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Opposition of two informational quantifiers of directional coupling
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The work studies two widely known information-theoretic tools for estimation of directional couplings (mutual

influences) between observed processes — transfer entropy and Liang–Kleeman information flow. They are

formally similar, have measurement units with the same name and, indeed, often characterize a coupling in a

similar sense. However, it is shown here with an exemplary stochastic system within the framework of dynamical

causal effects that situations, where these quantifiers behave in an opposite way (one of them increases, while

another one decreases) under a change of governing parameters, are typical. Then, the two quantifiers characterize

a coupling in two essentially different senses which circumstance is important and should be taken into account in

their practical applications.
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The problem of quantitative assessment of mutual in-

fluences (directional couplings) of two systems X and Y
based on their observed time series {xn} and {yn}, where

x and y — state vectors of systems xn = x(tn), yn = y(tn),
tn = n1t, 1t — sampling interval, and n = 1, 2, . . . , N —
integer number, often arises in various physical and in-

terdisciplinary studies. Several quantitative characteristics

of such couplings (measures of
”
strength“ of the influ-

ence) are used for this purpose (see, e.g., reviews [1–4]).
Information-theoretical quantifiers are convenient (nonlin-
ear) tools [1,2,5–19]. The most widely used among them

are the transfer entropy (TE) [5] and the Liang−Kleeman

information flow (LKIF) [6]. The TE concept gave rise to

a huge number of studies (e.g., [1–4,7–9,11,15,17,19,20])
where various modifications of it [1,9,17] and methods of

assessment based on time series [1,7,17] (specifically, phys-
iological [2,12], financial [12], and climatic [3,9,17] ones)
were proposed; even a dedicated monograph has already

been published [12]. The LKIF concept has also been the

subject of a number of studies ([4,10,13,14,16,18,19] are

just a fraction of them) focused on the development of

methods for its assessment based on time series [10,18],
the introduction of various normalizations [10] and general-

izations [16,18], and the application to climatic [13,14] and
other data.

The formal similarity of these two quantifiers of couplings

was noted immediately [6]. The units of their measurement

are called the same:
”
bits“ or “nats“ [6,12]. It was also

pointed out that TE and LKIF for the same coupling may

assume different [6] (and even significantly different [4])
values. However, these quantifiers are generally expected

to be similar in meaning and shift in the same direction

(i. e., they should both decrease or both increase) when

the parameters of the systems under study change. In the

present study, we demonstrate that they, in contrast, may

often shift in opposite directions.

The magnitude of TE in direction Y → X was defined [5]
based on the concepts of data analysis for Markov processes

as mutual information between the present state (y) and

the future one (x) at a given present x . The Y → X
LKIF magnitude was defined [6,10] on the basis of the

evolutionary equation for the x distribution entropy. The

component corresponding to the information flow from y
to x was extracted from this equation by means of formal

transformations. While their
”
conceptual origins“ differ

widely, TE and LKIF have found a consistent formulation

and justification within the theoretical formalism of dynamic

effects of directional coupling (DEDC) [4,11] in stochastic

dynamic systems, which also revealed their difference [4].

The DEDC formalism defines the characteristic of di-

rectional coupling Y → X as a response of the future

states of system X (called the X -response in [20]) to a

change in parameters or initial states of system Y (called
the Y -variation or

”
Y -wiggling“ [20]). The existence of

a stationary distribution of simultaneous states of two

systems ρst
XY (x , y) = ρst

X (x)ρst
Y |X(y |x) is assumed here. TE

T (t)
Y→X is then defined as the difference between the

Shannon entropies of two ensembles of time realizations

at t > 0 (response time) with one of them starting from

the initial distribution ρ∗
XY (x , y) = δ(x − x0)δ(y − y0), (i.e.,

the initial states of both systems x0 and y0 are given)
and the other starting from ρ∗∗

XY (x , y) = δ(x − x0)ρ
st
Y |X(y |x)

(i. e., only the x0 initial state is given). Then,

T (t)
Y→X =

〈

H(p(t)
X

[

x |ρ∗∗
XY ]) − H(p(t)

X

[

x |ρ∗
XY

]

)
〉

ρst
XY (x0,y0)

, where
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H(p) = −
∞
∫

−∞

p(x) ln p(x)dx is the Shannon entropy of the

p distribution, square brackets with a vertical bar indicate

that p(t)
X is a

”
functional-conditional“ distribution for a

given initial x and y distribution [4,20], and angle brackets

denote averaging over x0 and y0 with weighting function

ρst
XY (x0, y0). An estimate of TE for a stationary time series

may be obtained by searching for all values of xn close to x0

such that future xn+t/1t will give an empirical estimate of the

distribution p(t)
X [x |ρ∗∗

XY ] and all pairs (xn, yn) close to (x0, y0)
such that their future xn+t/1t will give an empirical estimate

of p(t)
X [x |ρ∗

XY ] [1,5]. With the Gaussian approximation of the

p(t)
X distributions, TE is estimated [15,17] as the difference

between the logarithms of the x t forecast error variance with

and without account for y0 [8].
LKIF turned out [4,19] to be equal to

L(t)
Y→X = 〈− ln p(t)

X [x |ρ∗∗
XY ] + ln p(t)

X [x |ρ∗
XY ]〉

p(t)
X [x |ρ̃XY ]ρst

Y (y0)
,

where ρ̃XY = ρst
X |Y (x |y)δ(y − y0). This is the average

difference of quantities of the form − ln p(t)
X (x) for two

ensembles starting from ρ∗
XY (x , y) = ρst

X (x)δ(y − y0) and

ρ∗∗
XY (x , y) = ρst

X (x)ρst
Y |X(y |x), but averaged with such

a weighting function that L(t)
Y→X is not reduced to the

difference in Shannon entropies. In contrast to TE, the

ρst
X (x) initial distribution is specified here instead of state x0.

In more exact terms, LKIF for continuous-time systems is

the time derivative of response lY→X =
dL(t)

Y→X
dt

∣

∣

∣

∣

∣

t=0

. Formulae

for its estimation based on time series are given in [10].
The dependences of TE and LKIF on parameters for the

reference system with their analytical expressions available

for it (which allows one to carry out an accurate analytical

and numerical study without statistical evaluation) are

examined below. These are two linear relaxators under

the influence of white noise — a simple and widely

used continuous-time stochastic model (two-dimensional

Ornstein−Uhlenbeck process):

ẋ = −αX x + kXY y + ξX(t),

ẏ = −αY y + kYX x + ξY (t), (1)

where αX , αY are the relaxation coefficients

(
”
speeds“ of systems); kXY , kYX are the coupling

coefficients; and ξX , ξY are mutually uncorrelated

Gaussian white noises with zero mean and

autocovariance functions 〈ξX (t)ξX (t′)〉 = ŴXXδ(t − t′)
and 〈ξY (t)ξY (t′)〉 = ŴYY δ(t − t′). Differential quantities

τY→X =
dT (t)

Y→X
dt

∣

∣

∣

∣

∣

t=0

and lY→X , which determine the role of

coupling at small intervals t, were found analytically for

system (1) in [4,10,15]. Their expressions are presented

here in a convenient dimensionless form:

T̃Y→X ≡ τY→X/αX = β2
XY

(

σ 2
Y /σ

2
Y,0

)

(1− r2XY )/4,

L̃Y→X ≡ lY→X/αX = βXY rXY
(

σY /σY,0
)

/
(

σX/σX ,0

)

, (2)
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Figure 1. Quantifiers of directional couplings as functions of

relative speed m of system Y for system (1) at βXY = 1, βY X = 1/2.

a — in direction Y → X ; b — in direction X → Y . Solid

curves — dimensionless differential TE T̃Y→X , dashed curves —
dimensionless LKIF L̃Y→X , and squares — correlation coefficient

rXY squared.

where σ 2
X ,0, σ

2
Y,0 — variances of x and y under zero

coupling, σ 2
X , σ

2
Y — their variances under a given coupling

with coefficients kXY , kY X , β2
XY = k2

XYσ
2

Y,0/
(

α2
Xσ

2
X ,0

)

—
dimensionless Y → X coupling parameter, which is the ratio

of two terms at the right-hand side of the first equation

of system (1) by their dispersions in the
”
open-circuit“

mode, and rXY — coefficient of correlation of x and y for

distribution ρst
XY (x , y). The expressions for reverse coupling

X → Y assume a similar form with mutual substitution of

subscripts X and Y . The values of rXY , σ
2
X , and σ 2

Y may

be determined explicitly as a stationary solution to the

equations of evolution of the second moments of distribution

ρXY(x , y) [11]:
σ 2

X ,0 = ŴXX/(2αX ),

σ 2
X = σ 2

X ,0

(

1 +
αXβ

2
XY + αYβXYβYX

(αX + αY )(1− βXYβYX)

)

,

rXY =
σX ,0σY,0(αXβXY + αYβY X)

σXσY (αX + αY )(1 − βXYβY X)

[15], so that

β2
XY =

k2
XYŴYY

αXαYŴXX
,

β2
Y X =

k2
Y XŴXX

αXαYŴYY
.

The units of measurement of T̃Y→X and L̃Y→X depend on

the logarithm base used in definitions:
”
nats“ (natural units)
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Figure 2. Coupling quantifiers for system (1) as functions

of the dimensionless Y → X coupling parameter at βY X = −1,

m = 10. a — in direction Y → X ; b — in direction X → Y . Solid
curves — dimensionless differential TE T̃Y→X , dashed curves —
dimensionless LKIF L̃Y→X (taken with the opposite sign in panel

a), and circles — correlation coefficient rXY squared.

correspond to a natural logarithm (as in the present study),
while bits correspond to a logarithm to base 2 [6,12].

Dimensionless differential quantifiers T̃Y→X and L̃Y→X (2)
were calculated within a wide region of the space of

dimensionless parameters of system (1). They often turn

out to be similar to each other. Specifically, with uni-

directional coupling Y → X , they both grow quadratically

in kXY at small kXY . In the case of bidirectional coupling

with coefficients of the same sign, they again both grow

as these coefficients increase, although, generally speaking,

they are not proportional to each other. This similarity is

quite expected (see also [4,15]), but certain cases of their

significant difference are revealed below.

Let us fix the values of dimensionless coupling param-

eters βXY = 1 and βY X = 1/2. Their ratio βXY/βY X > 1.

Therefore, the coupling is asymmetric in this sense, and

the Y system is
”
leading,“ since the coupling parameter

in the Y → X direction is larger. With constant βXY and

βY X , we change dimensionless parameter m = αY /αX , which

is the relative relaxation rate of system Y . Let us, for

example, fix noise intensities ŴXX , ŴYY and speed αX ; m
is then adjusted by varying αY (m ∝ αY ) (notably, k2

XY ∝ αY

and k2
Y X ∝ αY are also varied). Note that the dependences

of quantifiers (2) on m also remain the same if all six

dimensional parameters are adjusted in a different manner

with the condition of constancy of βXY and βY X fulfilled.

As m grows from m < 1 to m > 1, leading system Y ,

which was the slower of the two, becomes the faster one.

The dimensionless differential TE then increases in both

directions (Y → X and X → Y ; solid curves in Fig. 1),
while the LKIF value decreases (dashed curves in Fig. 1).
Specifically, as m increases from 0.1 to 2, the TE value

increases by 20–30%, while LKIF decreases by 15–20%
(Figs. 1, a, b). The pattern remains the same at other

values of βXY and βYX ; only the range of TE and LKIF

values changes. The discovered phenomenon is typical

for the space of dimensionless parameters of system (1).
In particular, with βXY , βY X set, one free dimensionless

parameter m remains, and the TE and LKIF values shift

in opposite directions exactly when it changes.

It is interesting to note that TE and LKIF may shift

in opposite directions even with a change in coupling

parameter βXY or βY X (although it would seem that both

quantifiers should increase with an increase in coupling

coefficient): this occurs when positive βXY changes at a fixed

arbitrary m and negative βY X . This case is illustrated in Fig. 2

with m = 10 and βY X = −1: as βXY increases from 2 to 10,

the TE value in direction Y → X , which has |βXY/βYX | < m
(i. e., the Y → X coupling is

”
relatively inferior“ according

to [15]), increases from 1 to 25 (in
”
nats“), while the

LKIF value is negative and decreases in modulus from 1

to 0 (Fig. 2, a). In the opposite direction, TE increases

from 0.12 to 0.24, while LKIF decreases from 0.2 to 0

(Fig. 2, b). These changes are very significant (several-fold
or even order-of-magnitude). The results obtained at other

fixed values of m and βY X are qualitatively similar with a

change in the range of TE and LKIF values.

In both highlighted cases, the opposite nature of TE and

LKIF variation is attributable in part to a significant change

in correlation coefficient rXY (circles in Figs. 1, 2). It follows
from expressions (2) that the values of T̃Y→X and |L̃Y→X |
decrease and increase, respectively, as the modulus of this

coefficient increases. In this case, either the direction or the

rate of change of the x and y variances is inadequate for

them to alter the directions of TE and LKIF variations that

occur due to rXY .

When TE and LKIF are estimated based on sufficiently

long time series, the fluctuations of estimates are small, and

they are close to the considered theoretical values of TE and

LKIF. In the case of shorter series, one needs to take into

account fluctuations in estimates and estimate confidence

intervals (put forward a
”
null hypothesis“), which warrants a

separate study. However, the effect of reduction/increase of

the values of TE and LKIF under parameter variation should

be preserved in general even for their estimates based on

short series (if these estimates are still sufficiently accurate).
The conclusion regarding the possible opposition of TE and

LKIF should then also apply to such estimates.

Thus, it was demonstrated that two widely used informa-

tion quantifiers of directional couplings between stochastic

systems (TE and LKIF) may shift in opposite directions

when the parameters of these systems change. Such scenar-

ios were described explicitly and shown to be typical rather

than degenerate in the parameter space. Since they occur
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in a simple stochastic system (1), such scenarios should be

all the more common in more complex systems, including

nonlinear ones. The discovered phenomenon of opposition

of these two coupling quantifiers should then be typical in

the practice of time series analysis ans should be taken into

account when one interprets the results of assessment of

couplings and makes conclusions as to whether the coupling

intensifies and in what sense (according to which quantifier)
does it intensify when certain conditions change. From a

theoretical point of view, the obtained results demonstrate

that the two considered information quantifiers of couplings

and their units (be they nats or bits) may have completely

different meanings. Therefore, the name
”
information flow,“

which is given to both of them [6,12] due to the use of an

information-theoretical formalism in their definitions, does

not in itself ensure their correct unambiguous interpretation.

This shines a new light on the previously noted [4,11,20]
non-triviality of the problem of

”
measuring the strength“ of

directional couplings.
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