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Effect of the thermal boundary condition on the flat channel wall and

axial thermal conductivity of liquid on heat transfer in a laminar pulsating

flow in a quasi-stationary regime
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The possibility of increasing the efficiency of heat transfer devices by imposing high-amplitude flowrate pulsations

on the laminar flow has been investigated. The greatest heat transfer increase in the pulsating flow compared to that

in the stationary flow occurs in the region of relatively low flow pulsation frequencies, i. e. in the quasi-stationary

regime. The average Nusselt number over the channel length and time may increase by 50% as compared to that

in the stationary flow and by several times in the presence of influence of the liquid’s axial thermal conductivity at

low Peclet numbers and relatively short pipes.
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The paper considers heat transfer in the case of a laminar

pulsating flow in a flat channel. Velocity 〈u〉 averaged over

cross-section varies with time according to harmonic law

〈U〉 = 1 + A cos(ωt),

where 〈U〉 = 〈u〉/〈ū〉, 〈ū〉 are the average velocity values

over the cross-section and time, A is the pulsation amplitude,

ω is the circular frequency.

The non-stationary energy equation for a developed flow

has the following form:

Wo2T
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∂tω
+ U
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Here tω = tω is the dimensionless time; X = x/(hPe),
Y = y/h are the dimensionless longitudinal and transverse

coordinates; ϑ = λ(T − T0)/(hqw) is the dimensionless

temperature at the given heat flux density on the wall

qw = const; U = u/〈ū〉 is the dimensionless longitudinal ve-

locity; Pe = RePr is the Peclet number; Re = 〈ū〉h/ν is the

Reynolds number; ν is the kinematic viscosity coefficient;

WoT = 2Wo
√
Pr, Wo = h

2

√

ω
ν

is the Womersley number;

h is the channel width; T0 is the channel inlet temperature.

One of the methods for intensifying heat exchange in

various heat transfer devices may be imposing flowrate pul-

sations on the laminar flow. Paper [1] presents classification
of pulsating laminar flow regimes. Based on the Womersley

numbers, the following regimes are distinguished: quasi-

stationary (Wo, WoT < 1), high-frequency (Wo, WoT > 10)
and intermediate ones. The paper has shown that an

increase in the pulsating flow heat transfer relative to that in

the stationary flow is possible only at high pulsation ampli-

tudes A > 1. It has been established that the greatest heat

transfer enhancement occurs in the range of relatively low

flowrate pulsation frequencies, i. e. in the quasi-stationary

regime. In this case, when WoT ≪ 1, it is possible to

omit the first term in (1) and solve the stationary energy

equation. If heat transfer is considered for a developing

flow, the longitudinal and transverse velocity components

will be found by solving a set of stationary equations of

motion and continuity. Paper [2,3] has proposed a method

for utilizing data on the stationary-flow hydrodynamic and

thermal characteristics to obtain these characteristics for the

quasi-stationary pulsating flow:

U(X ,Y, ωt) = Us (X/〈U〉,Y )〈U〉,

ϑ(X ,Y, ωt) = ϑs(X/〈U〉,Y ),

1ϑ(X , ωt) = 1ϑs(X/〈U〉). (2)

Here Us , ϑs , 1ϑs are the velocity, temperature and

temperature head (difference between the wall temperature

and average liquid bulk temperature) obtained by solving

stationary equations.

For the analysis of the effect of flowrate pulsations on

hydrodynamics and heat transfer, work [3] proposed to

divide the pulsation period into two parts; in the first one,

the liquid moves from the channel inlet to outlet (forward
flow), while in the second one the flow direction is opposite

(reverse flow). This separation allows the obtained data

to be employed in designing various heat transfer devices,

e. g. heat exchangers used to intensify the heat transfer. In

practice, heated channel section length Lq is a finite value.

For the reverse flow, distance from the heating onset X
should be replaced in relations (2) by X−Lq .

Since 1960s, research on heat transfer in the presence

of fluid’s axial thermal conductivity has been conducted.
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Studies [4–8] were performed for a developed flow and

infinite lengths of the heated section and preceding adiabatic

section: Lq → ∞, L0 → −∞. At the adiabatic section inlet,

a uniform temperature profile was set. In some studies,

temperature distribution along the transverse coordinate at

the heated section outlet was found by solving the energy

equation with ignoring the axial thermal conductivity of

the liquid. In other works it was assumed that outlet

temperatures change in the longitudinal direction according

to the laws corresponding to the case of absence of the influ-

ence of axial thermal conductivity. Studies [5–8] considered
a flow in a round pipe, while papers [7,8] considered in

addition a flow in a flat channel. Calculations with the first-

type boundary condition on the heated section wall were

carried out in [4,6,8], those with the second-type boundary

condition were performed in [5–8]. An approximate

analytical method for solving the problem (expansion in

eigenfunctions) was applied in [4,5,7]. In this case, at the

interface between the adiabatic and heated sections there

were set conditions of equality of temperatures and their

derivatives along the section length (exact fulfillment of the

last condition is not mandatory, since it does not follow

from the energy equation). In [6,8], the problem was solved

by the finite difference method.

In heat transfer devices, heat-carrier agents are typically

fed into the channel at a constant temperature. The adiabatic

section is absent, its length is zero. The heated section has

finite length Lq . At the heated section outlet, the liquid

temperature does not change in the longitudinal direction.

The problem formulated as above has been solved for the

first time.

Here the stationary energy equation for a developed flow

is being solved:

U
∂ϑ

∂X
=

∂2ϑ

∂Y 2
+

1

Pe2
∂2ϑ

∂X2
. (3)

The equation (3) boundary conditions are as follows:

ϑ = 0 at X = 0, ∂ϑ/∂X = 0 at X = Lq, ∂ϑ/∂Y = 0 at

Y = 0 ∂ϑ/∂Y = 1 at Y = 1/2.

For the developed flow in a flat channel,

U = 1.5(1 − 4Y 2).
The solution depends on the Peclet number Pe and heated

section length Lq . The Nusselt number is calculated via

relation Nus = 1/1ϑs .

To solve (3), a new unconditionally stable finite-difference

algorithm has been developed as a combination of two

known schemes: iterative methods of Gauss−Seidel and

longitudinal-transverse sweep. This scheme accounts for the

transition from solving an elliptic-type equation to solving

that of the parabolic type in the absence of the axial thermal

conductivity effect. Besides, the proposed algorithm allows

one to minimize the number of iterations.

The developed numerical-simulation method has been

verified. In the absence of effect of the liquid’s axial

thermal conductivity (Pe → ∞), a good agreement between

the Nus(X) calculations and data given in [9] was achieved.
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Figure 1. Average Nusselt number over time and channel

length versus the heated section length under the first-type

boundary condition. 1 — 〈Nu〉/〈Nus 〉, 2 — 〈Nud〉/〈Nus〉, 3 —
〈Nur 〉/〈Nus〉. I — 〈Nu1〉/〈Nus〉, II — 〈Nu2〉/〈Nus 〉.

Lq

1.2

1.8

110–1
1.0

1.4

1

2

3

I

II

<
>

/<
N

u
>

N
u

s

1

4

1.6

Figure 2. Average Nusselt number over time and channel

length versus the heated section length under the second-type

boundary condition. 1 — 〈Nu〉/〈Nus〉, 2 — 〈Nud〉/〈Nu〉s ,

3 — 〈Nur〉/〈Nus 〉, 4 — 〈Nus 〉/Nu∞. I — 〈Nu1〉/〈Nus〉, II —
〈Nu2〉/〈Nus〉.

The difference is about 10% at X = 10−5 and about a few

units of percent at X = 0.1. Taking into account the axial

thermal conductivity, the calculated variations in the Nusselt
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Figure 3. Average Nusselt number over time and channel length

versus the heated section length for Pe = 1 (a) and 1000 (b).

1 — 〈Nu〉/〈Nus 〉, 2 — 〈Nud〉/〈Nus〉, 3 — 〈Nur〉/〈Nus 〉. I —
〈Nu1〉/〈Nus〉, II — 〈Nu2〉/〈Nus〉.

number along the channel at low Peclet numbers and

Lq → ∞, L0 → −∞ coincide qualitatively and quantitatively

with the results of the above-mentioned previous studies.

The maximum difference, as well as difference between

data acquired in the above-mentioned works, is observed

at Pe = 1 at the heated section inlet and ranges within

10−15%.

The Nusselt number calculations for the stationary flow

with the finite heated section length were used to obtain

data for the quasi-stationary pulsating flow by the above-

described method.

The method for designing various heat transfer devices

uses data on the Nusselt number averaged over the channel

length and time. Time averaging may be performed in

two ways: Nu1 ∝ 1/1ϑ , Nu2 ∝ 1/1ϑ . For the forward

flow, time averaging is performed in that part of the period

where the flow velocity averaged over the cross-section is

positive. Time averaging for the reverse flow is performed

in the period part where the liquid flow is directed from the

channel outlet to inlet.

Calculations at A = 5 are presented in Figs. 1−3. In

addition to average Nusselt numbers for the forward (Nud)
and reverse (Nur) flows, the figures demonstrate average

Nusselt numbers Nu over the entire oscillation period.

Values of Nu1 and 〈Nu1〉 are between Nd
1 , 〈Nd

1〉 and Nr
1,

〈Nr
1〉. Ratios between Nu2 and Nu1, as well as between

Nu2, 〈Nu2〉 and Nud
2 , 〈Nud

2〉, Nur
2, 〈Nur

2〉, may be different.

They are determined by the temperature head dependence

on time and distance from the heating onset for the forward

and reverse flows.

Calculations whose results are presented in Figs. 1, 2,

were performed earlier for the developing flow at Pr = 0.7

without taking into account the liquid’s axial thermal

conductivity. In the case of the second-type boundary

condition on the channel wall (qw = const, Fig. 2), the heat

transfer enhancement due to imposing flowrate pulsations

is somewhat higher than that for the first-type boundary

condition (Tw = const, Fig. 1). This difference is not

observed at Pr = 7. Fig. 2 also shows variations in

the Nusselt number averaged along the channel for the

stationary developing flow with respect to its stabilized

value Nu∞ = 4.12. Note that at Pr > 7 the effect of the

flow development on the ratio between Nusselt numbers for

quasi-stationary and stationary flows becomes insignificant.

Via the developed numerical-simulation technique, there

were performed calculations of the developing and devel-

oped stationary flows in the flat channel with accounting

for the liquid’s axial thermal conductivity at finite lengths of

the adiabatic and heated sections. The data obtained were

used to calculate the quasi-stationary flow Nusselt numbers

which depend on the longitudinal coordinate and time.

Calculations have shown that effect of the flow development

on the ratio between Nusselt numbers for quasi-stationary

and stationary flows is insignificant at Pr > 7.

Calculations whose results are given in Fig. 3 were

performed for the developed flow with accounting for the

liquid’s axial thermal conductivity under the second-type

boundary condition. In this case, the Nusselt number

depends not on the Prandtl number, but on the Peclet

number. When Peclet numbers are as low as about a

few units (Fig. 3, a) and pipes are relatively short, heat

transfer increases several times with respect to that for

the stationary flow. At high Peclet numbers (Pe > 100)
(Fig. 3, b), when the axial thermal conductivity effect is

insignificant, heat transfer increases to a somewhat lesser
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extent than in the case of the developing fluid flow with

Prandtl number Pr = 0.7 (Fig. 2). This difference increases

with increasing Prandtl number. Calculations performed for

the first-type boundary condition showed that the type of

boundary condition slightly affects the Nusselt number ratio

to its stationary-flow value.
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[6] D.K. Hennecke, Wärme Stoffübertragung, 1 (3), 177 (1968).
DOI: 10.1007/BF00751149

[7] C.-J. Hsu, Am. Inst. Chem. Eng. J., 17 (3), 732 (1971).
[8] T.V. Nguyen, Int. J. Heat Mass Transfer, 35 (7), 1733 (1992).

DOI: 10.1016/0017-9310(92)90143-G
[9] R.K. Shah, A.L. London, Laminar flow forced convection in

ducts (Academic Press, N.Y., 1978), p. 172, 181, 191, 193.

Translated by EgoTranslating

2∗ Technical Physics Letters, 2025, Vol. 51, No. 6


