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Mechanical and thermal properties of carbyne: Analytical estimates
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To describe the mechanical and thermal properties of free-standing carbyne, the Harrison’s bond orbital model

is used, within which the Grüneisen parameter, heat capacities and the reaction of the central interaction on force

constant of the stretching deformation and temperature are considered. The results obtained are compared with

available data on graphene. The nature of the influence of the metal substrate on the characteristics of epitaxial

carbyne is discussed.
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1. Introduction

The advent of graphene [1] has instigated a renewed

interest in the only truly one-dimensional (1D) struc-

ture — carbyne, which is a linear chain of carbon

atoms. Two kinds of carbynes are distinguished: metal-

lic cumulene with double bonds (. . .=C=C=. . . ) and

semiconducting polyyne with alternating single and triple

bonds (. . .≡C−C≡C−C≡ . . .) [2–14]. The theoretically

expected strength, elastic modulus, and stiffness of carbynes

are greater than those of any known material, including

diamond, carbon nanotubes, and graphene, allowing for

new composite materials (e. g., by reinforcing the matrix

with carbyne filaments). Harmonic characteristics of free

and epitaxial carbynes were discussed in Ref. [8]. Here we

will take anharmonicity into account and obtain analytical

estimates of the characterization of the elastic and thermal

properties of carbynes. Here, as in Ref. [14], we will

use Harrison’s binding orbitals model [15,16], which we

have previously tested on graphene and graphene-like binary

compounds [17].
The energy Eb of two-electron σ -bond of the sp-orbitals

of carbon atoms in cumulene can be represented as follows

according to Ref. [16]

Eb = −2V + 2SV, (1)

where V = η(~2/ma2) is the covalent energy, S is the

overlap integral, a is the distance between nearest neighbors,

m is the electron mass, ~ is the reduced Planck constant,

the coefficient η = 3.19 (here, in contrast to Ref. [16], we
assume V2 ≡ V > 0). In cumulene, the length of the double

bond C=C is ā = 1.282 Å, so V̄ = 14.79 eV; in polyyne,

the single bond C−C has length ā = 1.265 Å, and the

triple bond C≡C has length ā = 1.301 Å [18], so that in

the former case V̄1 = 15.19 eV, in the latter V̄2 = 14.36 eV.

Considering that S ∝ a−1, from the equilibrium condition

(∂Eb/∂a)ā we obtain S̄ = 2/3, where hereafter the dash

above the symbol indicates its magnitude under equilibrium

conditions. Thus,

Ēb = −2V̄/3. (2)

Since ultra-long carbyne chains of 6000 atoms embedded

in double-walled carbon nanotubes [2,3,7] are now available,

the infinite carbon chain model we will use here is quite

reasonable. The case of the free carbyne assumption is

more complicated. This approximation is discussed at the

end of the next section.

2. Free carbyne

Let us consider an infinite free chain of carbon atoms. In

order to take anharmonism into account in the calculation

of mechanical and thermal characteristics, we need to know

the values of the third- and fourth-order derivatives of

Eb over the interatomic distance (first- and second-order

anharmonism). We obtain from (1)

f̄ ≡ E(2)
b = 4V̄/ā2, ḡ ≡ E(3)

b = −32V̄/ā3,

h̄ ≡ E(4)
b = 240V̄/ā4, (3)

where E(n)
b ≡(∂nEb/∂an)ā . Since for polyine (ā1+ā2)/2=

= 1.283 Å, which practically coincides with the interatomic

distance in cumulene ā , then in the future, unless otherwise

specified, we will simply talk about carbine. In the case

of graphene, where σ -bonds are formed by sp2-orbitals,

the expressions (1) and (2) are true, but instead of V̄
it should be V̄Gr = ηGr(~

2/māGr), where ηGr = 3.26 [15]
and āGr = 1.42 Å, so that V̄Gr = 12.32 eV. Since the force

constant of the central interaction k0 = f̄ , we obtain
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k0 = 36 eV/Å2 for carbyne (for the C−C and C≡C chains

we have, respectively, 38 and 34 eV/Å2), and for graphene

(without taking into account metallicity [17]) we have

k0 = 24.44 eV/Å2.

For what follows, we need the phonon spectrum of the

carbynes. As shown in Ref. [14],

Mω2
cum = 4k0 sin

2(qā/2), |q| ≤ π/ā,

Mω2
pol(q) = (k01 + k02)(1± R), |q| ≤ π/2. (4)

Here q is the wave vector, M is the mass

of the carbon atom, k01(2) = 4V̄1(2)/ā2
1(2) and

R =
√

1− 4k01k02 sin
2(qa)/(k01 + k02)2, the plus

sign before R corresponds to the optical branch

of the polyene ω+
pol(q), minus sign is the acoustic

branch ω−

pol(q). Assuming approximately k01,2 ≈ k0 ± 1k ,

where 1k ≈ 2 eV/Å2 [13], up to (1k/k0)
2 ≈ 3 · 10−3

we obtain (ω+
pol)

2 ≈ (4k0/M) cos2(qa/2) and (ω−

pol)
2 ≈

≈ (4k0/M) sin2(qa/2). The Gruneisen parameter averaged

over the Brillouin zone (BZ) is

〈γ〉BZ = − ā
2〈ω2(q)〉BZ

(

∂〈ω2(q)〉BZ

∂a

)

ā

(5)

(see Refs. [19,20]). Then, given that 〈ω2
cum〉BZ ≈ 〈ω2

pol〉BZ

≈ 2k0/M, we find for carbynes 〈γ〉BZ ≈ −κ/4k0, where

κ = ā(∂2Ed/∂a2)ā is a parameter describing the response

of the constant k0 to the deformation ε = δā/ā of the

interatomic bond, equal for cumulene −288 eV/Å2, (for
the C−C and C≡C chains we have, respectively, −304

and −271 eV/Å2, and for graphene −186 eV/Å2 [17]). We

obtain IFx70xxE for the averaged Grüneisen parameter in

the case of carbyne, which is almost identical to the value

for graphene of 2.1 [17], where the deviation from 2 is

attributable to the consideration of metallicity.

The quasiharmonic approximation in lattice dynamics is

that the vibrational energy Fvib is represented in the same

form as in the harmonic approximation, but the force

constants are assumed to depend on strain [19–24]. Then

the free energy can be represented as F = Eb + Fvib, where

Fvib ≈ 3kBT ln

(

2 sh
~〈ω2〉1/2BZ

2kBT

)

. (6)

We have Fvib ≈ 3~〈ω2〉1/2BZ /2 at temperatures of

T ≪ 2 = ~〈ω2〉1/2BZ /kB ≈ 1500K, while at temperatures

T ≫ 2

Fvib ≈ 3kB T
2

ln

(

~
2〈ω2〉BZ

k2
BT 2

)

. (7)

This is the approximation used to describe the tem-

perature effects in graphene [17,20]. The coeffi-

cient of thermal expansion α = −ḡkB/2 f̄ 2ā [17,19],
whence we have α = kB/V̄ , where kB is the Boltz-

mann constant, which for carbynes gives α ≈ 6 · 10−6 K−1,

whereas for graphene α ≈ 8 · 10−6 K−1. Tempera-

ture coefficient of the central interaction force constant

Table 1. Analytical results (captionk0 is the force constant of the

central interaction, κ = ā ḡ is the bond response to its elongation,

α is the coefficient of thermal expansion, TC(k0) is the temperature

coefficient of the force constant k0)

Symbol k0 κ 〈γ〉BZ α TC(k0)

Formula f̄ ā ḡ ā ḡ/4 f̄ −ḡkB/2 f̄ 2ā κα + kB(h̄ − ḡ2/ f̄ )/ f̄

TK(k0) = k−1
0 (∂k0/∂T ) = κα ≈ −0.5 · 10−4 K−1. The ana-

log of this characteristic for graphene is the coefficient

TK(B) = B−1(∂B/∂T ) ≈ −0.75 · 10−4 K−1, where B is

the two-dimensional analog of the all-round compres-

sion modulus [16] (one and a half times the excess

of —TK(B)— over —TK(k0)— is equal to the ratio

ā/āGr = 1.5). Using the results [18] for the heat ca-

pacities C p and CV , we have C p ≈ NkB [1 + 3kBT/V̄ ]
and C p −CV = 4Nk2

B T/V̄ , where under C p(V ) we should

understand the heat capacity at constant chain tension

(length) (the relation kBT/V̄ ∼ 10−2 at T = 1500K). For
convenience, a summary of the formulas defining the

considered parameters is summarized in Table 1. The

results of the estimations for cumulene are summarized in

comparison with those for graphene in Table 2.

3. Epitaxial carbyne

So far we have considered free carbyne, but now we will

turn to epitaxial carbyne (epicarbyne). The possibility of

chain formation on the grooved faces of transition metals

is discussed in detail in Ref. [25]. These facets (e. g.,
facets (112) of the BCC lattice and (110) of the FCC

lattice) are constructed from parallel densely packed rows of

atoms separated by
”
grooves“ of atomic depth. According

to Ref. [15] (Chapter 19), matrix element of σ -bonds of

pz -states of carbon with d-states of metal substrate

Ṽ1 ≡ Vpdσ = 2.95
(

~
2r3/2d /md3/2

)

, (8)

where rd is the radius of d-shell, equal for W and Mo,

respectively, 1.27 and 1.20 Å and d is the length of the

adsorption bond. Assuming d ∼ 2.5 Å, we obtain Ṽ1 ∼ 1 eV.

A matrix element was used for the same purpose in

Ref. jcite26

Ṽ2 = 1.85(~2/m)(r pr3d)
1/2/d4, (9)

where
”
radius of“ of carbon r p = 6.59 Å [27]. We

have Ṽ2 = 2.77 eV for carbine on Co and Ni substrates

(d = 2.1 Å, r p = 0.76 Å) [26]. Thus, the matrix elements

of the bond carbine-substrate Ṽ1,2 are much smaller than

the matrix elements of the interatomic interaction in carbine

V̄ , V̄1,2, since d ≫ ā, (ā1,2). It already follows from this

inequality that the effect of the substrate on the mechanical

and anharmonic properties of carbine, which results in

the appearance of additional interaction of carbon adatoms
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Table 2. Estimates for cumulene and graphene (ā is the distance between nearest carbon atoms, V̄ is the Harrison’s covalent energy)

Structure ā , Å V̄ , eV k0, eV/Å2 κ, eV/Å2 〈γ〉BZ α, 10−6 K−1 TC(k0), 10
−4K−1

cumulene 1.282 14.79 36 −288 2 6 −0.50

graphene 1.42 12.32 24 −186 2 8 −0.75

through the electronic states of the transition metal (indirect
exchange) of the form

tmet
ind ≈ −

Ṽ 2
1,2ā

2m∗

π~2
cos(āk∗

met), (10)

where k∗

met =
√
2m∗EF/~ and the Fermi energy EF is calcu-

lated from the bottom of the metal conduction band with the

law of dispersion εkmet = ~
2k2

met/2m∗, it will be quite limited

(see details in Ref. [26]). An indirect proof of this statement

is the smallness of the ratio 1ωGr(Ŵ)/ωGr(Ŵ) ≈ 0.01, where

1ωGr(Ŵ) is the red shift of the G-peak of the epigraphen

formed on the polytype 6H-SiC, ωGr(Ŵ) is the frequency of

the G-peak of free graphene at the point Ŵ of the Brillouin

zone [28].

4. Conclusion

Using the Harrison’s theory and scaling (V ∝ a−2 and

S ∝ a−1) [16], we showed that the coefficients of expansion

of the elastic binding energy Eb are equal to f ∝ a−4,

g ∝ −a−5 and h ∝ a−6. Thus, all elastic characteristics

associated with the central interaction of graphene atoms are

smaller than the corresponding characteristics of cumulene

(see Table 2). The same can be said about hypothetical one-

dimensional structures consisting of Si and Ge atoms [17].
Moreover, the observed decrease increases as ā increases.

The second point to note is that due to the small ratio

|ā2 − ā1|/ā ≈ 3 · 10−2 , the results obtained for cumulene

can serve as estimates of the elastic and thermoelastic

characteristics of polyine. And, thirdly, the values of

B ≈ 100N/m for graphene obtained in Ref. [17] turned

out to be significantly underestimated compared to the

experimental value of B ≈ 170N/m [29]. The analysis

showed that the reason for this discrepancy is the weak

repulsion 2SV ∝ a−3 is the second term in equation (1).
If additional repulsion 1Erep ∝ a−12 [30,31] is included

in (1), then the agreement of the calculated and measured

values B can be significantly improved, but the values of

the anharmonic characteristics increase excessively. Thus,

expressions (1)−(3) are best suited for evaluating the

anharmonic properties of both low-dimensional and bulk

structures. We emphasize that the Harrison’s calculation

scheme [16] used in this study does not use any fitting

parameter: all values are expressed through the equilibrium

distance between nearest neighbors ā and the dimensionless

multiplier η, which determines the type of hybridization of s

and p states of carbon atoms.

In conclusion, we would like to note that the quan-

titative differences between the elastic and thermoelastic

characteristics of cumulene and polyyne are relatively small,

whereas their electronic properties are qualitatively different:

cumulene is a metal and polyyne is a semiconductor.
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