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The analytical description of the refractive index temperature coefficient

in III−V semiconductors within the normal dispersion theory approach
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In the framework of the normal dispersion theory we obtain the energy dependence of the refractive index

temperature coefficient in the transparency window of the III−V family typical compounds. Additionally, we show

that the main results are also applicable to compounds of other classes: monomolecular compounds of group IV,

as well as zinc-based chalcogenide semiconductors. It is shown that the growth of the refractive index is caused

by a simultaneous decrease in the probability of interband transitions and the width of the band gap of these

semiconductors upon heating. The fundamental relationship of the obtained results with the Varshni formula is

considered. The applicability of the obtained results to the problem of dual-comb spectrometry is discussed.
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Semiconductor quantum cascade lasers have found many

technical applications. The most promising engineering

applications are gas analysis and sampling, where lasers

with their comb emission spectrum are used as sources of

probing signals in a two-beam heterodyne-like arrangement

(dual-comb-spectroscopy [1]). The energy dependence of

the macroscopic absorption cross section in the infrared

range, which is unique to different materials, is measured

in such devices to determine the chemical composition of

samples. The macroscopic IR cross section of the sample is

estimated by analyzing the attenuation of a superposition

of beams from two independent lasers that have passed

through a cell containing this sample. Since the typical

spectrum of IR laser radiation includes tens of modes in

a comb spectrum, energy selection (selection of a pair of at-

tenuated interfering longtitudinal modes) may be performed

by measuring the amplitude of beats of the lowest frequency

within the range from several tens to a hundred megahertz.

One of the challenges in such a device is to ensure

controllable variability of two comb spectra relative to each

other. The authors of the original study [1] proposed to use

heating [2] as the primary method of adjusting the spectral

characteristics of a laser by altering the refractive index of

the active region (dn/dT). Since most infrared solid-state

lasers are based on III−V compounds, we consider the

coefficient of temperature dependence of the refractive

index for this group of materials, propose a model for

predicting its dispersion, and examine its applicability. In

addition, we extrapolate the proposed model to II−VI

compounds and monomolecular group IV semiconductors.

The starting point for determining the temperature co-

efficient of the refractive index is the basic approximation

aimed at characterizing the refractive index of a material:

the normal dispersion theor. In the present study, we use

the basic equation formulated in the energy representation

in [3] for a single effective oscillator:

n(~ω) =

√

1 +
EdE0

E2
0 − (~ω)2

. (1)

Here, n(~ω) is the refractive index of a medium, which

depends on photon energy, and E0 and Ed are problem

parameters. A comparative analysis of the first parameter

for typical III−V compounds, which are listed in the Table,

reveals that, as a first approximation, the E0 parameter may

be taken equal to twice the value of the band gap of the

material (Eg). In turn, the parameter Ed has the meaning of

effective oscillator strength and a more complex origin, and

its value obeys the following empirical rule [7]:

Ed = γNcZaNe, (2)

where γ is a parameter with the dimension of energy,

which characterizes the measure of covalence/ionicity of

a material and assumes the values from 0.26 (for truly

ionic compounds) to 0.39 (for truly covalent compounds);
and parameters Nc , Za , Ne denote the cation coordination

number, the anion formal valence, and the effective number

of electrons per anion in a given crystal respectively. The

temperature dependence of a dielectric permittivity ε∞
(where ε∞ = n2

∞
) the long wavelength limit (~ω → 0, but

~ω > Ephonon to exclude non-optical polarization) in the

presented approximation has been extensively studied in

literature. Let us consider its analytical expression based
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Optical characteristics and parameters of the electronic structure of typical semiconductors

Material E0, eV [4] Eg , eV [5] n∞(
√
ε∞) [5]

dEg

dT , 10−4 eV · K−1 [5] dε∞
dT , 10−4K−1 [6]

Ge 2.7 0.7 4.0 −4 22

Si 4 1.1 3.4 −3 9.3

C 11 5.5 2.4 −0.5 0.6

GaAs 3.6 1.4 3.3 −5 12

GaP 4.5 2.3 2.9 −4 6.7

ZnSe 5.5 2.7 2.4 −6 3.0

ZnS 6.4 3.5 2.2 −5 3.4
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Figure 1. The diagram plotted based on the experimental data

(see the Table) and illustrating the linear relation between the

logarithmic derivative of the band gap width and the left-hand

side of expression (5) with proportionality coefficient χ. Red,

green, and blue colors correspond to monomolecular Ge, Si, and

C (diamond) compounds; III−V semiconductors (GaAs, GaP);
and zinc-based II−VI compounds (ZnSe, ZnS), respectively. A

color version of the figure is provided in the online version of the

paper.

on the presented parameters:

n2
∞

= ε∞ = 1 +
Ed

E0

. (3)

The temperature dependence of permittivity may then be

written in a trivial form

dε∞
dT

= (ε∞ − 1)

(

1

Ed

dEd

dT
−

1

E0

dE0

dT

)

. (4)

This expression may be calibrated against the available

experimental data (see the Table) by applying the following

ansatz: let us assume that the relation between parameter E0

and band gap width Eg , which has been identified earlier

in the description of parameters of the normal dispersion

theory, is valid for their increments induced by an increase

in temperature (i. e., dE0 = 2dEg). The previous expression

is then simplified to the form

1

ε∞ − 1

dε∞
dT

=
2n∞

n2
∞

− 1

dn∞
dT

≈
1

Ed

dEd

dT
−

1

Eg

dEg

dT
, (5)

where the only unknown is the logarithmic derivative of

the effective strength of a single oscillator. The results

of a systematic comparative analysis of the left-hand side

of the approximate equality and the logarithmic derivative

of the band gap width for typical semiconductor materials

(see Fig. 1) revealed that their magnitudes are related by a

proportionality coefficient χ . Thus, expression (5) may be

rewritten as

1

Ed

dEd

dT
−

1

Eg

dEg

dT
≈ −χ

(

1

Eg

dEg

dT

)

, (6)

where 0 < χ < 1. Alternatively,

1

Ed

dEd

dT
= (1− χ)

1

Eg

dEg

dT
. (7)

Let us now consider the complete expression for the

temperature coefficient of the refractive index derived from

expression (1):

dn
dT

(~ω) =
1

2n(~ω)

EdE0

E2
0 − (~ω)2

(

1

Ed

dEd

dT
+

1

E0

dE0

dT

−
2E2

0

E2
0 − (~ω)2

1

E0

dE0

dT

)

, (8)

which assumes the following form after the substitution of

expressions including E0 and Ed with the equivalent ones

containing Eg :

dn
dT

(~ω) =
(n(~ω)2 − 1)

2n(~ω)

1

Eg

dEg

dT

×

(

(2− χ) −
2

1−
(

~ω
2Eg

)2

)

. (9)
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Having optimized this expression by estimating the propor-

tionality coefficient as χ = 1/3 based on the data from Fig. 1

and omitting the refractive index dispersion, we obtain the

final form of the dependence of the temperature coefficient

of the refractive index:

(

1

Eg

dEg

dT

)

−1 dn
dT

(~ω)

=
n2
∞

− 1

2n∞

(

5

3
−

2

1−
(

~ω
2Eg

)2

)

. (10)

This final formula may be verified directly with a high

reliability for key III−V compounds, since the values on the

left-hand side of the expression are determined solely by the

experimental data, while the right-hand side may be calcu-

lated theoretically under the assumption that n∞ ≈ 3 for a

typical III−V compound. The result is presented in Fig. 2,

which shows that the energy dependence of the temperature

coefficient fits various compounds and is approximated

closely by theoretical functional dependence (10). It is

evident that the temperature coefficient normalized to the

temperature logarithmic derivative of the band gap width

undergoes a twofold change in the transparency window:

this quantity tends to 0.5 in absolute value in the long

wavelength limit and approaches unity near the fundamental

absorption edge (~ω → Eg).
In the long-wave limit ~ω ≪ Eg), which corresponds

to the infrared range, expression (9) is simplified signifi-

cantly in the III−V semiconductor family, where inequality

n2
∞

≫ 1 is valid:

dn∞
dT

=
n∞

2

(

−χ
1

Eg

dEg

dT

)

. (11)
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Figure 2. The comparison of the theoretical formula (expres-
sion (10)) for the energy dependence of the temperature coeffi-

cient of the refractive index (solid curve) with the experimental

data for typical III−V compounds: GaAs [8], InP [9], AlAs [10],
GaN [11].

The part of this expression in brackets, which is present

in explicit form in formula (6), implies that the thermally

stimulated refractive index variation in the long wavelength

limit is actually determined by the direct difference between

relative temperature changes in the an oscillator strength and

its effective resonant energy.

The relative temperature coefficient of the band gap width

present in formula (11) incorporates its fundamental relation

to optical characteristics. Indeed, this value decreases

monotonously in accordance with the empirical Varshni

law [12]:

Eg(T ) = E0
g −

αT 2

T + β
, (12)

where E0
g is the band gap width at absolute zero and α

and β are coefficients. The latter parameter specifies the

characteristic temperature above which the dependence of

the band gap width changes from a parabolic to an almost

linear one. Its correlation with the Debye temperature [13]
illustrates the fact that the electronic structure (and, con-
sequently, the refractive index) are perturbed only when

high-energy lattice phonon modes are activated. Since

the functional dependence changes at a certain point, the

temperature coefficient of the refractive index in a very

wide range (on the order of several hundred degrees) should
be considered as a function dn∞

dT (T ). The obtained results

specify the key requirements for the design of a dual-comb

spectrometer. The constant temperature coefficient of the

refractive index and its robustness against the specifics of

manufacture and usage lead to the fact that its value is an

external boundary parameter of the system being designed.

Let us assume that the lowest energy modes (to be specific,

i and j) form the lowest frequency beats at a stabilized

temperature of both lasers and estimate the change in

refractive index at which the modes of scanning and

reference lasers pass through all possible mutual positions;

i. e., λi = λ j = λ∗j−1, where i — the reference laser mode

number and j — starting mode number of the scanning

laser. This is equivalent to the condition that the wavelength

of mode j of the scanning laser changes by a value equal to

the intermode distance upon heating; i. e.,

λ∗j − λ j =
λ j1n

n
=

λ2j

2nL
. (13)

The relative refractive index change for wavelengths within

the range of 8µm and a resonator length of 1.5mm may

then be expressed as 1n/n ≈ 0.001. Taking into account

the typical values of refractive index (approximately 3) and

its long-wave temperature coefficient (about 0.0002 K−1),
one finds that the entire energy range is scanned when

the second laser is heated by 15K. An estimate of the

dual-comb spectrometer energy scale length, i. e., the region

of overlap of laser emission spectra, gives a value of the

order of 500GHz [1], while the order of magnitude of

the intermode gap of the comb spectra is 10GHz [1].
This provides 50 discrete intervals over the entire heating

scale. Thus, if a single-band low-frequency beat detector
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is used, one should be able to set the temperature of

the active region of the heated laser with an accuracy no

worse than 0.15K. This condition is crucially important, as

it sets the overall resolution of the system as a whole, and

constitutes one point in the list of technical requirements for

the design of a device intended for application outside of a

laboratory.

Finally, we calculated the universal energy dependence

of the refractive index temperature coefficient for III−V

semiconductors in the transparency window. We established

the fundamental reasons for the increase in refractive index

of these materials upon heating due to thermally stimulated

changes in the parameters of their electronic structure.

Technical and methodological guidelines for application of

the studied effect in laser technology were formulated.
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