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The influence of the noise with different spectra on the stability of the

flows with rotation
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The effect of two types of noise with different spectra on the stability of viscous incompressible fluid flows in

a rotating spherical layer is studied numerically. The noise is introduced into the flow by adding time random

fluctuations with zero mean value to the constant mean rotational velocity of the inner sphere. The instability in

the form of Taylor vortices is considered. It is found that, for equal amplitudes, different values of the stability limit

correspond to distinct noise spectra.
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Flows in nature and technical systems are usually subject

to the influence of external noise [1]. Noise may also

be used in extraction of energy from wave and wind

flows [2]. The slope of the noise spectrum in logarithmic

coordinates (see, e. g., Fig. 1) is commonly represented

as 1/ f α ; in natural systems, random fluctuations in time

are often approximated by
”
colored“ noise [3,4] with a

range of variation of 0 < α < 2 [5]. Such noise may

induce bifurcations and transitions to chaos in dynamic

systems [6,7]. In a spherical Couette flow (SCF), which

is the flow of a viscous incompressible fluid between

coaxially located spheres that is driven by rotation of the

boundaries, the addition of noise with equal amplitudes

but different types of spectra leads to the generation of

mean flows of different intensities [8,9]. If white noise with

α = 0 [10,11] is added, the generation of mean flows in an

STC is accompanied by a reduction of the values of critical

Reynolds numbers corresponding to the stability limit. The

issue of influence of noise with α 6= 0 on the position of

the stability limit of flows in an STC has not been discussed

in [8,9] and remains uninvestigated. This is the reason why

the present study is aimed at clarifying this phenomenon.

The instability of the so-called primary flow in a thin

spherical layer δ = (r2 − r1)/r1 = 0.11, where r1 and r2
are the radii of the inner and outer boundaries, respectively,

is examined. It has already been studied extensively under

stationary boundary conditions both experimentally and

numerically [12,13]. Only meridional circulation is observed

before the loss of stability in the meridional plane of flow

from the pole to the equator. After the loss of stability, a

secondary flow is formed. Meridional circulation in it is

driven away from the equator by Taylor vortices that are

symmetrical relative to the axis of rotation and the plane of

the equator. The conditions of their formation were studied

both in the case of stationary rotation and with periodic

modulation of the rotation velocity [14–16]. Isothermal

flows of a viscous incompressible fluid are characterized

by the Navier−Stokes and continuity equations

∂U

∂t
=U× rotU−grad

(

p
ρ

+
U2

2

)

−ν rotrotU, divU = 0,

where U is the velocity field, p is pressure, ρ is density,

and ν is the kinematic viscosity of the fluid in a layer.

No-slip and impermeability conditions are set at the layer

boundaries; they are written below in a spherical coordinate

system with radial (r), polar (θ), and azimuthal (ϕ)
directions:

uϕ(r = rk) = �k(t)rk sin θ,

ur(r = rk) = 0, uθ(r = rk) = 0, k = 1, 2,

k = 1 — inner sphere; k = 2 — outer sphere; uϕ , ur ,

and uθ — azimuthal, radial, and polar components of

velocity, respectively; and �1 and �2 — angular ve-

locities of rotation of the boundaries. The numerical

solution method is based on a finite-difference scheme

of discretization of the Navier−Stokes equations in space

and a semi-implicit third-order Runge−Kutta scheme for

integration over time [17,18]. Calculations were carried

out with dimensional parameters that correspond closely

to the experimental conditions [12]: ν = 5 · 10−5 m2/s,

r2 = 0.15m, and r1 = 0.1351m. The total number of

nodes was 5.4 · 103 for two-dimensional (2D) calcula-

tions with symmetry conditions relative to the rotation

axis and the equatorial plane and 8.64 · 104 for three-

dimensional (3D) calculations lacking the above symmetry

conditions. In 2D calculations, spatial discretization was

performed with a reduction in cell size along r near the

boundaries; in 3D calculations, the cell size decreased not

only along r near the boundaries, but also along θ near the

equator. The corresponding ratio of the maximum cell size

to the minimum one was 4 and 2 in these two scenarios.

Depending on the Reynolds number, 6–9 grid points were

55



56 D.Yu. Zhilenko, O.E. Krivonosova

f, Hz

–210

–1010

–110 1 10

–810

–610

–410

–210

4
–
3

S
, 
m

 · 
s

–1510

–1110

–710
1

2

1

2

3

4

4
–
3

S
, 
m

 ·
 s

f, Hz

–210 –110 1 10

a b

Figure 1. a — Spectra of rotation velocity fluctuations. 1 — With slope α = 1; 2 — with slope α = 2. Black straight lines represent the

results of approximation of spectra. b — Spectra of fluctuations of kinetic energy components: Eϕ (1, 2), Eψ (3, 4); α = 1 (1, 3) and 2

(2, 4). N = 0.06, Re1 = 1000.

positioned in the boundary layer, which is sufficient for

this layer to be resolved. The convergence of results of

2D calculations at different numbers of computational grid

points is presented the table.

Here,

Kϕ = Eϕ/(�1r1)
2, Kψ = Eψ/(�1r1)

2,

Eϕ =

∫

u2
ϕ(r, θ, t), Eψ =

∫

(

u2
r (r, θ, t) + u2

θ(r, θ, t)
)

,

Eϕ and Eψ are the azimuthal and meridional components of

kinetic energy of flow, respectively, and Kϕ and Kψ are

their normalized values. Nonstationary flows driven by

rotation of the inner boundary �(t j) = �0 + Nrn( j) were

investigated; the outer sphere was stationary. The value

of average angular velocity �0 corresponded to Reynolds

numbers Re1 = �0r21/ν varying from 1000 to 1500, N is the

noise amplitude, N = 1
�0

√

1
K−1

K
∑

j=1

(

�(t j) −�0

)2
, rn( j) is

a pseudo-random number from a sequence with length K, a

standard normal distribution, and zero mean, and j counts

the number of time steps. The chosen constant time

step 1t = 0.01 s provided a total of 153–229 time steps

in a single revolution of the sphere, K = 30 000. The

algorithm [17,18] allows one to control the step size in the

process of calculations, but, having performed preliminary

calculations, we chose such a value of 1t at which step

control did not change its magnitude. A constant 1t value

provides an opportunity to preserve the specified values of

the spectrum slope and/or noise amplitude in calculations.

The duration of each calculation scenario with noise is

600 s = 2K1t . Within the first 300 s, the system reaches

a statistically steady state; average values are calculated

based on the data obtained in the next 300 s. The results

of calculations without noise performed for at least 500 s

served as the initial data for calculations with noise. Two

types of noise with spectrum slopes α = 1 and 2 were

Dependence of the normalized values of azimuthal (Kϕ) and

meridional (Kψ) components of kinetic energy of flow on number

G of computational grid nodes in 2D calculations (Re1 = 1000,

N = 0.06, and α = 2)

G · 10−3 Kϕ Kψ

0.864 0.325188 0.000935

3.456 0.325133 0.000925

4.374 0.325118 0.000922

5.400 0.325108 0.000920

6.144 0.325103 0.000919

used; the same sequence of random numbers was used in

calculations with one value of α. As in [9], the sequence

of numbers rn was calculated for the chosen spectrum type

in advance. Methods for obtaining such sequences were

discussed, e. g., in [5].
In the presence of noise, the flow becomes nonstationary

in time, but remains symmetrical with respect to the

equator and the axis of rotation [9]. Let us first consider

the properties of nonstationary stable flows without Taylor

vortices. Figure 1 shows the spectra of �(t), Eϕ(t),
and Eψ(t) obtained in 2D calculations with different α

values. Just as in the case of co-directional rotation of

spherical boundaries in wide layers [9], the slope of spectra

�(t) α is lower than the slope of spectra Eϕ(t) αϕ ; with

the examined values of α, relation αϕ−α ∼ 1 is satisfied

(Fig. 1, a). In contrast to [9], the slope of spectra Eψ(t) αψ
at frequencies below 1Hz depends on α: αψ−α ∼ 0.77

(Fig. 1, b). The addition of noise leads to the generation

of mean flows [8–10]. We will examined it using the

example of variation of relative azimuthal flow velocity

V = uϕN/uϕ, where uϕN is the azimuthal flow velocity with

noise. The distribution of V in the meridional plane of

stable flow is shown in Fig. 2. It is evident that the V
distributions corresponding to α = 1 and 2 are qualitatively
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Figure 2. Distributions of the V values in the meridional plane of flow at N = 0.04, Re1 = 1000. α = 1 (a) and 2 (b). A color version

of the figure is provided in the online version of the paper.

similar: in a nearly vertical layer parallel to the rotation axis

and adjacent to the inner sphere, the velocity changes are

minimal. Velocity V decreases toward the rotation axis and

the outer sphere and increases toward the equatorial plane

and the outer sphere. Thus, the increase in velocity under

the influence of noise becomes continuously less significant

as one shifts along the meridional angle in the direction from

the equator to the axis of rotation. At the same time, certain

differences may also be noted: at α = 2 (Fig. 2, b), the area

of flow regions corresponding to the maximum change in

velocity is larger than the one at α = 1 (Fig. 2, a). Since

the values of azimuthal velocity near the equatorial plane

are an order of magnitude higher than in the polar region,

the observed difference is indicative of a more intense

generation of mean flows under the influence of noise with

a higher spectral slope (α = 2). This agrees completely with

the earlier results for flows in wide layers driven by rotation

of the boundaries in the same direction [9]: according to

them, an increase in α leads to more intense generation of

mean flows under the influence of noise.

In experiments [12] under stationary boundary conditions,

the flow in a thin layer (δ = 0.1096) became unstable

with the formation of a pair of Taylor vortices near the

equator at Re1c = 1225. No hysteresis was detected, and

the Reynolds number determination accuracy was ±12. In

calculations [12] with the conditions of symmetry relative to

the axis of rotation and the equator, Re1c = 1225 was also

obtained, but only if finite perturbations were added. As

is shown below, added perturbations reduce the calculated

Re1c values. According to calculations [13], the flow in

layer δ = 0.11 in the axisymmetric approximation remains

stable up to Re1 = 1500. In three-dimensional calculations

performed in the same study, Taylor vortices formed

at Re1c = 1262.2, and the reverse transition occurred at

1261.1; the hysteresis magnitude was dRe1c = 1.1. The

values of Re1c and dRe1c calculated in [13] decreased with

an increase in the number of Legendre test functions in the

meridional direction and the number of grid points in the

radial direction.

In our calculations at δ = 0.11, the flow instability was

identified in the same way as in [15] (by the emergence of

Taylor vortices in visualization of the azimuthal component

of vorticity in the meridional flow plane; see Fig. 3):

ωϕ =
1

rr ′
∂ruθ
∂r

−
1

rθ′
∂ur

∂θ
.

The value of Re1c = 1263.5, which agrees closely with the

results reported in [13], was obtained in 3D calculations

with stationary rotation without additional perturbations. In

this case, the transition from the primary flow to Taylor

vortices occurred without breaking the flow symmetry

relative to the axis of rotation and the equator. Just

as in [12], no hysteresis was observed (dRe1c < 0.25).
The results of 2D (Re1c = 1263.75) and 3D calculations

are almost identical; in all the examined cases, hysteresis

was detected neither at N = 0, nor at N 6= 0. Thus, our

calculations for stationary rotation produced the results that

correspond in a number of parameters to the experimental

and calculated data obtained earlier. This verifies the

applicability of conditions of flow symmetry relative to the

axis of rotation and the equator in these calculations. The

dependence of the stability limit position on the type and

amplitude of added noise was investigated further in 2D

calculations. The flow was visualized using the velocity
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Figure 3. Distributions of the azimuthal component of vorticity in the meridional plane of flows at α = 1 and N = 0.06. a — Primary

flow (without Taylor vortices), Re1 = 1220; b — secondary flow after the loss of stability (with a Taylor vortex near the equatorial plane),
Re1 = 1258. A color version of the figure is provided in the online version of the paper.

field averaged over 300 s. The dependence of Re1c on the

amplitude and type of noise is shown in Fig. 4. At Reynolds

numbers above the stability limit for stationary rotation of

the sphere (horizontal line in Fig. 4), the flow becomes

unstable with respect to perturbations of an extremely

small amplitude. At Reynolds numbers above the sloping

curves (Fig. 4), the flow becomes unstable with respect

to perturbations of rotation velocity of a finite amplitude.

However, the transition to instability is
”
soft“ (features

no hysteresis) in all the examined cases. Just as in the

case with added
”
white“ noise (α = 0) [10,11], an increase

in N leads to a reduction in Re1c . Compared to the data

from [10,11], where Re1c decreased by a few units at the

most, the changes in Re1c shown in Fig. 4 are considerably

more profound. With noise amplitudes N being equal, the

values of Re1c at α = 2 are significantly lower than those

at α = 1. Thus, the more intense generation of mean flows

before the loss of stability at a higher slope of the �(t)
spectrum leads to a reduction of critical Reynolds number

values corresponding to the loss of stability.
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