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Numerical investigation of the effect of tangential helium injection on the

linear stability of a compressible boundary layer on a flat plate
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The paper is devoted to the numerical investigation of the effect of the geometry of a single channel for tangential

helium injection on disturbances in a compressible boundary layer. The boundary layer calculations are performed

within the framework of the Navier-Stokes equations in a two-dimensional plane formulation for compressible

flows. The boundary layer stability calculations are carried out within the framework of the linear stability theory

in the locally parallel approximation taking into account a binary gas mixture. It is shown that, regardless of the

configuration of a single channel, the introduction of helium into the boundary layer stabilizes disturbances of the

second mode and destabilizes disturbances of the first mode in the region close to the injection site. However, at

a sufficient distance from the gas injection site, the growth rates of two-dimensional disturbances of the first and

second Mack modes are less than in the case without injection. It is also shown that, at a constant mass flow rate,

the channel geometry mainly affects the boundary layer stability only in the helium injection region. An increase

in the channel height leads to an increase in the growth rates of the two-dimensional disturbances of the second

mode and a decrease in the growth rates of the two-dimensional disturbances of the first mode.
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Introduction

It is known that scenarios of a laminar-turbulent transition

of a boundary layer can differ depending on roughness of

the surface and a level of disturbances of the oncoming

stream. One of the scenarios describes development of

disturbances in an supersonic boundary layer with required

smallness of disturbances and roughness of the surface [1].
The said scenario of the transition consists of a receptivity

phase, a linear and a nonlinear phase of development of

disturbances in the boundary layer. The present paper deals

with the linear phase of development of disturbances. As

shown in the studies [2,3], in the linear stage, the most

progressing disturbances in a two-dimensional compressible

boundary layer are disturbances of the first and the second

mode according to the Mack classification. Methods of

stabilization of disturbances of the first and second modes

substantially differ [3,4].
The first mode can be stabilized by using surface mass

exchange [5], sublimating coatings [6], cooling of the

surface [3] or injection of a heavy gas into the boundary

layer [7]. The second mode can be stabilized by using

porous coatings [8–10], wavy surfaces [11,12], heating of the
surface in a disturbance progressing area [13], local heating
or cooling to the disturbance progressing area [14], surface
local mass exchange [15], and injection of a light gas [16,17].
The paper [18] has investigated three methods of blowing

the gas into the boundary layer: through the system of slits

arranged at an angle to the surface, through the porous

surface and through the perforated insert. It is shown that

all the three methods effectively reduce a growth rate of

disturbances of the first mode in the boundary layer with

injection of the heavy gas.

The aim of the present study is to investigate influence

of helium injection through a single channel on stability of

the boundary layer on the flat plate with the Mach number

of 4.

1. Calculation procedure

The flow is simulated in the AnsysFluent software. The

performed studies are based on computational modeling

within the framework of the Navier-Stokes equations in a

two-dimensional plane formulation for compressible flows.

A stationary problem for a laminar flow of the two-

component gas (air+helium) is solved. Fig. 1 schematically
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Figure 1. Schematic diagram of a calculation area: 1 — the

surface, 2, 3 — the inlet limit, 4 — the output limit, δ — the limit

of the boundary layer.
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show the calculation area. The lower limit 1 has a wall with

no-slip condition and the constant temperature pre-defined.

The inlet of the main air flow (the boundaries 2 and 3)
has a

”
pressure-far-field“ boundary condition with the Mach

number of 4 pre-defined. The Reynolds number along

the plate length is ReL = 2 · 106. The temperature factor
T∗

w

T
0

= 0.8, where T ∗

w — the surface temperature, T ∗

0 — the

stagnation temperature. The temperature of the oncoming

stream — 70K. The limit 4 has a
”
pressure-outlet“ condition

pre-defined. The inlet of an injection channel (the limit 5

of Fig. 2) has a
”
mass-flow-inlet“ boundary condition at a

constant mass flow rate of helium set. The air parameters

are determined by the following laws: thermal conductivity

as per the kinetic theory, viscosity as per Sutherland

law. Thermal conductivity and viscosity of helium are

determined as per the kinetic theory. Thermal conductivity

and viscosity of the two-component mixture of the gases are

calculated as per the law of mixing of an ideal gas. In the

same approximations for the binary mixture of the gases,

numerical studies are performed in the paper [7,18], which

describes it with more details.

Stability of the boundary layer has been calculated within

the framework of the linear stability theory in a local-

parallel approximation with taking into account the binary

mixture of gases [7,18]. The eigenproblem was solved by a

collocation method [19,20].
The below-given results of the numerical study are

provided in a dimensionless form. The density ρ∗ and

the longitudinal velocity U∗ are rated to corresponding

parameters of the oncoming stream ρ∗

∞
and U∗

∞
. The

dimensionless longitudinal coordinate is determined as

x = x∗/L∗, where x∗ — the dimensional coordinate, L∗ —
the length of the plate, the dimensionless surface-normal co-

ordinate y(x) = y∗/δ∗(x) — where y∗ — the dimensional

coordinate, δ∗(x) — the thickness of the boundary layer,

which depends on the longitudinal coordinate x. The growth

rate — αi and the frequency ω of disturbances are rated as

follows: −αi = −α∗

i L∗ and ω = 2π f ∗δ∗/U∗

∞
, where α∗

i —
the dimensional degree of growth along the coordinate x,

and f ∗ — the dimensional frequency of disturbances. The

thickness of the boundary layer δ∗ was determined by the

coordinate, at which the parameter ρ∗ dU∗

dy∗
was 1% of the

maximum value.

The studied model is a flat plate that is arranged at

the zero incidence angle. For better convergence of the
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Figure 2. Schematic diagram of the studied model in the gas

injection region with a channel that is parallel to the plate (a) and

at the angle of 15◦ (b). 1 — the surface, 5 — the inlet of the

injection channel.

solution of the two-dimensional problem with the stationary

boundary layer of the two-component mixture, helium

was injected through an elongated channel, so that the

”
mass-flow-inlet“ boundary condition was out of an area of

interaction with the main stream (Fig. 2). It considered an

arrangement of the injection channel in parallel to the plate

(Fig. 2, a) and at the angle of 15◦ Fig. 2, b). The edge of the

gas injection channel is arranged at the distance x = 0.15

from the leading edge of the plate. The dimensionless

height of the channel is h = h∗/δ∗0.15 = 0.08 , 0.15, 0.3,

where δ∗0.15 — the thickness of the boundary layer on the

flat plate without the injection channel (the basic case)
when x = 0.15. The dimensionless height of the channel

edge d is invariable and is d∗/δ∗0.15 = 0.1. The height

of the channel that is arranged at the angle is h = 0.15.

Unlike a configuration with the parallel channel, the angular

configuration has no backward-facing step. The studies are

performed for the rated mass flow rate of helium q within

the range from 4 · 10−3 to 16 · 10−3. It is rated to a value of

the mass flow rate of air transmitted through a cross section

of the boundary layer when x = 0.15. The temperature of

the injected gas is equal to the temperature of the surface.

In order to perform the calculation, a structured two-

dimensional grid is constructed. The calculation grid

consists of two subregions: an area of the main stream

and an area of the boundary layer. The dashed line of

Fig. 1 is an upper boundary of the boundary layer (δ). In

the boundary layer, the grid cells are orthogonal to the

surface. The number of the cells per the thickness of

the boundary layer is still the same along the plate. In

order to reduce numerical oscillations, the grid cells in the

upper part of the calculation area are arranged along a

surge of compaction. For this, the position of the surge

of compaction is determined from preliminary calculations.

The upper limit of the calculation area 3 is constructed

upstream in parallel to the surge The grid is denser towards
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Figure 3. Dependence of the parameter ρ dU
dy on the surface-

normal coordinate y with the channel that is parallel to the plate

and has a height h = 0.15 and at the mass flow rate of helium

q = 8 · 10−3 .
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Figure 4. Profiles of the velocity (a, b), the mass fraction of helium (c, d) and the parameter ρ dU
dy (e, f) in the boundary layer for the

plate-parallel channel of the height h = 0.15 when x = 0.2 (a, c, e) and x = 1 (b, d, f).

the forward edge of the plate, the gas injection channel,

the surge and towards the upper limit of the boundary

layer in accordance with a monotonic rational quadratic

spline (MRQS), which makes it possible to create smooth

distribution of grid dots with a guarantee of monotony of

this distribution [21].

Convergence along the grids is studied. The convergence

is studied by the parameter ρ dU
dy , using this parameter, it is

possible to judge the presence of instability in the boundary

layer. Fig. 3 shows the grid convergence as exemplified

by the boundary layer in case of parallel injection through

the channel of the height h = 0.15 when q = 8 · 10−3. The
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Figure 5. Dependence of the growth rates on the frequency of disturbances for the plate-parallel channel of the height h = 0.15 when

x = 0.2 (a) and x = 1 (b).

number of the cells per the boundary layer is n = 50, 100,

150. The maximum relative deviation of the parameter ρ dU
dy

between all the considered cases is 1.4%. The further study

was on the calculation grid with n = 100.

2. Results

We have simulated stationary supersonic flow around

the flat plate at the zero incidence angle with injection of

helium into the boundary layer within the range of mass

flow rates from 4 · 10−3 to 16 · 10−3. Fig. 4 shows the

dimensionless profiles of the velocity U (a, b), the mass

fraction of helium cHe (c, d) and the parameter ρ dU
dy (e, f) in

the boundary layer when x = 0.2 (a, c, e) and x = 1 (b, d, f)
for the various configurations of the injections helium. The

results are given for the plate-parallel channel with the

height h = 0.15 . The range of the mass flow rates is limited

by the value q = 16 · 10−3, as when q ≥ 16 · 10−3 the

profile of the velocity of the boundary layer in the helium

injection region is distorted (Fig. 4, a), and an additional

inflection point appears on the profile ρ dU
dy (Fig. 4, e),

thereby affecting stability of the boundary layer. When

q ≥ 16 · 10−3, the velocity of supplied helium at the channel

outlet exceeds the velocity of the oncoming stream and

the local speed of sound. When x = 1 and q = 16 · 10−3,

the profile of the velocity of the boundary layer is aligned

and has a relatively small difference with the profiles when

q = (4, 8) · 10−3 (Fig. 4, b). The profiles of the boundary

layer when x = 1 are qualitatively similar by the parameter

ρ dU
dy , but the difference of their maximums reaches 14.4%

(Fig. 4, f). Besides, in Fig. 4, e , at the coordinate y > 1

there are distortions of the parameter ρ dU
dy ; these distortions

are caused by the weak shock wave, which is created by

the injection channel. Fig. 4, c,d shows the profiles of

helium concentration. It is clear that when x = 0.2 the

main portion of helium is contained in the lower half of

the boundary layer y < 0.5, whereas when x = 1 helium

is almost uniformly distributed along the entire boundary

layer. Influence of the step was determined by calculating

the boundary layer without helium injection (q = 0). It is

shown that when x = 0.2 the profiles of the velocity U
(Fig. 4, a) and the parameter ρ dU

dy (Fig. 4, e) are quite

strongly distorted in relation to the basic case (without the

channel). When x = 1, the influence of the step on the

profiles and the dimensional thickness δ∗ of the boundary

layer is small

The obtained results of computational modeling of the

stationary boundary layer were used to calculate the growth

rates of the unstable two-dimensional disturbances within

the framework of the linear stability theory in the cross

sections x = 0.2 (Fig. 5, a) and x = 1 (Fig. 5, b) for various
values of the mass flow rate of injected helium. The

dependences of the growth rates on the frequency of

disturbances are shown for the configuration with the plate-

parallel gas injection channel of the height h = 0.15. It can

be seen from Fig. 5, a that in the helium injection region

the growth rates of the second mode become less than in

the case without injection, so for the first mode do higher.

With increase of the mass flow rate, the growth rates of

the second mode decrease, while the growth rates of the

first mode increase. With the mass flow rate q = 16 · 10−3,

no unstable disturbance corresponding to the second mode

is observed. The increase of the mass flow rate of helium

results in increase of the first mode. When q = 16 · 10−3,

the first mode of disturbances begins to dominate over the

second mode, while the frequency range is extended to

capture the frequencies that are typical for the second mode

of disturbances. Further downstream, with increase of the

mass flow rate of helium, there is a decrease of the growth

rates of not only the second mode, but of the first one as

well. It can also be seen from Fig. 5 that with increase of the

mass flow rate the area of the progressing disturbances of

the second mode is shifted towards the higher frequencies.
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Figure 6. Dependence of the velocity (a, b), the mass fraction of helium (c, d) and the parameter ρ dU
dy (e, f) on the surface-formal

coordinate y when x = 0.2 (a, c, e) and x = 1 (b, d, f) for q = 8 · 10−3.

Without injection (q = 0), the availability of the channel

step results in increase of the growth rates of the second

mode of disturbances when x = 0.2 in comparison with the

basic case and has almost no effect on the growth rates

when x = 1.

Fig. 6 shows the dimensionless profiles of the velocity

U (a, b), the mass fraction of helium cHe (c, d) and the

parameter ρ dU
dy (e, f) in the boundary layer when x = 0.2

(a, c, e) and x = 1 (b, d, f) for the various configurations of

the injected channel. The results of the calculations are

given for the mass flow rate of helium q = 8 · 10−3 . It is

clear from Fig. 6, a that in the area close to the channel when

x = 0.2 arranged at the angle, the profile of the boundary

layer is distorted in relation to the other geometries, as the

rate of helium injection has a higher normal component

than for parallel injection. It is also clear from Fig. 6, e that
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Figure 7. Dependence of the thickness of the boundary layer δ

on the longitudinal coordinate x for the various configurations of

the channel for q = 8 · 10−3 .

the geometry of the channel to a greater extent affects the

profile of the boundary layer when y < 0.4. With increase

of the channel height, the helium concentration cHe near

the surface increases (Fig. 6, c). At a sufficient distance

from the injection site, the channel geometry slightly affects

the profile of the boundary layer, therefore, the graphs are

almost aligned in one line. It can be seen on Fig. 6, b, d, f)
for x = 1. Thus, it is seen that helium is distributed

along the boundary layer almost equally at all the studied

geometries (Fig. 6, d).
Fig. 7 shows the dependence of the dimensionless

thickness of the boundary layer δ = δ∗/δ∗0.15 the longitudinal

coordinate x for the cases shown on Fig. 6. As there is the

step in parallel injection, then the thickness of the boundary

layer is counted from a new surface, and there is a sharp

increase of the thickness of the boundary layer in Fig. 7

around x = 0.15. In the case with injection at the angle,

there is no step, and the thickness of the boundary layer

begins to differ from the case without injection upstream

of the edge of the injecting channel (Fig. 2), which is due

to a positive pressure gradient in this area. It is clear that

for the case of parallel injection the increased thickness of

the boundary layer is mainly contributed by the availability

of the step. The influence of the channel geometry on the

boundary layer decreases downstream, and when x > 0.4

the differences in the thickness of the boundary layer are

below 1% at the fixed mass flow rate of helium. It should

be noted that this coordinate corresponds to 60δ∗0.15, and

therefore we should have expected such an effect from

the channels, whose size is less than the thickness of the

boundary layer.

Fig. 8 shows contours of helium concentration in the

area close to the injection channel for the case of parallel

injection with the channel h = 0.15 (Fig. 8, a) and for the

case with angular injection (Fig. 8, b) when q = 8 · 10−3 .

The arrow lines denote the stream line, while the solid

lines denote the boundary layer edge for the basic case

and for the case with injection. It can be seen that when

q = 8 · 10−3, injection of helium shifts a physical position

of the limit of the boundary layer for no more than 6%. The

flow lines of parallel injection (Fig. 8, a) after the channel

edge when x = 0.15 are directed to the surface, and then

its direction smoothly transits to a direction that is typical

for the boundary layer on the flat plate. For the angular

configuration, injection results in increase of an inclination

angle of the flow line in relation of the surface in the

injection region. In general, it can be seen that injection

in the studied range of the flow rates slightly deforms the

profiles of the velocity, whereas the changes mainly concern

the density, the viscosity, thermal conductivity and heat

capacity due to a significant difference in a molar mass of

air and helium.

Besides, based on the results of computational modeling

of the stationary boundary layer within the framework of the

linear stability theory we have obtained the growth rates −αi

of the unstable two-dimensional disturbances when x = 0.2

(Fig. 9, a) and x = 1(Fig. 9, b) at the mass flow rate of

helium q = 8 · 10−3 for the various configurations of the

channels. It can be seen from Fig. 9, a that the configuration

with the channel arranged at the angle of 15 ◦ and of the

height h = 0.15 almost completely suppresses the second

mode of the unstable disturbances when x = 0.2 (up to

95%), but significantly destabilizes the first mode in relation
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Figure 8. Contours of helium concentration in the injection

region. The arrow lines — the flow lines, the solid lines — the

limit of the boundary layer for the basic case and for the case with

injection; a — parallel injection with h = 0.15, b — injection at

the angle of 15 ◦ with h = 0.15.
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Figure 9. Dependence of the growth rates on the frequency with the mass flow rate q = 8 · 10−3 for x = 0.2 (a) and x = 1 (b).

to the other geometries. It can be seen from Fig. 9, a that

by changing the channel height it is possible to vary the

growth rates of disturbances of the first and the second

mode. The substantial difference in the growth rates for

the angular channel with the case of the parallel channel

can be related to the availability of the back-ward-facing

step in the last case. As shown in Fig. 5, a, the availability

of the step without helium injection results in a substantial

increase of the growth rates of the second mode, while

in the presence of helium the growth rates become less

than in the basic case. Thus, when x = 0.2 injection of

helium with parallel arrangement of the channel affects the

step-distorted boundary layer, and, probably, it resulted in

a significant difference in the growth rates with the case of

angular injection.

The growth rates of the second mode of disturbances are

directly proportional to the height of the helium injection

channel. When x = 1, due to a small difference of the

profiles of the boundary layer at the various configurations

(Fig. 6), the growth rates of disturbances slightly differ as

well. The relative change is below 5%.

As it is known, for disturbances of the first Mack mode,

the growth rates of the three-dimensional disturbances are

higher than those of the two-dimensional ones for the

boundary layer on the flat plate. It was found during this

study that in terms of quality influence of injection of helium

and the channel geometry turns out to be the same as in

the case for the two-dimensional disturbances. Increase of

the mass flow rate of helium or decrease of the channel

height destabilizes disturbances of the first mode in the gas

injection region and stabilizes disturbances of the first mode

at a sufficient distance from the injection channel.

Conclusion

We have studied the influence of helium injection through

the single channel on stability of the boundary layer on

the flat plate with the Mach number of 4. The study also

included consideration of the influence of the mass flow

rate and the geometry of the single channel for tangential

helium injection on the two-dimensional disturbances of the

first and the second Mack modes within the framework of

the linear stability theory.

It is shown that helium injection through the single

channel stabilizes the two-dimensional disturbances of the

first and the second mode at a sufficient distance from the

injection site and this effect amplifies with increase of the

mass flow rate of the gas. However, in the area close

to the channel increase of the mass flow rate of helium

destabilizes disturbances of the first mode. The growth rates

of the second mode of disturbances in the injection region

decrease with reduction of the channel height, while those

for the first mode increase. By changing the channel height,

it is possible to achieve the effect, at which the growth

rates of the two-dimensional disturbances of the first and

the second mode in the injection region will not exceed the

growth rate of disturbances in the case without injection.

It is shown that at a sufficient distance from the injection

site the channel geometry slightly affects the profile of the

boundary layer, as a result of which the growth rates of

disturbances slightly differ.
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