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Telescopic mode of a cathode lens
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Means of modeling a cathode lens with an almost arbitrary configuration of electrodes in the paraxial

approximation have been developed, and conditions for the implementation of the telescopic mode have been

determined. The interrelation of the parameters providing this mode of operation of the lens has been studied.

An electron-optical scheme has been developed that guarantees the telescopic mode of a cathode lens of a real

(non-idealized) design.
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The cathode of a cathode lens is immersed in an external

field produced by the potentials of focusing electrodes (in
most cases, the Wehnelt electrode [1]) and the anode. The

cathode lens considered here is to be used in emission

systems with their perveance lower than 10−2 µA/V3/2 [2].

The parameters of the overwhelming majority of electron-

optical systems may be predicted with the use of axially

symmetric models with an accuracy sufficient for practical

application. The fundamental equation of axially symmetric

paraxial electron optics is a linear differential equation of

the second order, the solution of which is particle trajectory

r = r(z ). It takes the following form in cylindrical coor-

dinate system r0z [1]:

r ′′ +
8′

28
r ′ +

8′′

48
r = 0, (1)

where 8 = 8(z ) is the potential distribution on symmetry

axis 0z .
Unlike conventional types of electron lenses (immer-

sion, single, aperture lens, etc.), a cathode lens presents

difficulties in solving Eq. (1) that are associated with

a mathematical singularity near the top of the cathode

with coordinate z = z c , since 8c = 8(z c) = 0 and 8′

c 6= 0.

Here and elsewhere, subscript c denotes the values of all

functions on the cathode surface.

The theory of solving differential equations with this

type of singularity is complete (see, e. g., [3]): one of the

particular solutions p = p(z ) of Eq. (1) is an analytical

function, and the other solution g = g(z ) is expressed

through analytical function q = q(z )

g =
√
8q, (2)

and it follows from (1) and (2) that function q = q(z )
satisfies equation

q′′ +
3

2

8′

8
q′ +

3

4

8′′

8
q = 0, (3)

and functions p(z ) and q(z ) are automatically subject to

boundary conditions

pc = qc = 1, p′

c = q′

c = − 8′′

c

28′

c
. (4)

The trajectory equation is the general solution of a

differential equation of the second order and, consequently,

may be written as a sum of two linearly independent

particular solutions

r(z ) = a p(z ) + bg(z ),

where a and b are constants determined from the initial

conditions on cathode surface z = z c . Yakushev has ob-

tained [4] the expressions for a and b for a cathode lens

and trajectory equation

r(z ) = rc p(z ) +
2
√
ε

8′

c
sinϑcg(z ), (5)

where ε is the initial energy of electron escape from the

cathode, which is regarded as a mathematical quantity of the

second order of smallness; rc is the coordinate of electron

escape from the cathode surface; and ϑc is the initial motion

angle.

The fascination of modern researchers with numerical

methods and the overestimation of importance of accuracy

levels achieved there have become an obstacle to the

development and widespread use of the mathematical

apparatus presented in [4] and the systematic analysis of the

properties of cathode lenses. Therefore, cathode lenses have

been little studied to date (not only within the aberration

theory, but also in the paraxial approximation). The only

example of a study offering new insights into a cathode

lens is [5], where unique modes of cathode lenses were

discovered by analyzing trajectory equation (5). At the

same time, the results reported in [5] require elaboration

and generalization, since they were obtained under the

assumption of infinitely small gaps between electrodes and
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the axial distribution of potential 8(z ) was determined using

the method of separation of variables.

The method allows one to calculate the potential distri-

bution function only for idealized electron-optical systems

with a simple boundary configuration. We develop an

alternative (more general) approach where the axial distri-

bution of potential 8(z ) is determined using the numerical

boundary element method coupled with the proprietary

technique for exact estimation of singular and quasi-singular

integrands [6]. This approach provides an opportunity

to simulate systems with electrodes of virtually arbitrary

thickness and shape. The distribution function of axial

potential 8(z ), which is calculated by the boundary element

method at discrete nodes, is interpolated by splines. Well-

known formulas for numerical differentiation are used to

determine the values of derivatives 8′(z ), 8′′(z ), p′(z ),
and g ′(z ).
In brief, the aim of the present study is to investigate cath-

ode lenses of real (non-idealized) designs in the telescopic

mode.

Before actually examining the properties of a cathode lens

in the telescopic mode, we differentiate Eq. (5):

r ′(z ) = rc p′(z ) +
2
√
ε

8′

c
sinϑcg ′(z ). (6)

It is the analysis of Eqs. (5) and (6) that reveals a number of

unique cathode lens modes [5]. Specifically, the telescopic

mode, wherein a parallel flux (sin ϑc = 0) of electrons

leaving the cathode surface remains parallel r ′(z ) = 0 in the

z > z im image space in the uniform field region, is defined

by the system of expressions
{

sinϑc = 0,

p′(z ) = 0, z > z im,
(7)

where z im is the image space boundary.

The implementation of the telescopic mode in a paraxial

cathode lens is ultimately determined by the specific type

of potential distribution 8(z ) in (1) and (4) and does not

depend on the initial values of energy ε and electron an-

gle ϑc . In a three-electrode cathode lens of the kind shown

in Fig. 1, a, which consists of disk-shaped cathode C and two

cylindrical (intermediate and accelerating) electrodes of the

same diameter d, this specific type of 8(z ) is determined

by length l and potential V of the intermediate electrode

at fixed potential Vacc of the accelerating electrode with

its length being significantly larger than diameter d . The

plots of particular solutions p(z ) and g(z ) for such a lens

with l/d = 0.7 and V/Vacc = 0.141 are shown in Fig. 1, b.

The section of the p(z ) = const dependence at z > z im is

noteworthy as a characteristic feature of the telescopic mode

where z im ≈ d .
The results of calculations for the studied cathode lens

within the proposed approach, which relies on solving

Eqs. (1) and (3), suggested a relation between length l
and potential V of the intermediate electrode (Fig. 1, c) that

enables telescopic mode (7).

The dependences shown in Fig. 1 were obtained in

the paraxial approximation for small interelectrode gaps

δ = 0.002d (i. e., in the δ ≪ d case). A comparison of the

data in Fig. 1, c and the results of independent studies [5] of
the same lens performed under the assumption of infinitely

small interelectrode gaps reveals that the relative difference

between the corresponding V/Vacc = f (l/d) dependences

does not exceed 0.2%, which provides indirect evidence of

validity of our conclusions regarding the telescopic mode.

However, the question remains open about the conditions

and limits of applicability of the paraxial approximation in

studies of a cathode lens.

Let us note once again that the lack of influence of

energy ε on the course of trajectories r(z ) in telescopic

mode (7) follows from Eq. (5). At the same time, the

numerical
”
reference“ analysis of the studied lens in Focus

Pro [7], where the electric field in the working area of the

lens (and not only on the 0z axis) is determined numerically

and the trajectories are found by time integration of the

standard system of Newtonian equations of motion, makes

it necessary to correct the statement made. The energy

dependence may in fact be noticeable, but its influence

decreases with decreasing relative energy ε/Vacc and may

be considered insignificant below the level of 10−3, which is

illustrated by dependence β = β(ε/Vacc) in Fig. 2, a, where

β is the angle of inclination of the straight section of the

outermost electron trajectory to the 0z axis on crossing the

z = z out = l + 2d plane. This refers to the trajectory with

initial coordinate rc = din/2 in the numerical experiment,

where din = 0.2d is the initial diameter of the electron flux

emitted from the cathode. Let us recall once again that

angle β = arctg[r ′(z out)] = 0 within the entire energy range

in the paraxial approximation. The above-mentioned level

of relative energy ε/Vacc = 10−3 does, first, specify the

order of smallness of ε and, second, is characteristic of most

known emission systems, such as electron microscopes and

microfocus X-ray tubes; it is important that the paraxial

approximation turns out to be suitable for these systems.

Initial angles ϑc = 0 in the telescopic mode, but elec-

trons emitted from the cathode in actual experiments are

distributed according to the cosine law over the entire range

of ϑc from −90 to +90◦ . The influence of the initial angular

spread on the output parameters of the electron flux was

investigated numerically (not in the paraxial approximation)
in the Focus Pro environment [7]. The results of trajectory

analysis (Fig. 2, b) within the range of polar angles ϑc

from −70 to +70◦, which was chosen in order to exclude

uninformative
”
tails“ near the −90 and +90◦ boundaries

of the full range, suggest that the initial angular spread

has a significant influence on electron trajectories; however,

the degree of influence decreases with decreasing relative

energy ε/Vacc . It does indeed follow from the data in

Fig. 2, b that the angular spread (for an arbitrary initial

radial coordinate rc 6 din) relative to the central horizontal

trajectory ϑc = 0◦ at the exit of the system in plane

z = z out = l + 2d decreases from ±2.5◦ at ε/Vacc = 10−3

to ±0.07◦ at ε/Vacc = 10−6. Thus, when electrons are
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Figure 1. Modeling of a three-electrode cathode lens in the paraxial approximation. a — Trajectories (5) of electrons with ϑc = 0 and

r c = 0−0.2d in the telescopic mode; b — particular solutions: 1 — p, 2 — g; c — relation between potential V of the intermediate

electrode and its length l that enables telescopic mode (7).

emitted from the cathode surface in a total solid angle of

2π sr in the telescopic mode of the cathode lens at low

relative energies (ε/Vacc < 10−4), an electron flux parallel

to the optical axis of the lens with an angular spread of

several tenths of a degree forms at the output.

The lens design examined above is not very practical,

since the interelectrode gaps are small and cannot withstand

high voltages on the order of several tens of kilovolts (or
more) that are applied between the electrodes in typical

emission systems. The approach to modeling cathode

lenses developed in the present study is suitable for lenses

with any electrode configuration, including those with wide

interelectrode gaps. The lens shown schematically in Fig. 3

is an example of such an electrode system that provides a

high level of electrical strength.

The search for conditions supporting the telescopic mode

consists in repeating the following steps: set length l of

the intermediate electrode and find such a potential V of

this electrode that ensures the fulfillment of the second

condition of system (7); notably, the axial distribution of

potential used to find particular solution p(z ) from (1) is

calculated by the boundary element method. Specifically,

the results of calculations demonstrate that the telescopic

mode at l/d = 0.7 (Fig. 3) is established by applying
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Figure 2. Effect of the initial energy and initial angles on the parallelism of trajectories at the exit of a cathode lens in the telescopic

mode. a — Angular spread at ϑc = 0; b — trajectories ε/Vacc = 10−3 (I) and 10−6 (II), ϑc = −70 (1), 0 (2) and +70◦ (3).
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Figure 3. Results of numerical analysis of a cathode lens of a non-idealized design in the telescopic mode. ε/Vacc = 10−6, din/d = 0.2,

r c = 0−din, and ϑc varies from −70 to +70◦.

potential V = 0.137Vacc , which differs only slightly from

the corresponding potential V = 0.141Vacc of the idealized

design (Fig. 1, a).
Trajectory analysis needs to be performed in order to

examine in more detail the properties of the lens in the

telescopic mode.

Figure 3 presents the results of numerical (not in the

paraxial approximation) trajectory analysis of the lens within

the range of angles ϑc from −70 to +70◦ with initial relative

electron energy ε = 10−6 Vacc and initial flux diameter

din = 0.2d . The calculated data suggest that the electron

flux maintains a high level of parallelism at the system

output in plane z = l + 2d . The following conclusions may

also be made:

— the angle of inclination of central trajectories corre-

sponding to ϑc = 0 increases with rc , but does not exceed

0.02◦ at rc = din/2;

— the total angular spread of the two outermost tra-

jectories with ϑc = −70 and +70◦ relative to the central

trajectory does not exceed 0.17◦ regardless of rc .

The telescopic mode will be useful in constructing

emission systems with flat cathodes where electron fluxes

need to be transported over long distances.

It should be noted that similar problems for triode-type

electron beam guns forming electron fluxes of different

spatial configurations (parallel ones included) were also

solved in the optics of intense electron beams [2].
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