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Simple equation of state to describe behavior of solid and porous
aluminum samples under impact compression and isentropic unloading

© R.K. Belkheeva

Novosibirsk State University,
630090 Novosibirsk, Russia
e-mails: rumia@post.nsu.ru, rimbel@academ.org

Received March 25, 2023
Revised February 20, 2025
Accepted March 11, 2025

A small-parameter equation of state of aluminum has been constructed, whose Gruneisen coefficient is
specified as a logarithmic dependence on the density. The parameters of the equation of state of aluminum
have been defined for the density range from 14 to 7g/cm®. The porous material has been regarded as a
simple thermodynamically equilibrium mixture of aluminum and air. The model uses only parameters of the
equations of state and mass fractions of the mixture components. Shock adiabats for the aluminum samples
with different initial porosities, curves of repeated compression and unloading isentropies, as calculated using
this model, turn out to be close to respective experimental data. This indicates applicability of the proposed
approach to constructing the equation of state of aluminum in order to describe properties of this metal
(both in a pure form and in mixtures) both in the region of multiple compression and in the region of

depression.
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Introduction

Active use of aluminum is based on such properties
thereof as lightness, plasticity, conductivity, corrosion resis-
tance, whereas its low cost as compared to other metal
plays a significant role. Aluminum alloys have diverse prop-
erties and this diversity is obtained by introducing various
alloying additives into the alloys. For example, in aircraft
construction and shipbuilding great significance is paid to
reduction of weight and high strength of the aluminum
alloys as compared to steel. Construction of seaplanes
includes welding of magnalium (aluminum-magnesium)
corrosion-resistant alloys. The aluminum-magnesium alloys
are actively used in oil and chemical industries, since they
have high corrosion resistance. Due to high conductivity and
temperature-gradient resistance aluminum is widely used
in electrical engineering. The alloying additives make it
possible to produce materials with desired properties, whose
basic component is aluminum. In a compressed form, full
information about production, processing, application of
aluminum and its physical, chemical and thermodynamic
properties is contained in [1]. The same article of the
encyclopedia shows that the properties of the alloys and the
compounds containing aluminum depend on a nature of the
alloying component. Prior to describing various mixtures, it
is necessary to obtain a model reliably representing behavior
of the mixtures as well as parameters of the equation of state
of each component in these mixtures. The new models for
describing the behavior of the solid and porous samples of
the mixtures [2-5] appear as it is caused by tasks of modern

science: these are problems of dynamic compacting, shock-
wave synthesis and other explosion technologies. Based
on the fact that the mixtures differ by a large variety of
the compositions, it is necessary to provide for them the
simplest model which uses only the parameters of the
equations of state of the very compositions and their mass
fractions in the mixture. In this regard, the present study is
performed to obtain the parameters of the simple equation
of state for aluminum at high pressures and temperatures.

The review [6] considers the problems and methods of
constructing the equations of state of substances, describes
principles of constructing semi-empirical models and lists
main requirements to the equations of state. = Many
studies are dedicated to constructing the equation of state
of aluminum (see, for example, the papers [6-13] and
references therein). In particular, the paper [7] proposes a
rather complex equation of state of this metal taking into
account phase transformations (melting and evaporation)
in the wide range of the densities and the temperatures.
The paper [13] has developed the more simple equation of
state of aluminum in the form of dependence of pressure
on a specific volume and internal energy, which also
well agrees with the data of shock-wave experiments with
the solid and porous samples. The present paper has
constructed the equation of state of aluminum based on
the previously proposed simple model [4] (in variables the
specific volume and temperature) that is conveniently used
in the calculations of thermodynamic characteristics of the
mixtures (alloys) which include this metal.
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1. Mathematical model and calculation
procedure

It is mentioned in the paper [14] that the task of obtaining
the equation of state of a condensed body can not be solved
by methods of statistical thermodynamics in an accurate
mathematical representation. The literature contains a large
number of approaches to selecting the equation of state
when describing the shock-wave processes [5-18]. Con-
struction of the semi-empirical equations of state includes
defining a form of the functional dependence, while the
parameters of this equation are chosen to best correspond
to the experimental data [6,14].

It is noted in the paper [16] that during mathematical
modelling of the shock-wave phenomena it is possible to
used the equation of state in the form of the Mie-Gruneisen
equation in order to describe the behavior of the condensed
substances

P = Px + pyEr, (1)

where Px — the elastic component of the pressure; the
second summand on the right-hand side (Pt) — the thermal
component of the pressure, Pt = ypEt; p — the medium
density; » — the Gruneisen coefficient; Er — the thermal
component of the internal energy. In order to describe the
thermal part of the pressure, the paper [4] proposes the
logarithmic dependence of the Gruneisen coefficient on the
density.

y=ypr " (2)

Here r =p/p9 — the compression ratio; po — the
parameter of the equation of state (in case of the condensed
substance it is its density at the normal conditions); yy —
the constant, the parameter of the equation of state. The
dependence (2) makes it possible to adequately represent
the behavior of the Gruneisen coefficient both for the
solid and the highly-porous materials as well. It is noted
in [5,14,16] that in the studies dedicated to shock-wave
loading the Gruneisen coefficient can be described by the
formula

y =yor (3)

where | > 0, | = const. When calculating the shock adiabats
for the highly-porous materials, use of the expression (3) for
description of the Gruneisen coefficient results in increase
of the Gruneisen coefficient with growth of intensity of the
shock wave. This is due to the fact that in anomalous
behavior of the shock adiabats, at which the final density of
the shock-compressed substance turns out to be less than
the normal density, the ratio r becomes less than unity
(r=! > 1). The paper [19] has shown on the example of
copper that use of the Gruneisen coefficient in the form
of (3) with the exponent | > 0 for description of the porous
material does not agree with the experimental data. The pa-
per [4] discusses shortcomings of the equation of state with
the Gruneisen coefficient (3) when describing the behavior
of the porous materials and gives references to studies which
attempt to use another form of the dependence for the
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Gruneisen coeficient (of those published after [4] it is worth
mentioning the studies [13,20-29]). Even the paper [4] has
already demonstrated a capability of the equation of state
with the Gruneisen coefficient (2) to adequately describe
the behavior of copper under shock compression and made
a comparison with calculated adiabats of other authors,
who use the equation of state of copper with a large
number of the parameters. The present paper demonstrates
applicability of the equation of state model as proposed in
the paper [4] for describing the behavior of aluminum under
pulse loading and subsequent unloading.

The use of the logarithm in the exponent of the relation-
ship (2) results in that the Gruneisen coefficient decreases
with any behavior of the adiabats, since a logarithm sign
depends on the argument value and when r—! > 1 the
exponent becomes negative. When describing the elastic
part of the pressure by means of the Tait equation, the
equation of state (1) takes the form

P = Px + yopor '™ cyoT,

Px = Alr" — 1] — yopor ' " "cvoTo, (4)

where Cyo — the specific heat capacity with the constant
volume (herein, it is assumed to be a constant value); T —
the temperature; Tp — the normal temperature, Tp = 293 K;
A and n — the constants characterizing cold (when T = 0)
compression of the substance. The parameter A can be
found by the formula A = C(z)po /n, where co — the volume
speed of sound under the normal conditions. Simplicity and
convenience of use of these equations are due to the fact
that the properties of an individual substance are described
by using a set of the small number of the parameters
(po, Co, N, Cvo, Vo).
The internal energy is also represented as a sum of two
summands:
E = Ex + cyoT. (5)

Here Ex — the elastic part of the compression energy,
which associated with the pressure elastic component by
the relationship Px = p?>dEx/dp. After integration, the
expression for the elastic part of the energy takes the
following form:

_A
(n—=1)po

A

Ex = —[rt-1
X /00[ ]

[P — 1]+

7
— %oCvoTo % erf(Inr) — cvoTo,

where erf(X) — the error function,
X
erf(x) = 2 /ex (—t?)dt
= \/E p .
0

for which the recent study [26] provides an approximation
expression of quite high accuracy; and it is this expression
that was used in the calculations below. The thermal part



1228

R.K. Belkheeva

of the internal energy (5) is defined by the relationship
Er = cyoT.

The paper [30] has proposed a method of constructing the
equation of state of the equilibrium N-component mixture,
wherein the equation of state of each component is defined
in the same form. The paper [31] has substantiated
application of the equation of state of the form (4) for air.

In the present study the porous N-component mixture is
considered as a heterogeneous medium, whose pores are
filled with air. The pores are considered to be closed and
isolated, so the gaseous component does not leak out of a
solid substance-air system and it does not take into account
evaporation of the solid substance and increase of the mass
fraction of the gaseous substance under the shock wave. The
porosity mis understood as a ratio of the normal density of
a monolith (pt¢) to the initial density of the porous sample
(poo)- The present study excludes consideration of effects of
phase transitions (melting and evaporation). As shown by
the calculations by means of more complex models of the
equations of state [7,32,33], in which the phase transitions
are taken into account, the effect of substance melting in
the shock wave is slightly noticeable at the shock adiabats
in variables of the Hugoniot equations for samples of the
different initial porosity. The results of calculations [33]
by the equation of state of aluminum with taking into
account melting and evaporation indicate that under shock
compression of the solid and porous samples with an initial
state in the solid phase of metal there are pressures which
are noticeably higher than on an evaporation curve at the
same temperatures. Therefore, a below boundary of the
applicability region in terms of pressure (with the densities
less than the density of liquid aluminum in the melting point
under the atmospheric pressure) for the represented model
of the equation of state can be an isobar passing through
the critical point of liquid-vapor transition.

By various estimates, the pressure in the critical point
(Per) for aluminum is 0.197 [7], 0.329 [34], 0.3988 [35],
0.45 [36], 0.597 GPa [37]. It should be noted that in all the
said estimates P, does not exceed 1 GPa. The density of
liquid aluminum in the melting point under the atmospheric
pressure, in accordance with the equation of state [7], is
approximately equal to 2.4g/cm®. It means that at the
densities less than 2.4 g/cm?® and under the pressures below
1 GPa the represented model only qualitatively describes the
metastable states of aluminum (including a region of tensile
stresses [37]).

Describing multi-component mixtures shall take into
account interaction and mutual influence of the components,
thereby highly complicating the mathematical models, since
it has to describe both processes in separate components
and effects of interaction between these components as
well. But in some cases, the multi-component mixture
may be considered as one continuum, thereby significantly
simplifying the task. For example, in case of propagation of
strong shock waves whose pressures are essentially higher
than strength-related stresses, conditions of equality of phase
pressures are used as conditions of joint motion. At this,

when the effects of relative motion of the components
are insignificant and the mixture is in the thermodynamic
equilibrium, the following conditions are met P; =P,
T =T, u=u (P, Ti,uy — pressure, temperature and
mass speed of the i component; P, T,u — the same for
the mixture). Then, the medium motion can be described
as motion of a single continuum with a special equation
of state which takes into account properties of the mixture
components and their mass fractions. It results in significant
reduction of the number of the equations. Within a
framework of such a method of mixture description, it is
assumed that the equations of state of the components in
the mixture are the same as in a free state. For simple
mixtures which do not form bonds in an atomic scale,
the paper [38] describes the principles of constructing the
model of interacting and interpenetrating continuums. The
method of describing the mixture by a single continuum
is considered in the studies [19,39,40] et al. Within the
framework of this method of describing the mixture of
the continuums in the thermodynamic equilibrium, the
paper [19,30] has proposed a method of constructing the
equation of state of the equilibrium N-component mixture,
in which the equation of state of each component is defined
in the same form.

When describing the heterogeneous mixtures (mixtures
with macroscopic nonuniformities), it is customary to
use a hypothesis of additivity of the mixture volume by
components volumes [38]:

N
V=3 V.
i=1

where V. — the specific volume of the mixture; V; — the
volume of the i component in a unit mass of the mixture.
From this relationship, the expression is obtained for the
density of the multi-component mixture as

1_gox )
p “=p’

where X;j and p; — the mass fraction and the density of
the i component. The density of the i component is a
mass of the i-th component in a unit volume of the i-
th component (p; = X;/V;). After identical transformations
from the equations of state (4) written for each component
and for the mixture, the densities of the mixture and the
components are expressed via relationships of the following

type

(P kAN
P = Po A

" [1 ~ KAwax = A+ popor M ey (T = To) 1"
P+ KAnmax ’

where k is a positive number; Ap.,x = max{A, ..., An};
A — the compression ratio of the i component. It is easy
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to substitute such expressions for the component densities
into (6) and to equate respective coefficients of P and
(T — Tp) in Taylor expansions for the right and left parts of
the obtained equality to each other [19]. Then, it is possible
to obtain the expressions for the parameters of the equation
of state of the mixture A, po, N, po through respective
parameters and the mass fractions of the components [19]:

R
no 1R3
R3

Ry
Ry’

_1, A:kAmax_

1/n
1 A R 1
_ , R, )R 7
P= R (P+kAmax) Yoo (poR1) (7)

where
N N
Xi Xi KAmax — A
R, = — Rsi, Ry = — Ry ———,
! Epio K 2 iz:;f?io K N
N 2
X k _ A
R =Y 2 Ry(n +1>(W) ,
I ll

i=1

N x; YioCvoi A 1/
R4: iVi IR_-lnRSi, R__( > )
; N 3 > P+ kAmax

The specific heat capacity with the constant volume for the
mixture is defined by the relationship

N
Cvo = Z XiCvoi -
i=1

Here, pio, Yi0, Ni, Cyoi are the normal density, the constant
parameter of the Gruneisen coefficient, the compression
index, the specific heat capacity with the constant volume
of the i component. The value k=2 guarantees the
converging condition is met [19]. The paper [19] shows how
to calculate the mass fraction of the gaseous component
when knowing the values of the mixture porosity and the
mass fractions of the solid components. The paper [41]
shows that it is possible to neglect the presence of the
gas in the pores. It is clear from the relationships (7) that
»contribution of the gaseous component to the mixture
parameters can be neglected due to smallness of the mass
fraction of this component. However, the present study uses
general formulation of the model [19,30] which can also be
applied for calculations of the characteristics of the mixtures
of several condensed components (which corresponds to
the aim of this study). Thus, the simple (small-parameter)
model of the equation of state of the thermodynamically
equilibrium N-component mixture is obtained. This model
is checked by comparing the calculated shock adiabats and
unloading isentropies with the experimental data.
Previously, it was shown in the paper [27] that with
variation of the pressure value in the formulas (7) the
values of the parameters of the equation of state of the
mixture A, po, N and yp vary insignificantly. Therefore, the
subsequent calculations use the constants A, pg, N and g
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found by the formulas (7) when P = 0 for the mixture of
aluminum and air with the mass fractions that correspond
to the considered porosity of the samples.

The Hugoniot equations for the initially still medium
when the pressure in the undisturbed medium is zero are
as follows

pooD =p(D —u), P =peDu, E—Ey= g(i — l>,
poo P
(8)
where poo (000 = p1o/M), Eo are the density and the
internal energy of the mixture upstream a shock wave front;
u, P, p, E — the mass speed, the pressure, the density and
the internal energy of the medium downstream the shock
wave front; D — the shock wave front speed. When the
relationships (8) are supplemented with the equations of
state of the medium (4), (5) with parameters defined by
the relationships (7) and the Gruneisen coefficient in the
form of (2), it results in the system of equations for the
unknown u, D, E, P, p. By defining the value of the mass
speed of the medium downstream the shock wave front, it is
possible to determine values of all the desired magnitudes.

2. Modeling results and comparison
with the experiment

With all the values of the sample porosities, all the calcu-
lations of the shock adiabats and the unloading isentropies
for the solid and porous samples of aluminum have used the
same parameters of the equation of state of the components
as specified in the table.

Parameters of the equations of state of air and aluminum

Substance | pio, kg/m3 Cio, km/s | ni | cvoi, kJ/(kg:K) | vio
Air 13 0343 220 0.718 0.16
Aluminum | 2.712 - 10°* | 5.33 346 0.8975 1.65

The Figures 1 and 2 show the calculated shock adi-
abats for aluminum in the coordinates “the mass speed
downstream the shock wave front-the shock wave front
speed” and the density-the pressure downstream the shock
wave front”, respectively, and the data obtained based
on the experiments [42-46] as well as the results of
the calculations [7,10,11,13,47]. Good qualitative and
quantitative compliance of the calculated results and the
experimental data in the wide range of the pressures shows
that the mathematical model of the equation of state in the
present study very well describes the behavior of aluminum
in the shock wave.

For comparison, the Figures 1 and 2 show the results
of calculations by means of other equations of state of
aluminum [7,10,13]. It also shows the dependences [11,47]
for the shock adiabat of the solid samples of this metal,
which are obtained by generalizing the shock-wave data
(including those of [42-46]) and the results of the calcula-
tion as per quantum-statistics models by Thomas-Fermi with
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D, km/s

0 L 1 L 1 L 1
0 10 20 30
u, km/s
Figure 1. Shock adiabats of the solid aluminum samples in

the coordinates u—D. The calculation results: the black solid
line — the equation of state provided in the present study; the red
dots — [13]; the blue dots — [47]; the light-blue dots — [11]; the
violet crosses — [7]; the green solid line — [10]. Experimental
data: ] — [42]; 2 — [43]; 3 — [44]; 4 — [45]; 5 —
[46]; 6 — interpretation [11]; the dashed lines I, II, III — the
shock adiabats calculated using the experimentally determined
dependences (10),(11) and (12), respectively.

4000 e
3000

2000

P, GPa

1000

Figure 2. Shock adiabats of the solid aluminum samples in the
coordinates p—P. Designations as in Fig. 1.

corrections [47] and by Hartree-Fock-Slater [11]. It is clear
that all the provided approaches produce close results with

the pressures of at most 1 TPa and the densities of at most
7g/em?, which may be regarded as the upper boundary of
the applicability region for the equation of state of aluminum
given herein.

During the shock-wave experiments, the most accurate
and reliable measurements are measurements of the shock
wave speed (which can be measured in the easiest way) and
of the mass speed of the substance downstream the shock
wave front. The other shock wave parameters are found
by substituting the mass speed and the shock wave speed
into the Hugoniot equations (8). The fuller representation
has been provided by comparing the sound speed values
obtained by means of this model and given in the experi-
mental papers. The sound speed squared C2 = (9P/dp)s
defines isentropic compressibility of the substance and a
slope of tangent of the Poisson adiabat in the point (o, P).
The unloading starts in the point (o, Pn) on the Hugoniot
shock adiabat and the isentropic (adiabatic) sound speed
characterizes a speed of propagation of unloading waves
throughout the compressed substance. For this model of
the equation of state with the Gruneisen coefficient in the
form of (2), an expression connecting the temperature and
the density on the unloading isentropy is as follows

Tl_eXp< yoz 2J+1 [1nr)2i+1+(1nrH)2i“D.
9)

The index H refers to the initial state in which the entropy
S=2S4. Using the relationship (9) for the temperature-
density relation on the Poisson adiabat there is the expres-
sion for the sound speed squared

C2=Vr! [n(Px +A)+ (y+1-2Inr)Pr
+pycvoTo(n—1+2lnr).

There is also good match shown by the results of comparing
the calculated and experimental [48-50] sound speeds in
the coordinates the mass speed — the sound speed on the
shock adiabat, as shown on Fig. 3.

The shock compression of the samples by two sub-
sequently passing waves provides information about the
thermodynamic properties of the substance within a range
of the densities exceeding the density of single-time shock-
wave compression. The comparison of the calculated
results and the experimental data [51-53] in Fig. 4 allows
concluding that the proposed model can be taken to
adequately represent the experimental data for compression
of the aluminum samples in the two shock waves.

Fig. 5 compares the calculated curves as per the pro-
posed model of the equation of state and the calculation
results [7,43]. Tt should be noted that on the shock adiabat
as per the results of [7] Fig. 5 clearly exhibits breaks of the
dependence of temperature on the compression ratio, which
are related to aluminum melting under shock loading at the
pressures of 113 and 178 GPa. This effect is neglected both
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0 2 4 6
u, km/s
Figure 3. Sound speed on the shock adiabat in the solid

aluminum samples in the coordinates U—Cs. The results of the
calculations: the solid line — the equation of state given herein;
the red dots — [13]. The experimental data: 1 — [48]; 2 — [49];
3 — [50].

in the proposed model of the equation of state and in the
model [43]. Under the pressures below 113 GPa (ie. at the
compression ratios p/pto from 1 approximately to 1.6) all
the results of Fig. 5 are close to each other.

In order to obtain more complete information about
the thermodynamic properties of the substance at the
high pressures and temperatures, the same substance is
experimentally studied at the different initial densities. The
shock compression of the porous bodies is performed to
the high pressures in order to neglect effects related to the
material strength, and on the adiabat portions at which the
substance is compacted to the normal density, the pressure
is accepted to be zero. During the calculations of the shock
adiabats, with all the values of porosity the same values of
the parameters of the equation of state have been used.

The Figures 6 and 7 show the calculated shock adiabats
for the initially porous aluminum samples in the coordinates
”the mass speed downstream the shock wave front-the
shock wave front speed” and the density-the pressure
downstream the shock wave front”, respectively, and the
data obtained based on the experiments [44,54-56]. The
Figures 6 and 7 also include the results of the calculations
of [10,13] for comparison. Good qualitative and quantitative
compliance of the calculated adiabats as per the proposed
model, the results of [10,13] and the experimental data
of [44,54-56] within a wide range of the pressures and
the porosities shows that the mathematical model of the
equation of state given in the paper quite well describes the
behavior of the porous material in the shock wave. Hence,
a lower boundary of the applicability region of the equation

Technical Physics, 2025, Vol. 70, No. 7

of state of aluminum given herein in terms of the density
may be indicated by the value of 1.4g/cm?® (at the high
pressures).

600 - s

X -1
O -2
0-3
A4
. AR ¢ -5
O-¢
V-7
v-8

P, GPa

200

u, km/s

Figure 4. The shock adiabat (the solid line) and the adiabats of
repeated loading (the dashed lines) for the initially solid aluminum
samples in the coordinates u—P, which are calculated as per the
equation of state provided in the present study, and the respective
experimental data (I — [51]; 2 — [52]; 3—8 — [53]). The
letters A, B,C, D, E mark the initial points of the adiabats of
repeated shock compression with the coordinates A (1.72, 36),
B (3.29, 87.3), C (3.657, 102), D (4.978, 162), E (5.849, 208.8).

8000

6000
M
&h
4000
2000
0 ! | ! | ! | ! | !
1.0 1.2 1.4 1.6 1.8
P/PTo
Figure 5. Dependences of temperature on the compression

ratio on the shock adiabat of the solid aluminum samples as
per the proposed equation of state (the solid line) and the other
models (the dashed line — [43]; the violet crosses — [7]);
pro = 2.712 g/em’.
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The unloading isentropies represent the behavior of the
medium within a region of the reduced densities under
adiabatic expansion. The model of the equation of state
has been checked by calculations for a case of isentropic
unloading of the material subjected to the shock-wave
compression. Fig. 8 compares the calculated curves and the

m=17m=2

m=28
8
E
—_
=
>-6
4 O-7
L-8
L—9
L =10
0F .
0 2 4 6 8

u, km/s

Figure 6. Shock adiabats of the initially porous aluminum samples
in the coordinates U—D. The results of the calculations: the solid
lines — the equation of state given herein; the dots — [13], the
dashed line — [10]. The experimental data: 1,2 — [54]; 3 — [55]
(m=2.009); 4 — [56] (m=2.012); 5 — [57] (m=2.009); 6 —
[58]; 7 — [56]; 8—10 — [44].

120

P, GPa

40

0-0-0-OV O¥ D <X
OO\IO\L‘II-‘\WI\)N

[
~ o
=)

Figure 7. Shock adiabats of the initially porous aluminum samples
in the coordinates p/pto — P. Designations as in Fig. 6.

400
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\
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300 \‘
\ O-1
- b A3
a0 200 %\
\‘\
\
100 *
\‘ ‘\\
0 1 ‘\;./\ 1 .\~ 1 A.
10 15 20
u, km/s

Figure 8. The Hugoniot adiabat (the solid line) and the Poisson
adiabats (the solid lines) of the initially solid aluminum samples
in the coordinates u—P. Experimental data: I — [57]; 2 — [58];
3 —[59].

experimental data [57-59] for isentropic expansion out of
the state of the shock-compressed solid aluminum samples.
The increase of the mass speed in a depression wave on
the portion from a certain point on the Hugoniot adiabat to
a point, wherein the pressure is zero, is determined by the
Riemann integral along the isentropy

)

UH

where vy, v are, respectively, specific volumes on the
Hugoniot adiabat when the pressure P = Py and on the
unloading isentropy when the pressure P = 0. The speed of
a free surface is described by the relationship Uss = uy + Ur,
Uy is a mass speed downstream the shock wave front. Good
match of the results (except for the two points [58,59]
at the densities below 2.4 g/cm® and under the pressures
below 1GPa) confirms reliability of description of the alu-
minum behavior under shock compression and subsequent
isentropic unloading as per the proposed equation of state
within the region of its applicability.

3. Region of model applicability

When describing the thermodynamic properties of metal
at high pressures and temperatures, it is customary to take
into account effects of reduction of isochoric heat capacity
of an ion subsystem with increase of the temperature
and increase of isochoric heat capacity of an electron
subsystem (in proportion to the temperature) [44]. It can
be expected that within a certain region of the densities and

Technical Physics, 2025, Vol. 70, No. 7



Simple equation of state to describe behavior of solid and porous samples... 1233

the temperatures these effect compensate each other. As
shown in the recent studies [60,61], at the temperatures
of dozes of thousand of Kelvins, a value of thermal
pressure (a sum of contributions of the ion and electron
subsystems) can be assumed to be proportional to the
temperature Pt =g(V)T, where g is a certain volume
function. In this case, the form of thermal pressure
Pt = ypEr (y — the Gruneisen coefficient depending on
the volume; Er = ¢,oT), which is used herein, does not
require separately taking into account the contributions of
the ion and electron subsystems (which, however, narrows
the region of model applicability).

The values of py under the normal conditions for
aluminum, which are obtained by the different methods
in [21,62], lie within the range from 1.7 to 2.14. When
calculating these magnitudes, various assumptions and
constants have been used. Herein, the value yy = 1.65 is
assumed. The limit value of the Gruneisen coefficient —
I'so — at the temperatures tending to infinity, is assumed to
be 2/3 [6,13,14]. For the Gruneisen coefficient defined by
the dependence (2), the values of the compression ratio r,
at which the inequality y > 2/3 is met, lie within the range
r € (0.3856;2.59). For the value r =2.59 for the solid
aluminum samples (M= 1), in the performed calculations,
the mass speed, the pressure and the temperature down-
stream the shock wave front take the following values,
respectively U = 14.57km/s; P =940GPa; T = 78850K.
The test and calculated data for the solid aluminum samples
have been compared to show (Fig. 1 and 2) that the
model well describes the behavior of the samples both
for the compression ratios within the found range and
outside it as well. The paper [43] says that neither
model for the Gruneisen coefficient is advantageous for
describing the experimental data in the calculations of
pulsed loading and isentropic unloading of the materials.
In some cases, the calculation accuracy is improved by
using ', # 2/3, Cyp # 3R (Cyp — heat capacity of an
lattice with the constant volume, R — the gas constant).
Fig. 1 demonstrates qualitative and quantitative match of
the calculated adiabats and the test data up to the values of
the mass speed U ~ 15km/s, so does Fig. 2 up to the values
of the compression ratio r ~ 2.6. Unfortunately, the author
could not make comparison for shock-wave loading of the
highly-porous aluminum samples with the values r < 0.5
due to absence of experimental data.

For the shock adiabat of the solid aluminum samples, the
paper [63] provides the following relationships:

D =5.333+1.356u; 0<u<6.1, (10)
D=59+1.190; 4.28<u< 623, (11)
D =6.541 + 1.158u; 6.1 <u<22. (12)

Using the linear dependence D = a + bu makes it possible
to represent the pressure on the shock adiabat (using the
break relationships (8)) in the following form

_a?poo(1 — poo/p)

p — &Pull = Pw/r)
1 +bpgo/p — d)?
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Figure 9. Dependences of the shock wave speed (the solid
lines, the red and blue dots) and the sound speed in the shock-
compressed substance (the dashed line and the green dots) on the
mass speed. The results of the calculations: the lines 7 and I’ —
the equation of state given herein; the line 2 — [11]; the red and
green dots — [13]; the blue dots — [47]. The experimental data:
3 — interpretation [11].

The shock adiabats calculated by these formulas are shown
in Fig. 1 and 2. In the relationships (10)—(12) the slope of
the shock adiabat is defined by a value of the coefficient b,
that is found based on results of analysis of the experimental
data. It is not fixed for each material. Description of the
shock adiabat using the relationships of the type D = a + bu
within a large interval of the mass speeds requires defining
several such relationships with different values of a and b
within subintervals. The dependence proposed in [4] for the
Gruneisen coefficient well describes variation of the adiabat
slope by applying a variable exponent (— Inr ), whose values
depend on the compression ratio.

The Figures 9 and 10 have compared the shock adiabats
for the solid aluminum samples calculates as per the
proposed model with the data of [11], in the coordinates
”the mass speed — the wave speed” and ”the compression
ratio — the pressure”, respectively. The Figures 9 and 10
also include results of calculations of the shock adiabat of
aluminum as per the equation of state [13] and the quantum-
statistics models by Thomas-Fermi with corrections [47] and
by Hartree-Fock-Slater [11].

The comparison indicates that the shock adiabats within
the pressure range below 1TPa calculated as per the
proposed model well agree both with results of the other
model and with the experimental data of [11] as well
Fig. 9 also shows the dependences of the sound speed
in the shock-compressed substance on the mass speed
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Figure 10. Shock adiabats of the solid aluminum samples in the
coordinates p/pto — P. Designations as in Fig. 9.

downstream the shock wave front as per the proposed
model and the equation of state [13].

The logarithmic dependence (2) has been applied to
describe the adiabats of loading and unloading by means
of the two-term Mie-Gruneisen equation of state (without
involving a term with temperature squared) for the shock-
wave data within the pressure range of at most 1TPa at
the densities from 1.4 to 7g/cm?. It should be noted that
the experimental points [56] of Fig. 7 at the pressures up
to 6 GPa refer to an area of influence of the strength effects
hindering full closure of the pores under shock compression;
in order to describe these points [56), it is required to involve
additional models except for the equation of state (see, for
example, [64]).

Conclusions

It has been shown that the equation of state for aluminum
in the Mie-Gruneisen form with the elastic part for the pres-
sure like the Tait equation with two selected parameters n
and ypp with good reliability describes the behavior of the
solid (in one and two shock waves) and porous aluminum
samples under shock compression and isentropic unloading.
The provided model of the Gruneisen coefficient as defined
by the formula (2) makes it possible to widen the range
of applicability of the equation of state to the high values
of porosity (M~ 8). Detailed comparison with the shock-
wave data confirms adequacy of the proposed model of
the equation of state for describing the aluminum behavior
within the region of its applicability of at most 1 TPa at the
densities from 1.4 to 7g/cm? (except for the pressure region
below 1 GPa at the densities below 2.4 g/cm?).
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