04

Трехэлектродная газоразрядная система — плазмохимический микрореактор

© Л.М. Порцель, Ю.А. Астров, А.Н. Лодыгин, Е.В. Берегулин

Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия e-mail: leonid.portsel@mail.ioffe.ru

Поступило в Редакцию 18 декабря 2024 г. В окончательной редакции 18 марта 2025 г. Принято к публикации 07 апреля 2025 г.

Изучена возможность использования трехэлектродной системы "полупроводник-газовый разряд" в качестве микрореактора для плазмохимической обработки поверхности полупроводниковых материалов. Система состоит из двух разрядных промежутков, разделенных металлической сеткой, которая является общим электродом. В первом промежутке формируется самостоятельный стационарный таунсендовский разряд. Заряженные частицы разряда проходят сквозь ячейки сетки и двигаются в электрическом поле второго промежутка. Обработка поверхности образца происходит во втором промежутке в результате взаимодействия потока заряженных частиц с полупроводником. Эксперименты проводились в трехэлектродной системе, заполненной аргоном. В качестве образца использовался GaAs. Изменения свойств поверхности определялось с помощью метода спектральной эллипсометрии. Показано, что облучение полупроводника ионами аргона Ar⁺ приводит к очистке поверхности от слоя окисла и образованию измененного приповерхностного слоя толщиной 5–20 nm. Состав слоя представляет собой смесь кристаллического и аморфного GaAs.

Ключевые слова: газовый разряд, полупроводник GaAs, модификация свойств поверхности, эллипсометрия.

DOI: 10.61011/JTF.2025.10.61354.462-24

Введение

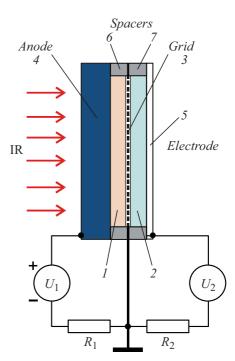
Методы плазмохимической обработки находят применение в самых различных областях науки и техники, начиная от обеззараживания пищевых продуктов [1] и заканчивая плазменной обработкой графена [2]. К перспективным технологиям относятся методы, где используются малые интенсивности плазмохимического воздействия на обрабатываемый объект. Одним из способов модификации свойств поверхности материалов является обработка полупроводников стационарным таунсендовским разрядом (low-energy DC Townsend discharge). Такой разряд возникает в системе "полупроводник-газовый разряд" (semiconductor-gas-discharge system) (SGD) [3,4]. Эта система представляет собой тонкий газоразрядный промежуток, один из электродов которого изготовлен из высокоомного фоточувствительного полупроводникового материала — полуизолирующего (SI) GaAs.

При приложении к электродам газоразрядного промежутка относительно высокого напряжения $\sim 300-500~{\rm V}$, в SGD-системе возникает стационарный таунсендовский разряд с пространственно-однородным распределением тока. При типичных значениях длины газоразрядного промежутка $d_1{\approx}50-200~{\rm \mu m}$ и концентрации ионов на катоде разряда $\sim 0.02-2.0\cdot 10^9~{\rm cm}^{-3}$ искажение электрического поля пространственным зарядом ионов незначительное. Поэтому при всех значениях плотности тока, которые использовались в экспериментах, напряжение поддержания разряда оставалось постоянным.

В газовом разряде могут развиваться различные типы неустойчивостей, которые в системах с металлическими электродами приводят к колебаниям или к образованию нитей тока [5,6]. В газоразрядной системе с высокоомным электродом рост флуктуаций тока и развитие неустойчивостей подавляется. Это связано с локальным падением напряжения на распределенном сопротивлении электрода и возникновением отрицательной обратной связи между током и напряжением в промежутке. Такой "стабилизированный" разряд при малых межэлектродных расстояниях обладает всеми признаками стационарного таунсендовского разряда: объемное горение и независимость напряжения поддержания разряда от тока. Разряд существует в широком диапазоне давлений газа $p \approx 10-500\,\mathrm{hPa}$ и плотностей тока $J \approx 10 - 500 \, \mu \text{A/cm}^2$. Полупроводниковый электрод при этом должен иметь достаточно высокое удельное сопротивление $\rho > 10^6 \,\Omega$ ·cm. При меньших значениях сопротивления электрода в SGD-системе возникают неустойчивости в виде колебаний тока или пространственновременных структур [7].

В работах [8–10] сообщалось о применении SGD микроразрядных устройств для получения слоев окислов с толщиной в несколько нанометров на поверхности полупроводниковых соединений, таких как GaAs, InAs и InAlAs. Обрабатываемый образец использовался в качестве одного из электродов SGD-системы. В экспериментах полярность приложенного к электродам системы напряжения была выбрана так, что образец служил анодом разрядной области, и окисление поверхности полу-

проводника происходило за счет воздействия электронов и продуктов таунсендовского разряда. В случае обратной полярности [8] образец являлся катодом разрядного промежутка, и облучение поверхности полупроводника происходило ионами газового разряда. В результате взаимодействия ионов с полупроводником происходили структурные изменения поверхностного слоя материала.


Требование высокого удельного сопротивления образца, который обрабатывается в SGD-системе, ограничивает возможности применения данного метода. В работе [11] была предложена трехэлектродная конструкция микрореактора, в которой обеспечивается пространственно-однородная обработка образцов в случае их высокой проводимости. Такая система состоит из двух разрядных промежутков, которые имеют общий электрод в виде металлической сетки. В первом промежутке реализуется самостоятельный таунсендовский разряд с устойчивым пространственно-однородным состоянием. Эта область устройства возбуждает во втором промежутке несамостоятельный разряд, который поддерживается потоком заряженных частиц, прошедших сквозь сетку. Обработка образца в этой области микрореактора происходит за счет продуктов газового разряда. В результате устойчивость работы устройства не зависит от сопротивления обрабатываемого образца, что представляет несомненные преимущества по сравнению с описанным выше двухэлектродным SGD-устройством. Отметим, что подобные трехэлектродные планарные системы использовались ранее для исследования фотографического процесса в AgBr [12] и преобразователе инфракрасных (ИК) изображений [13].

Настоящая работа посвящена исследованию возможности применения трехэлектродной системы, предложенной в [11], для обработки полупроводникового материала ионами газового разряда. Целью настоящей работы также является изучение нейтрализации ионов с малой кинетической энергией на поверхности полупроводника и определение состава нарушенного (модифицированного) приповерхностного слоя, который образуется в результате этого процесса.

Эксперименты проводились в трехэлектродной системе при возбуждении таунсендовского разряда в аргоне Ar при давлениях газа $p=20-200\,\mathrm{hPa}$. Изучались особенности горения разряда с сетчатым катодом и формирование потока ионов в области микрореактора, где происходила обработка полупроводника. Свойства приповерхностного слоя образца изучались методом спектральной эллипсометрии.

1. Методика эксперимента и результаты измерений

Схема трехэлектродной системы показана на рис. 1. Первый промежуток I сформирован отверстием в диэлектрической прокладке 6, помещенной между полупроводниковым электродом 4 и металлической сет-

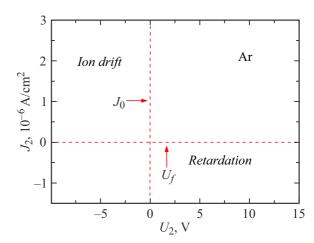
Рис. 1. Схема трехэлектродной SGD-системы: I — газоразрядный промежуток, в котором возбуждался таунсендовский разряд, 2 — второй промежуток, 3 — сетка, 4 — полупроводниковый электрод, 5 — электрод второго промежутка, 6, 7 — диэлектрические прокладки, U_1 — источник напряжения газового разряда. U_2 — источник напряжения, IR — поток IR излучения.

кой 3. Электрод изготовлен из фоточувствительного полуизолирующего (SI) GaAs. Область спектральной чувствительности такого материала составляет $\lambda=0.8-1.7\,\mu\mathrm{m}$. На внешней поверхности электрода сформирован прозрачный электрический контакт путем термического напыления в вакууме металла (Ni). GaAsэлектрод освещался источником инфракрасного ИК излучения, что позволяло регулировать его сопротивление с помощью изменения интенсивности света.

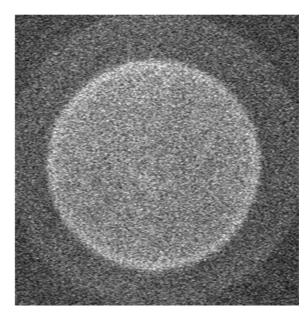
Второй промежуток 2 образован отверстием в диэлектрической прокладке 7, помещенной между сеткой и электродом 5. В качестве электрода применялась стеклянная пластина с проводящим покрытием SnO_2 . Сопротивление такого электрода составляло $\sim 100\,\Omega$. В экспериментах по обработке полупроводникового материала ионами газового разряда в качестве электрода использовался образец GaAs с низким удельным сопротивлением.

Электрод 3 изготовлен из плетеной металлической сетки с пространственным периодом 151/mm и расстоянием между центрами квадратных ячеек $a=66\,\mu$ m. Диаметр проволоки d составлял $18\,\mu$ m. Размер свободного пространства — "апертуры" — в ячейке сетки равнялся $\sim 48\times 48\,\mu$ m.

Устройство питалось двумя источниками напряжения в полярностях, показанных на рис. 1. Сопротивления R_1


и R_2 служили для измерения тока разряда в первом промежутке 1 и тока заряженных частиц во втором промежутке 2 соответственно.

Трехэлектродная SGD-система помещалась в герметическую камеру с оптическими окнами для освещения электрода и наблюдения пространственной однородности горения разряда. Изображение газового разряда регистрировалось ССО-камерой РІЕРЕЯ. В качестве источника света использовалась лампа накаливания. Камера заполнялась Ar при давлении газа $p = 20 - 200 \,\mathrm{hPa}$. Между электродом 4 и сеткой 3 приложено положительное напряжение $+U_1$. При значении U_1 , превышающем напряжение пробоя газа, в первом промежутке формируется самостоятельный таунсендовский разряд с пространственно-однородным распределением плотности тока J_1 . Ток разряда определялся давлением газа, приложенным напряжением U_1 и сопротивлением электрода 4, которое зависело от интенсивности освещения полупроводника. Питание системы осуществлялось источником постоянного напряжения High Voltage Power Supplies PS300 Stanford Research Systems. Для поддержания постоянного значения J_1 источник напряжения работал в режиме стабилизации тока. Почти во всех экспериментах плотность тока газового разряда в промежутке 1 поддерживалась равной $J_1 = 50 \,\mu\text{A/cm}^2$. В случае измерений, проведенных при другом значении J_1 , в соответствующем месте текста будет дано необходимое пояснение. Кроме того, все эксперименты данного исследования проводились в SGD-системе, длины газоразрядных промежутков в которой составляли: первого $d_1 = 200 \, \mu \mathrm{m}$ и второго $d_2 = 120 \, \mu \mathrm{m}$. Площади первого и второго промежутков составляли $S_1 = 2 \, \text{cm}^2$ и $S_2 = 1 \,\mathrm{cm}^2$ соответственно.


Полярность приложенного к электродам первого промежутка напряжения U_1 в экспериментах была выбрана так, что сетка являлась катодом газового разряда, и ток в области сетки был обусловлен потоком ионов. Часть заряженных частиц проходила сквозь ячейки сетки и попадала в промежуток 2. При этом в цепи сетка — электрод 5 — источник напряжения — сопротивление R_2 возникал электрический ток J_2 . Значение тока определялось как падение напряжения на сопротивлении R_2 . Напряжение измерялось вольтметром КЕІТНLЕУ 2000 с высоким входным сопротивлением $> 10~\mathrm{G}\Omega$. Величина и полярность напряжения U_2 определяли вид вольтамперной характеристики (BAX) промежутка 2.

На рис. 2 представлена типичная ВАХ промежутка 2, электродом которого была стеклянная пластина с проводящим покрытием. Как видно из рисунка, при нулевом напряжении $U_2=0$ в промежутке 2 протекал ток J_0 , обусловленный ионами, инжектированными из разряда в промежутке I. Значение тока J_0 отмечено на графике горизонтальной стрелкой.

На рис. 3 показано изображение излучения разряда в первом промежутке при значении $U_2=0$. Светлое изображение соответствует свечению разряда, которое видно

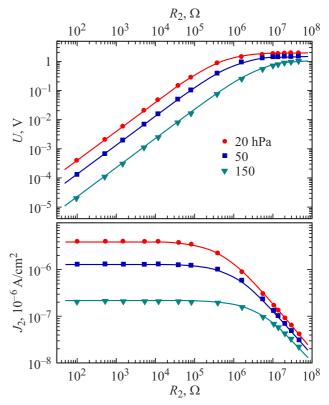
Рис. 2. Зависимость плотности тока в промежутке (2) от напряжения. Давление газа $p=50\,\mathrm{hPa}$. Плотность тока разряда $J_1=50\,\mu\mathrm{A/cm^2}$. Пояснения в тексте.

Рис. 3. Изображение излучения разряда в первом промежутке. Диаметр темного кольца соответствует размеру отверстия в прокладке (6), которая формирует газоразрядную область. Светлый диск — изображение разряда, которое видно сквозь сетку и второй промежуток.

сквозь сетку и ограничено размером отверстия в диэлектрической прокладке 7. Диаметр отверстия в прокладке 6, которое формирует газоразрядную область, больше, чем диаметр области второго промежутка. Часть изображения разряда видна сквозь сетку и прокладку 7, изготовленную из слюды. Поэтому изображение в этой области более темное. Разряд имеет объемную форму горения с пространственно-однородным распределением тока. Инжектированные из разряда во второй промежуток ионы также имеют пространственно-однородное распределение.

При отрицательном значении приложенного к электроду 5 напряжения U_2 ионы во втором промежутке ускоряются (ion drift), что приводит к увеличению ионного тока J_2 . Такой режим использовался при работе трехэлектродной SGD-системы в качестве микрореактора для обработки полупроводниковых материалов. При взаимодействии потока ионов во втором промежутке с полупроводником происходит изменение свойств поверхности образца. Пространственно-однородное распределение потока ионов обеспечивает однородность изменения свойств поверхности.

При положительном значении напряжения U_2 происходит торможение ионов (retardation), прошедших сквозь сетку (рис. 2). Плотность тока J_2 уменьшается, и при некотором значении напряжения U_2 ток становится равным нулю. При дальнейшем увеличении U_2 происходит смена знака тока и наблюдается отрицательная ветвь ВАХ. Ток в этой области, по-видимому, связан с электронами, которые образуются в результате фотоионизации атомов газа излучением разряда в первом промежутке.


ВАХ (рис. 2) по форме напоминает ВАХ ленгмюровского зонда. По аналогии значение напряжения U_f , при котором ток ионов J_2 становится равным нулю, можно определить как плавающий потенциал (floating potential). Это значение отмечено на графике вертикальной стрелкой.

Как выяснилось в ходе экспериментов, значение тока J_2 при $U_2=0$ зависело от величины сопротивления R_2 . Для изучения такой особенности работы системы эксперименты проводились без источника питания второго промежутка. Для этого сопротивление R_2 подключалось непосредственно между сеткой 3, находящейся при нулевом потенциале, и электродом 5. В качестве электрода использовалась стеклянная пластина. Падение напряжения на сопротивлении R_2 соответствовало потенциалу электрода 5.

На рис. 4, a представлена зависимость потенциала $U(R_2)$ электрода 5 от величины сопротивления R_2 , построенная в двойном логарифмическом масштабе. На рис. 4, b — зависимость плотности тока инжектированных ионов $J_2(R_2) = U(R_2)/R_2$. Данные показаны для трех давления p=20, 50 и 150 hPa. Длина газоразрядного промежутка I составляла $d_1=200\,\mu\mathrm{m}$. При таких параметрах системы значения $p\cdot d_1$ разряда соответствовали минимуму и правой ветви кривой Пашена.

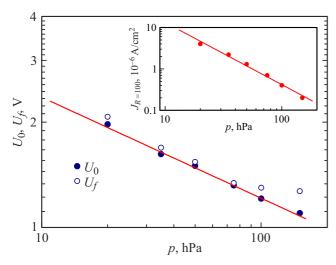
При значениях сопротивления нагрузки, меньших $10^5\,\Omega$, наблюдается линейная зависимость $U(R_2)$, а при дальнейшем увеличении сопротивления напряжение на электроде 5 достигает предельного значения U_0 . При малых значениях сопротивления нагрузки плотность тока U_0 остается практически постоянной и уменьшается с увеличением U_0 .

Такую зависимость напряжения U и плотности тока J_2 от сопротивления R_2 можно объяснить, рассмотрев эквивалентную схему электрической цепи, которая состоит

Рис. 4. a — зависимость напряжения U на электроде (5) от сопротивления R_2 ; b — плотность тока инжектированных ионов во втором промежутке J_2 . Символы соответствуют значениям, измеренным при давлениях газа p=20, 50 и $150\,\mathrm{hPa}$. Сплошные кривые — расчет по формуле (1), в качестве подгоночных параметров использовались U_0 и R_{D2} .

из источника питания U_0 с внутренним сопротивлением R_{D2} и сопротивления нагрузки R_2 . Напряжение на нагрузке U, в этом случае равно

$$U = \frac{U_0 R_2}{R_{D2} + R_2}. (1)$$


Значение тока $J=U/R_2$ в такой цепи зависит от соотношения внутреннего сопротивления источника напряжения R_{D2} и сопротивления нагрузки R_2 . Так, при сопротивлении нагрузки, значительно меньшем R_{D2} , ток мало зависит от сопротивления R_2 и равен $J\approx U_0/R_{D2}$. Как видно из графика, такое значение тока сохраняется в пределах изменения величины нагрузочного сопротивления до $R_2\approx 10^5-10^6\,\Omega$. С увеличением сопротивления нагрузки при $R_2>R_{D2}$ ток резко уменьшается и стремится к значению $J=U_0/R_2$.

Сплошными линиями на рис. 4 показаны зависимости $U(R_2)$ и $J_2(R_2)$, рассчитанные по формуле (1). Подгоночными параметрами были U_0 и R_{D2} . В табл. 1 приведены значения U_0 , R_{D2} и J_0 , полученные в результате обработки экспериментальных данных для давлений газа $p=20-150\,\mathrm{hPa}$.

Измерения ВАХ второго промежутка (рис. 2) проводилось при значении сопротивления нагрузки

d_2 , μ m	Данные	p, nPa						
		150	100	75	50	35	20	
	U_0,V	1.1	1.2	1.3	1.5	1.62	2	
120	R_{D2},Ω	$5 \cdot 10^6$	$3.2\cdot 10^6$	$2.0 \cdot 10^{6}$	$1.2\cdot 10^6$	$7 \cdot 10^5$	5.0 · 10 ⁵	
	$J_2(100)$, $\mu \text{A/cm}^2$	0.2	0.4	0.7	1.3	2.2	4.0	
		•	•	•	•	•	•	

Таблица 1. Значения U_0 , R_{D2} и $J_2(R_2=100\,\Omega)$, измеренные для давлений газа $p=20-150\,\mathrm{hPa}$

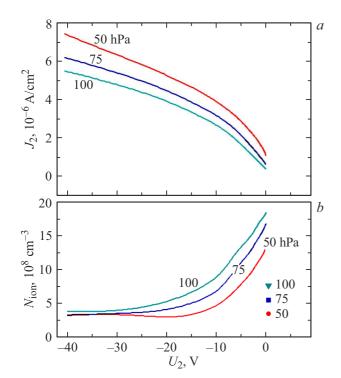
Рис. 5. Зависимость напряжения U_0 и "плавающего потенциала" U_f от давления газа. На вставке — зависимость плотности тока $J_{R=100}$ от давления, измеренная при $R_2=100~\Omega$ и $U_2=0$.

 $R_2=12\,\mathrm{k}\Omega$. Таким образом, значение J_0 , отмеченное стрелкой на рис. 2, соответствует постоянному значению J_2 и может служить одним из параметров состояния системы.

Ток второго промежутка при значении $U_2=0$ связан с диффузионно-дрейфовым движением ионов в слабом электрическом поле, которое вызвано искажением потенциала в ячейках сетки. Как было отмечено выше, размер свободного пространства (апертуры) в ячейке составлял $\sim 48 \times 48 \, \mu$ m. Длина промежутка $d_2=120 \, \mu$ m сравнима с размером ячейки сетки. При таком соотношении параметров системы возможно сильное искажение потенциала в ячейках сетки и проникновение электрического поля разряда во второй промежуток [14,15]. Усредненный потенциал в 2 можно сопоставить с напряжением источника питания эквивалентной схемы U_0 , а R_{D2} — с сопротивлением второго промежутка, которое определяется потоком ионов.

Приложение к электроду 5 положительного напряжения U_2 при измерении BAX (рис. 2) вызывает появление дополнительного электрического поля во втором промежутке, которое тормозит ионы и приводит к уменьшению тока. Нулевое значение тока ионов $J_2 = 0$ достигается в случае, когда электрическое поле U_f/d_2

компенсирует поле, вызванное искажением потенциала в ячейках сетки. Таким образом, напряжение источника питания U_0 эквивалентной схемы и плавающий потенциал U_f по физическому смыслу близки друг к другу. На рис. 5 показана зависимость потенциала U_0 от давления газа. Данные построены в двойном логарифмическом масштабе. Увеличение давления приводит к уменьшению потенциала электрода 5. На графике также показаны значения U_f , измеренные при тех же давлениях. Как видно, U_0 и U_f имеют примерно одинаковые значения при относительно малых давлениях и различаются при $p > 70 \, \mathrm{hPa}$.


Зависимость плотности тока $J_{R=100}(p)$ от давления газа, измеренная при значении $R_2=100\,\Omega$ и $U_2=0$ (рис. 4, b), показана на вставке рис. 5. Увеличение давления газа приводит к уменьшению плотности тока. Уменьшение значений напряжения U_0 и тока $J_{R=100}$ с ростом давления, по-видимому, можно объяснить изменением электрической прозрачности сетки.

На рис. 6, a показаны BAX второго промежутка, измеренные при отрицательных значениях напряжения на электроде U_2 и давлениях газа p=50, 75 и 100 hPa. При такой полярности напряжения инжектированные из разряда в первом промежутке ионы ускоряются в электрическом поле второго промежутка. При значениях напряжения $U_2\approx 0-10\,\mathrm{V}$ наблюдается нелинейность тока, а при больших напряжениях зависимость тока становится почти линейной. Значение концентрации ионов N_{ion} можно вычислить из величины дифференциального сопротивления второго промежутка:

$$N_{ion}(U_2) = \frac{\Delta J_2 d_2}{\Delta U_2 q\mu(p)},\tag{2}$$

где ΔJ_2 и ΔU_2 — изменения плотности тока и напряжения соответственно, q — заряд электрона, $\mu(p)=1444/p\,\mathrm{cm}^2\cdot\mathrm{V}^{-1}\cdot\mathrm{s}^{-1}$ (p измеряется в mmHg) — подвижность ионов [16].

Зависимости концентраций ионов $N_{ion}(U_2)$, рассчитанные по формуле (2) для давлений газа p=50, 75 и $100\,\mathrm{hPa}$, показаны на рис. 6, b сплошными линиями. Символы соответствуют значениям концентрации ионов на катоде разряда в первом промежутке — сетке 3. Концентрации рассчитаны для указанных давлений газа и плотности тока $J_1=50\,\mu\mathrm{A/cm^2}$ как $N_{cathode}=J_1d_1/(q\mu U_S)$. Напряжение поддержания разряда составляло $U_S=207$, $250\,\mathrm{V}$ для соответствующих давлений газа.

Рис. 6. a — зависимость плотности тока J_2 от напряжения на втором промежутке U_2 при давлениях газа $p=50,\,75$ и $100\,\mathrm{hPa}$; b — концентрация ионов во втором промежутке в зависимости от напряжения U_2 , определенная из ВАХ для разных давлений газа. Символами показаны значения концентрации ионов на катоде разряда в первом промежутке $N_{cathode}$.

При нулевом и относительно малом напряжении U_2 концентрация ионов в промежутке $2 N_{ion}$, как следует из рисунка, больше чем концентрация ионов на катоде $N_{cathode}$. По-видимому, поток инжектированных из разряда ионов больше, чем поток ионов, дрейфующих в слабом поле второго промежутка. При увеличении поля скорость потока ионов увеличивается, и уже при $U_2 > 10 \,\mathrm{V}$ концентрация N_{ion} становится меньше, чем на катоде. При таких условиях N_{ion} во втором промежутке ограничивается в основном током разряда J_1 и электрической прозрачностью сетки. ВАХ приближается к линейной зависимости. Нелинейности ВАХ при малых напряжениях связаны, таким образом, с избыточной концентрацией ионов во втором промежутке по сравнению с концентрацией ионов на сетке 3 — катоде разряда в первом промежутке $N_{cathode}$.

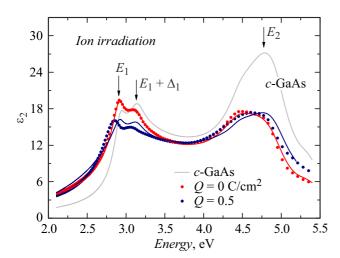
2. Пример обработки полупроводника ионами

В экспериментах по обработке поверхности полупроводника ионами газового разряда использовался образец n-GaAs с удельным сопротивлением $\rho\approx 1~\Omega\cdot\text{cm}$. Исходные пластины GaAs диаметром 28 mm и толщиной 0.56 mm были механически отполированы. За-

тем поврежденный приповерхностный слой толщиной около $50\,\mu\mathrm{m}$ был удален с образца методом химикомеханической полировки с использованием $5-8\,\%$ водного раствора NaOCl. После соответствующей обработки пластина GaAs была помещена в микрореактор (рис. 1).

Облучение проводилось при длине газоразрядного промежутка $d_1=200\,\mu\mathrm{m},\ d_2=120\,\mu\mathrm{m}$ и давлении газа Ar $p=50\,\mathrm{hPa}$. Плотность тока газового разряда устанавливалась на уровне $J_1=200\,\mu\mathrm{A/cm}^2$. Плотность тока J_2 определялась величиной напряжения U_2 , а доза облучения $Q=J_2\cdot t$ — плотностью тока и временем процесса t.

Для оценки структурных изменений поверхностного слоя полупроводника использовался метод спектральной эллипсометрии (SE). Измерения проводились до и после обработки ионами поверхности GaAs образца с помощью эллипсометра SEMILAB SE2000 при угле падения света $\varphi_0 = 70^\circ$ в диапазоне энергий фотонов $E = 1.5 - 5.0\,\mathrm{eV}$. Изменение поляризации света после отражения от поверхности образца определялось как комплексное число ρ , равное отношению коэффициентов отражения с параллельной R_S и перпендикулярной R_P к плоскости падения поляризацией:


$$\rho = \frac{R_P}{R_S} = \tan \Psi e^{i\Delta},\tag{3}$$

где Ψ и Δ — поляризационные углы, которые измеряются эллипсометром в процессе эксперимента.

Структура и толщина поверхностного слоя были получены путем сравнения SE-данных с модельным расчетом. Использовалась трехслойная модель, состоящая из GaAs-подложки, поверхностного слоя и вакуума (воздуха). Диэлектрическая функция слоя соответствовала выбранному материалу, либо определялась в приближение эффективной среды Брюггемана (effective medium approximations EMA). Реальный поверхностный слой в этом приближении заменялся слоем, состоящим из разных материалов и имеющим эффективную диэлектрическую функцию среды [17]. Параметры модели, соответствующие толщине и составу слоя, варьировались для минимизации ошибки между экспериментальными и расчетными спектральными зависимостями поляризационных углов Ψ , Δ . Использовалось программное обеспечение эллипсометра.

Комплексная псевдодиэлектрическая функция (PD) $\varepsilon=\varepsilon_1+i\cdot\varepsilon_2$ была рассчитана в модели отражения света от однородной полубесконечной среды [18]. Эта функция непосредственно связана с электронной структурой полупроводника и определяет оптические свойства поверхности.

На рис. 7 показаны зависимости мнимой части $\varepsilon_2(E)$ PD функции от энергии фотонов, определенные для различных доз облучения образца ионами Ar^+ . Данные соответствуют образцу с необработанной поверхностью и образцу, облученному ионами с дозой $Q=0.5\,\mathrm{C/cm^2}$.

Рис. 7. Спектр мнимой части псевдодиэлектрической функции. Символы соответствуют экспериментальным значениям $\varepsilon_2(E)$, полученным из SE данных для образцов GaAs с разными дозами облучения ионами $\operatorname{Ar}^+ - \operatorname{Q} = 0$ и 0.5 C/cm². Сплошные линии — расчетные зависимости в EMA модели поверхностного слоя. Спектр PD функции кристаллического c-GaAs также показан на графике.

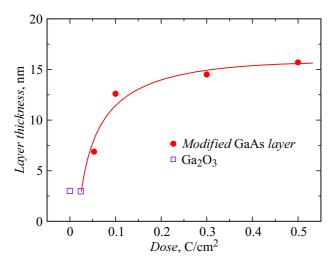
На графике также показана зависимость $\varepsilon_2(E)$ PD функции кристаллического c-GaAs. Спектр содержит пики при энергиях E_1 , $E_1+\Delta_1$ (hv=2.91 и $3.14\,\mathrm{eV}$) и E_2 ($4.77\,\mathrm{eV}$), которые соответствуют межзонным переходам в критических точках кристаллической структуры GaAs [19,20].

Спектральная зависимость мнимой части PD для образца с необработанной поверхностью отличается от PD кристаллического c-GaAs. Основные изменения наблюдаются в спектральной области $\sim 4.5-5\,\mathrm{eV}$. Глубина проникновения света при таких энергиях фотонов минимальна, значения ε_2 PD в этой спектральной области наиболее чувствительны к состоянию поверхности. Как показали XPS (X-ray photoelectron spectroscopy рентгеновская фотоэлектронная спектроскопия) измерения [6], на поверхности образцов GaAs присутствует слой окисла — Ga₂O₃ и As₂O₃. Наиболее устойчивым является соединение Ga₂O₃. Поэтому в SE расчетах использовалась модель слоя с диэлектрической функцией этого материала. Толщина слоя, полученная в результате сравнения расчета с экспериментом, составила 3 nm. Сплошной линией на графике показана расчетная зависимость $\varepsilon_2(E)$.

Облучение поверхности образца ионами Ar^+ приводит к уменьшению амплитуды максимумов спектра и небольшому сдвигу энергий дублетов E_1 , $E_1+\Delta_1$ в область меньших энергий. Аналогичные изменения в спектрах диэлектрической функции образцов GaAs наблюдались в [8,21,22] при обработке поверхности полупроводника ионами газового разряда и ионной имплантации. Изменение оптических свойств поверхности полупроводника авторы этих работ связывали

с образованием области материала с поврежденной кристаллической структурой. Накопление структурных дефектов в решетке приводит к образованию аморфных слоев на поверхности полупроводника. Определение диэлектрической функции слоев с нарушенной структурой обычно проводится в предположении, что материал представляет собой физическую смесь кристаллического и аморфного GaAs, и используется EMA приближение эффективной среды.

Измерения профиля химического состава образцов, проведенные в [8] XPS- методом, не выявили изменения состава полупроводникового материала и появления оксидов в результате облучения полупроводника ионами N_2^+ . В цитируемой работе предполагалось, что модифицированный слой состоит из смеси c-GaAs, a-GaAs и Void. Материал "Void" имеет диэлектрическую функцию вакуума, и включение в состав слоя такого элемента физически означает либо шероховатость поверхности, либо пористость материала.


Сплошными линиями на рисунке показаны зависимости мнимой части PD ε_2 , полученные путем подгонки экспериментальных SE и расчетных данных в модели модифицированного c-GaAs, a-GaAs, Void слоя. Процентное соотношение материалов и толщина слоя для разных доз облучения $Q=0.023-0.5\,\mathrm{C/cm^2}$ приведены в табл. 2. В таблице также указано значение толщины слоя $\mathrm{Ga_2O_3}$ окисла на необработанной поверхности полупроводника.

На рис. 7 видно, что модель GaAs с природным оксидным слоем хорошо описывает оптические свойства необработанной поверхности. Для образца, облученного ионами Ar^+ , к сожалению, не наблюдается такого совпадения расчетной и экспериментальной зависимостей $\varepsilon_2(E)$. Как отмечали авторы [22], модель EMA не всегда способна правильно описать поведение спектра диэлектрической функции при переходе от кристаллического материала к аморфному. Лучшего результата можно достичь в приближении, в котором диэлектрическая функция представляется в виде суперпозиции гармонических осцилляторов. Тем не менее для анализа эффекта облучения поверхности GaAs ионами мы ограничились рассмотрением модели EMA, которая позволяет определить толщину нарушенного слоя.

На рис. 8 показана толщина нарушенного слоя в зависимости от дозы облучения образца ионами $Q=J_2\cdot t\,\mathrm{C/cm^2}$. Как было отмечено выше, на необработанной поверхности GaAs имеется слой окисла $\mathrm{Ga_2O_3}$ толщиной $\sim 3\,\mathrm{nm}$. Облучение полупроводника $\mathrm{Ar^+}$ с малой дозой $Q=0.025\,\mathrm{C/cm^2}$ приводит к незначительным изменениям SE данных по сравнению с необработанной поверхностью. Удовлетворительное совпадение теоретических и экспериментальных зависимостей Ψ , Δ удалось получить путем включения в модель модифицированного слоя вместе с $\mathrm{Ga_2O_3}$ небольшого количества аморфного a-GaAs (табл. 2). При увеличении дозы облучения оксидный слой исчезает, и на поверхности образуется нарушенный слой, состав которого указан в табл. 2.

Пата С/ата ²		Т			
Доза, C/cm ²	Ga ₂ O ₃ , %	c-GaAs, %	a-GaAs, %	Void, %	Толщина, nm
0	100				3.2
0.025	92	_	8	_	2.9
0.056		67	12	21	6.88
0.1		67	20	13	12.6
0.3		67	20	13	14.5
0.5		63	27	10	15.7

Таблица 2. Параметры модели модифицированного слоя GaAs образцов с разной дозой облучения ионами Ar^+ , полученные в результате сравнения экспериментальных и расчетных SE данных

Рис. 8. Зависимость толщины нарушенного слоя от дозы облучения GaAs ионами Ar^+ .

Состав слоя незначительно меняется с увеличением дозы облучения. Зависимость толщины слоя от дозы имеет нелинейный характер.

Заключение

В работе исследуется инжекция положительно заряженных ионов из самостоятельного таунсендовского разряда, которые при взаимодействии с поверхностью полупроводниковых материалов изменяют их свойства. Эффект изучается в планарной трехэлектродной структуре, в которой металлическая сетка является общим электродом. Устойчивость пространственно-однородного состояния газоразрядных процессов в устройстве обеспечивается тем, что один из электродов области самостоятельного разряда выполнен из полупроводника с высоким удельным сопротивлением. Малая плотность объемного заряда в промежутках дает возможность интерпретировать наблюдаемые закономерности с привлечением

простых представлений физики газового разряда. С экспериментальной точки зрения исследуемая структура интересна также тем, что позволяет исследовать процессы инжекции в газовую среду положительных ионов, а также изучать стационарные состояния несамостоятельных разрядов.

В трехэлектродной SGD-системе проведена экспериментальная обработка полупроводникового GaAsобразца ионами аргона при разных дозах облучения $Q = 0.025 - 0.5 \,\text{C/cm}^2$. Удельное сопротивление образца составляло $\sim 1 \, \Omega \cdot$ cm. Показано, что взаимодействие Ar^+ с поверхностью GaAs приводит к удалению окисла и образованию слоя материала с нарушенной структурой, состоящей из смеси кристаллического и аморфного GaAs. Средняя кинетическая энергия движения ионов в экспериментах ненамного превышала энергию теплового движения атомов газа. Возникновение структурных изменений в приповерхностной области кристалла, возможно, связано с механизмом нейтрализации заряженных частиц на поверхности полупроводника. Нейтрализация ионов происходит в результате оже-процесса, в котором электрон валентной зоны полупроводника туннелирует в основное состояние иона [23]. Энергия, высвобождающаяся при нейтрализации иона, передается электронной подсистеме полупроводника и может приводить к возникновению структурных дефектов.

Мы полагаем, что рассматриваемый в работе способ инжекции ионов с малой кинетической энергией может быть использован — при соответствующем составе газов — для плазмохимической обработки конденсированных сред как диэлектрических, так и проводящих.

Благодарности

Авторы выражают благодарность Толмачеву В.А. и Большакову В.О. за помощь в проведении эллипсометрических измерений.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] C. Pignata, D. D'Angelo, E. Fea, G. Gilli. J. Appl. Microbiol., 122, 1438 (2017). DOI: 10.1111/jam.13412
- [2] A. Dey, A. Chroneos, N.St.J. Braithwaite, R.P. Gandhiraman, S. Krishnamurthy. Appl. Phys. Rev., 3, 021301 (2016).
- [3] Ю.А. Астров, В.В. Егоров, Ш.С. Касымов, В.М. Муругов, Л.Г. Парицкий, С.М. Рывкин, Ю.Н. Шереметьев. Квантовая электроника, **4** (8), 1681 (1977).
- [4] V.M. Marchenko, H.-G. Purwins, L.M. Portsel, Yu.A. Astrov. Semiconductor-Gas-Discharge Device for Fast Imaging in the Infrared, Physics, Engineering and Applications (Shaker Verlag, Aachen, 2016)
- [5] Z.Lj. Petrović, A.V. Phelps. Phys. Rev. E, 27, 2806, 2825 (1993).
- [6] Е.Л. Гуревич, Ю.П. Райзер, Х.-Г. Пурвинс. ЖТФ, **76** (2), 36 (2006).
- [7] L.M. Portsel, A.N. Lodygin, Yu.A. Astrov. J. Phys. D: Appl. Phys., 42, 235208 (2009).
- [8] E.L. Gurevich, S. Kittel, R. Hergenröder, Yu.A. Astrov,
 L.M. Portsel, A.N. Lodygin, V.A. Tolmachev,
 A.V. Ankudinov. J. Phys. D: Appl. Phys., 43, 275302
 (2010). DOI: 10.1088/0022-3727/43/27/275302
- [9] M.S. Aksenov, A.Yu. Kokhanovskii, P.A. Polovodov, S.F. Devyatova, V.A. Golyashov, A.S. Kozhukhov, I.P. Prosvirin, S.E. Khandarkhaeva, A.K. Gutakovskii, N.A. Valisheva, O.E. Tereshchenko. Appl. Phys. Lett., 107, 173501 (2015).
- [10] M.S. Aksenov, A.K. Gutakovskii, I.P. Prosvirin, D.V. Dmitriev, A.A. Nedomolkina, N.A. Valisheva. Mater. Sci. Semicond. Process., 102, 104611 (2019).
- [11] Yu.A. Astrov, A.N. Lodygin, L.M. Portsel, A.A. Sitnikova. J. Appl. Phys., 124, 103303 (2018). DOI: 10.1063/1.5042487
- [12] Yu.A. Astrov, V. Zhelev, J. Malinowski, S.M. Ryvkin. Phys. Status Solidi (a), 61, K127 (1980).
- [13] Х.Т. Йулдашев, З. Хайдаров, Ш.С. Касымов. Успехи прикладной физики, **4** (6), 580 (2016).
- [14] F.H. Read, N.J. Bowring, P.D. Bullivant, R.R.A. Ward. Rev. Sci. Instrum., 69, 2000 (1998). DOI: 10.1063/1.1148888
- [15] P.D. Goldan, F.L.J. Yadlowsky, E.C. Whipple Jr. J. Geophys. Res., 78, 2907 (1973).
- [16] A.L. Ward. Phys. Rev., 112 (6), 1852 (1958).
- [17] D.A.G. Bruggeman. Ann. Phys. (Leipzig), 24, 636 (1936).
- [18] R.M.A. Azzam, N.M. Bashara. *Ellipsometry and Polarized Light* (Amsterdam, North-Holland, 1977)
- [19] P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona. Phys. Rev. B, 35, 9174 (1987).
- [20] S. Ozaki, S. Adachi. J. Appl. Phys., 78, 3380 (1995).
- [21] E. Schubert, N. Razek, F. Frost, A. Schindler, B. Rauschenbach. J. Appl. Phys., 97, 023511 (2005).
- [22] M. Erman, J.B. Theeten, P. Chambon. J. Appl. Phys., 56, 2664 (1984).
- [23] H.D. Hagstrum. Phys. Rev., 122, 83 (1961).