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Boundary conditions of sliding during the motion of bodies in a dilute

emulsion of gas bubbles
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It is shown that the reason for the slip boundary conditions of during the movement of bodies in a viscous

and incompressible emulsion of gas bubbles is the hydrodynamic interaction of the bubbles with the surface of the

body. The influence of hydrodynamic interaction on the slip parameter ξ increases with an increase in the volume

concentration of bubbles ϕ and with a decrease in the size of the body R compared to the size of the bubbles a .
Limit analytical dependences of the slip parameter for a ball moving in an emulsion of identical gas bubbles were

obtained: ξdown < ξ(a/R, ϕ) < ξup.
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The rapid development of energy-saving micro- and nan-

otechnologies in recent decades has posed a number of new

scientific and technical challenges for fundamental science

related to mathematical modeling of the properties and

dynamics of various microdisperse media [1–3]. Specifically,
with an increased concentration of the disperse phase

in such media, a complex problem of factoring in the

long-range influence of disperse particles on each other

(the problem of hydrodynamic interaction [4,5]), which is

a variation of the well-known many-body problem from

classical mechanics. A similar problem arises when one sets

boundary conditions in the mechanics of disperse media.

It is known that heterogeneous media may be analyzed

in certain cases as homogeneous [6] by averaging their

physical characteristics over a certain representative volume

� with its dimensions satisfying the l ≪ �1/3
≪ L condi-

tion, where l is the characteristic size of microstructural

inhomogeneity of the heterogeneous medium and L is the

characteristic size of the problem. On the macroscopic

scale of the problem, volume � is a physical point

of a continuous homogeneous medium, which may be

characterized mathematically using the classical differential

equations of hydrodynamics. The issue of boundary

conditions arises when one integrates the (second-order)
Navier−Stokes equation. The first boundary condition is

trivial: in the laboratory frame of reference at infinity, the

velocity of the medium is zero. The formulation of the

second condition at the boundary between a moving body

and the medium (or between the medium and a hard wall

bounding it) still remains a subject of scientific research and

discussions [7–9].

Considerable progress in such research for liquids and

gases has been achieved. Specifically, it was demonstrated in

numerous experiments that the so-called no-slip condition,

wherein liquid velocity uw on the wall (here and elsewhere,

subscript w denotes wall-related parameters) is equal to

local velocity of the wall uw = v, where v(x i) is the

local velocity of the body (wall), is established with high

accuracy at the solid–liquid boundary on a macroscopic

scale. In contrast, the slip effect was observed in rarefied

gases and in microscale liquid flows [1,10]. Navier (1823)

has suggested that frictional stress τ s , which arises due

to liquid slip, is, in a first approximation, proportional to

the slip velocity: τ s = βuw , where β is the slip friction

coefficient. In equilibrium, τ s = τ , where τ is the shear

stress in liquid adjacent to the wall. Thus, in a Newtonian

liquid, wherein the viscosity does not depend on the shear

strain rate,

τ = ηγ̇ = η

(

∂uτ

∂n

)

w

,

where uτ is the projection of the liquid velocity onto planes

perpendicular to the normal, the wall boundary condition

takes the form

βuw = η

(

∂uτ

∂n

)

w

, (1)

where n is the vector of the outward normal to the body

surface and η is the dynamic liquid viscosity. It can be

seen from (1) that parameter λ = η/β has the dimension

of length; it is called the slip length. It is impossible to

calculate λ within the macroscopic gas model, since this

parameter is determined by the microscopic properties of

gas and the surface and their interaction. Maxwell has later

(1879) used the methods of the kinetic theory of gases and

the mirror-diffusion model of interaction of gas molecules

with a smooth surface of a solid to obtain an analytical

expression for slip velocity uw , which takes the following
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form in the isothermal case of rarefied gas [11]:

uw = αlm

(

∂uτ

∂n

)

w

, (2)

where lm is the mean free path of gas molecules and

α = (2− σ )/σ ; σ is the accommodation coefficient of

the tangential momentum of gas molecules when they are

reflected from a solid surface (0 < σ < 1). At σ → 0,

mirror reflection is observed; at σ = 1, the reflection is

diffuse, and the momentum of a molecule is transferred

completely to the wall. Equations (1) and (2) make it clear

that the αlm quantity in rarefied gas is analogous to slip

length λ in liquid. In the dimensionless case (e. g., flow

around a sphere with radius R), this analogy takes the form

αKn ↔ ξ, (3)

where Kn = lm/R is the Knudsen number and ξ = λ/R is

the dimensionless slip length (parameter).
Thus, Maxwell has proven theoretically the existence

of the slip effect in rarefied gases and explained its

mechanism [11].
Generally speaking, the no-slip boundary condition in

gases is a consequence of hypothesized continuity of a

homogeneous medium (when it may be regarded as a

continuum with a fair degree of accuracy). If an important

scale of the problem (e. g., R) approaches the size of

the structural inhomogeneity of the medium (lm), it was

proven by Maxwell [11] that this structural parameter of the

medium enters into the solution of the problem through slip

boundary conditions (2). Relation (3) makes it evident that

when a sphere moves in gas, no-slip boundary conditions are

established if Knudsen number Kn ≪ 1. A more accurate

estimate of applicability of the no-slip condition was given

in [12]: Kn 6 0.001.

The pattern in disperse media is similar: when scale L
of the problem (the size of a body or the transverse size

of a channel with hard walls) is comparable with the

structural parameters of the medium (l, a , etc., where

a is the radius of a disperse particle), the structural

parameters of the disperse medium are expected to enter

into the solution of the problem through slip boundary

conditions. Indeed, when the above conditions are met, the

slip boundary condition is observed reliably in experiments

even in disperse media [8,9]. The problem is to understand

the physical mechanism of slip in disperse media.

A simplified phenomenological model was presented

in [9]. It attributes the effect of slip on an impermeable solid

surface to a reduction in effective viscosity of the medium

in a thin layer (h = 2a) near this surface due to a change

in volume concentration of particles in this layer, which

decreases from a given value ϕ to zero. Since the no-slip

boundary condition is established on the surface, the authors

call it
”
apparent slip.“ The authors of other papers [13,14]

consider
”
true slip“ and use Navier boundary conditions (1)

to investigate the degree of influence of slip parameter ξ

on the dynamics of a disperse medium (even with the
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Figure 1. Dependences of coefficients ks (hard sphere, ξ = 0)
and kb (bubble, ξ = ∞) in formula (5) on parameter σ = a/R .

hydrodynamic interaction of particles factored in). Specifi-

cally, the diffusion coefficient of particles in a monodisperse

suspension of spherical particles was calculated in [13]
to the first order in concentration with account for their

hydrodynamic interaction as D = D0[1− λ(ξ)ϕ]. It was

demonstrated that, e. g., coefficient λ = 1.56 at ξ = 0, and

ξ = ∞ corresponds to coefficient λ = 3.50. It was shown

in [14] that the sedimentation rate of a test particle with

radius R under the action of gravity in a monodisperse

suspension of spherical particles with radius a depends not

only on parameter ξ , but also on parameter σ = a/R.
Thus, slip parameter ξ plays an important role in the

dynamics of disperse media. However, as far as we know,

no reliable mathematical models predicting the value of

relative slip length ξ as a function of the parameters of

the internal structure of a disperse medium in a specific

problem have been developed to date. This paper provides a

justification for the author’s hypothesis, which states that the

emergence of the slip boundary condition in disperse media

may be fully explained by the hydrodynamic interaction

of disperse particles with a streamlined hard and smooth

surface. This hypothesis allows one to determine the value

of parameter ξ in a specific problem.

Let us consider the steady motion of a hard spherical

body in an unlimited macroscopically homogeneous and

isotropic medium consisting of a homogeneous liquid and

identical spherical gas bubbles dispersed chaotically in it.

The size of the bubbles and their volume concentration ϕ

do not change; i. e., the processes of bubble coalescence

and breakup in the medium are suppressed completely.

The disperse medium (an emulsion of gas bubbles) is

incompressible and (at ϕ << 1) is a Newtonian liquid

with dynamic viscosity η = η1(1 + ϕ) [15]. The goal is

to estimate, in the Stokes approximation, the value of slip

parameter ξ that defines Navier boundary condition (1) on

the surface of a moving body.
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Figure 2. Limits of variation of dimensionless slip length ξ = λ/R
with parameter σ = a/R at volume concentrations of bubbles

ϕ = 0.03, 0.06, and 0.1.

The problem of motion of a sphere in a homogeneous

medium averaged over volume � with Navier boundary

conditions (1) has an exact solution (Basset, 1888):

F = −
6πη1(1 + ϕ)RV

C
, (4)

where F is the drag force, V is the body velocity, and

C = (1 + 3ξ)/(1 + 2ξ). At ξ = 0, formula (4) transforms

into the exact Stokes solution (1850), which corresponds

to the no-slip boundary condition. At ξ → ∞, formula (4)
matches the drag for a spherical gas bubble. Solution (4) is

written in the laboratory frame of reference, where volume-

averaged velocity w∞ = ϕv∞ + (1− ϕ)u∞ of the disperse

medium is equal to zero at r → ∞. Here, v∞ is the velocity

of disperse particles. In the present case, w∞ ≈ u∞, since

ϕ ≪ 1. It is important to note that formula (4) characterizes
correctly the influence of curvature of the body surface on

the slip length [16].

Within the macroscopic (averaged over volume �) model

of a gas bubble emulsion, parameter ξ is given and may only

be determined experimentally. To calculate macroscopic

parameter ξ , one needs first to solve the problem in its full

formulation (with account for the collective hydrodynamic

interaction of bubbles with the sphere surface) at the

microstructural level (i. e., within the � volume) and

then to average the solution. This problem has not yet

been solved under mixed (0 < ξ < ∞) Navier boundary

conditions (1) on the surface of a spherical body. However,

the self-consistent field method, which is discussed in detail

in [17,18] and briefly in the Appendix, made it possible

to obtain an averaged analytical solution for two extreme

cases [4]: the motion of a hard sphere (ξ = 0) and a

spherical bubble (ξ = ∞). This solution takes the form

F = −6πη1RV
[

1 + k(σ )ϕ
]

, (5)

where σ = a/R, k(σ ) = ks(σ ) corresponds to the case of

ξ = 0, and k(σ ) = kb(σ ) corresponds to ξ = ∞. Coeffi-

cients ks(σ ) and kb(σ ) were calculated with an accuracy

of O(δ7) with respect to small parameter δ = a/l, where l
is the average distance between the centers of neighboring

disperse particles. Figure 1 presents the dependences of

coefficients ks(σ ) and kb(σ ) on the ratio of characteristic

sizes of the problem and the disperse medium.

Solutions (5) may be used to estimate the limits of

variation of slip parameter ξ with σ and the bubble

concentration: ξup (corresponds to dependence kb) and

ξdown (corresponds to dependence ks). To do this, one

needs to equate Basset’s solution (4) to the corresponding

averaged solutions (5). The result is as follows:

ξup =
λb

R
=

[1− kb(σ )]ϕ

1 + [3kb(σ ) − 2]ϕ
,

ξdown =
λs

R
=

[1− ks(σ )]ϕ

1 + [3ks(σ ) − 2]ϕ
, (6)

Fs

F
= C =

1 + ϕ

1 + k(σ )ϕ
=

∣

∣

∣

∣

ϕ≪1

≈ 1 +
[

1− k(σ )
]

ϕ + O(ϕ2). (7)

It is evident from formula (7) that the relative error of deter-

mination of the drag force (1 = 100(Fs/F − 1)%) does not
exceed 1 6 100ϕ% if the slip effect is neglected. Figure 2

shows the possible limits of variation of dimensionless slip
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Figure 3. Comparison of the dependence of the dimensionless

drag force on slip parameter ξ for a sphere moving in a

bubble medium (solid curve) with experimental dependence

Fexp/Fs = f (αKn) in rarefied air (circles).
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length ξ with parameter σ calculated using formulae (6) for
different volume concentrations of bubbles.

Let us use correspondence (3) to compare (Fig. 3)
theoretical dependence F/Fs = f (ξ) for a bubble

medium (7) with detailed measurements [19] of dependence
Fex p/Fs = f (αKn) of the drag force for spherical particles

in a rarefied gas on the Knudsen number. It can be seen

from Fig. 3 that the theoretical dependence matches the

experimental one within the 0 < αKn < 0.1 (0 < ξ < 0.1)
range with an error less than 1%. This is hardly surprising,

since this range of Knudsen numbers is precisely the one in

which a rarefied gas may be regarded as a continuum and

its dynamics may be characterized by the Navier−Stokes

equations [12]. At ξ < 0.01, the no-slip boundary condi-

tions may be applied with an error less than 1%, since

F = Fs ; within the 0.01 < ξ < 0.1 range, one needs to

use Navier slip boundary conditions (2). In addition,

the above-mentioned agreement between theoretical and

experimental data verifies the applicability of the τ s = βuw
model boundary condition (1).
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Appendix. Brief description of the self-consistent
field method

In the approximation of linear equations for a continuous

carrier medium, the solution to the classical problem of

motion of a spherical body (with radius R) in a liquid with

an arbitrary finite number N of spheres (with radius a) is a

superposition of perturbation fields from all spheres, each of

which is expressed as a functional series containing tensor

coefficients that are unknown in advance and determined by

the specified boundary conditions on the surface of the cor-

responding sphere. Writing down the boundary conditions

on the surface of an arbitrary sphere, one obtains a system

of N + 1 equations for tensor coefficients corresponding

to all spheres (including the large one). However, this

system is incomplete, since it contains the velocities of

dispersed particles that are unknown in advance. Therefore,

a closing condition for mutual consistency of all perturbation

fields is needed. Such conditions in the self-consistent field

method are the equations of motion of spheres (Newton’s

second law) wherein the forces are expressed through the

parameters of flow incident on a sphere: Faxén’s and Beek’s

theorems are used for viscous [4,18] and inviscid [17]
problems, respectively. The self-consistent field method

allows one to calculate analytically all the quantities sought

in the problem in any given approximation with respect to

small parameter δ = a/l .
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