that the effective elasticity

of such a composite will depend on ξ/λ instead of ξ/w,

where λ is some characteristic geometric dimension, which

is determined by R and a . In this case, the dependence on

ξ/λ will resemble the one-dimensional dependence shown

in Figure 4.

Finite element methods were applied to numerically solve

this problem. A composite in which spherical inclusions of

radius R were located at nodes of a simple cubic lattice with

period a was considered. A single cell with periodic boun-

dary conditions was used for modeling. A second-order

hexagonal mesh containing N = 303104 elements in this

cell was used, which was described in detail in Ref. [52].
The numerical package FEniCS v0.5.2 was used for the

solution [53]. The ordered arrangement of the inclusions

greatly simplifies the calculation but has little effect on the

elastic properties of the composite.

Figure 5 shows the results of calculating the local elastic

contrast distribution in the plane passing through the centers

of the spherical inclusions for different values of ξ . It can

be seen that a shell with increased elastic contrast is formed

around the inclusions, whose thickness depends on the scale

of inhomogeneity ξ .

Figure 6 shows the calculated dependence of the increase

in elastic moduli δKma = Kma − K0 and δµma = µma − µ0 as

a function of the scale of inhomogeneity ξ with respect to

the radius of nanoinclusions R at different volume fractions

of nanoinclusions φ = 4πR3/3a3. Results are normalized

to the increment of elastic moduli in Mori-Tanaka theory

δKMT = KMT − K0 and δµMT = µMT − µ0. The Poisson’s

ratio value used in the calculation is 0.3, which corresponds

to typical values for amorphous polymers.

It can be seen that for ξ = 0 the results are in good

agreement with the classical theory and δKma = δKMT and

δµma = δµMT. As ξ increases, the increase in the elastic

modulus around the nanoparticle begins to play a role,

leading to an increase in the macroscopic elastic moduli

δKma

δKMT

≈
δµma

δµMT

≈
R3
eff

R3
(27)

due to the increased effective radius of the nanoinclusions

Reff ≈ R + 1.25ξ . When ξ ≪ R, formula (27) describes a

linear increase in elastic moduli with increasing ξ . When

ξ ≫ R, the formula (27) becomes no longer applicable.

But the calculation shows that elastic moduli quadratically

grows in this region with the increase of ξ , as in the

one-dimensional problem. Meanwhile, the most important

result of the numerical calculation is that the reduced

dependencies of ξ/R displayed at different φ are not much

different from each other (Figure 6, c and d), except for the
case of R = 0.4a when the distance between neighboring

inclusions d = a − 2R becomes smaller than the radius

of inclusions R. Thus, it can be concluded that the

characteristic geometric size λ is determined by the particle

radius R and depends weakly on the distance between the

particle centers a . It should be noted that the shell size ξ

can be either smaller than the distance between the nearest

nanoinclusions d or larger than it. The position ξ = d is

marked with arrows in Figure 6. It can be seen that no

10 Physics of the Solid State, 2025, Vol. 67, No. 4
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Figure 6. Dependence of the increment of macroscopic elastic moduli δKma = Kma − K0 and δµma = µma − µ0 as a function of the scale

of inhomogeneity ξ with respect to the radius of nanoinclusions R at different volume fractions of nanoinclusions φ. Results normalized

to the increment of elastic moduli in Mori-Tanaka theory δKMT = KMT − K0 and δµMT = µMT − µ0 . The Poisson’s ratio is 0.3. The dashed

lines in the upper panels show the dependence (27). The dashed lines in the lower panels show the asymptotics of δKma ∼ ξ2/R2 and

δµma ∼ ξ2/R2. The arrows show the position d/R, where d = a − 2R — the distance between the nearest nanoinclusions.

significant change in the plots at this position is observed.

This is especially evident in the case of small radius of
the nanoinclusions R = 0.1a . Thus the elastic envelopes

overlap at ξ > d and their effects are additive, resulting in

no noticeable features when they overlap.

It is interesting to note that in the case R ≪ ξ ≪ a the
increase in elastic moduli δKma and δµma is proportional to

ξ2, as in the very strong disorder limit ξ ≫ a . This means

that the effective radius of the inclusions is proportional to
ξ2/3 at ξ ≫ R.

5. Discussion of results

The effect of inhomogeneity of the amorphous medium

on the elastic properties of amorphous composites was
studied in this paper. It is shown that the elastic moduli

of the amorphous material increase near rigid boundaries

which is associated with the suppression of non-affine

deformations. This leads to an increase in the macroscopic

elastic moduli of the whole composite.

The case of a layer of amorphous material enclosed

between two layers of stiffer material was considered in

Section 3. Such a case lends itself to analytical consideration

through the application of quadrature formulas. The

determination of local elastic moduli is a difficult problem

for molecular dynamic modeling and even more so for

experimental study. Therefore, the rigidity of the whole

amorphous layer was considered, which can be determined

by varying the distance between the boundaries of this

layer. It is shown that the macroscopically elastic moduli

thus determined increase αma times with respect to the bulk

material.

It should be noted that the reasoning in this paper was

based on the fact that both boundaries are rigid and well
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bonded to the atoms of the amorphous material. If one of

the boundaries is free, there will be no suppression of non-

affine deformations near this boundary and instead of the

boundary condition α(r) → ∞ we can expect the condition

α(r) ≈ 1. The description of such boundaries, as well as

more complex conditions with tangential slip (which occurs

at the graphene or carbon nanotube boundary), requires

separate consideration, which is planned in future work.

More complicated case of spherical particles in an

amorphous matrix was considered in Section 4. With the

help of numerical calculations it was shown that qualitatively

the results fully repeat the one-dimensional case, only now

a shell of thickness ξ with increased values of elastic

moduli is formed around each particle, and the radius of

nanoparticles R serves as the main geometric dimension. It

is shown that the ratio of the scale of inhomogeneity ξ to

the distance between particle centers a is not determinant.

According to the obtained calculation results, when ξ > a ,
the elastic shells overlap and their effects are additive,

continuing the existing trend. A noticeable deviation is

observed only when the gap between particles d becomes

smaller than the radius of particles R. If we have a

composite in which all the particles are almost in contact,

then the gap between the particles d, instead of the radius R,
is likely to be the geometric dimension. In practice,

however, composites with low volume fraction of inclusions

are of most interest.

It should be noted that in polymeric materials nanoparti-

cles often tend to form aggregates, and special preparation

methods for such materials are used to obtain a more

uniform distribution of nanoparticles. The elastic modulus

averaging method considered in this paper is also applicable

to describe materials with particle aggregates. To do this,

it is necessary to first perform the described averaging

procedure in each unit separately. It can be expected that

the aggregates realize a regime of strong overlap of the

effective elastic shells around the individual nanoparticles.

The averaging procedure must then be carried out on a

larger scale, considering the aggregates as large inclusions

with their own elastic moduli.

The results of this study should encourage further study

of the elastic properties of amorphous materials both by

molecular dynamics methods and experimentally.

6. Conclusion

The macroscopic elastic moduli of amorphous composites

are shown to depend on the ratio of the scale of inhomo-

geneity ξ to some geometric dimension λ. In the case of

a thin amorphous layer, there is only the thickness of the

layer that determines the size λ. In the case of a composite

with spherical particles, the particle radius R, but not the
distance between particle centers a , serves as such a size.

At low disorder strength, the macroscopic elastic moduli

increase linearly with increasing ratio ξ/λ at the expense

of increasing elastic modulus in the near-surface layer

with thickness ξ . The macroscopic elastic moduli are

proportional to ξ2/λ2 in the case of strong disorder, when

ξ ≫ λ. In the case of a composite with spherical particles,

this quadratic dependence is observed both in case of a

weak overlap of the near-surface layers (R ≪ ξ ≪ a) and

in case of their strong overlap (ξ ≫ a).
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