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Simple equation of state to describe behavior of solid and porous

aluminum samples under impact compression and isentropic unloading

© R.K. Belkheeva

Novosibirsk State University,

630090 Novosibirsk, Russia

e-mails: rumia@post.nsu.ru, rimbel@academ.org

Received March 25, 2023

Revised February 20, 2025

Accepted March 11, 2025

A small-parameter equation of state of aluminum has been constructed, whose Gruneisen coefficient is

specified as a logarithmic dependence on the density. The parameters of the equation of state of aluminum

have been defined for the density range from 1.4 to 7 g/cm3 . The porous material has been regarded as a

simple thermodynamically equilibrium mixture of aluminum and air. The model uses only parameters of the

equations of state and mass fractions of the mixture components. Shock adiabats for the aluminum samples

with different initial porosities, curves of repeated compression and unloading isentropies, as calculated using

this model, turn out to be close to respective experimental data. This indicates applicability of the proposed

approach to constructing the equation of state of aluminum in order to describe properties of this metal

(both in a pure form and in mixtures) both in the region of multiple compression and in the region of

depression.
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Introduction

Active use of aluminum is based on such properties

thereof as lightness, plasticity, conductivity, corrosion resis-

tance, whereas its low cost as compared to other metal

plays a significant role. Aluminum alloys have diverse prop-

erties and this diversity is obtained by introducing various

alloying additives into the alloys. For example, in aircraft

construction and shipbuilding great significance is paid to

reduction of weight and high strength of the aluminum

alloys as compared to steel. Construction of seaplanes

includes welding of magnalium (aluminum-magnesium)
corrosion-resistant alloys. The aluminum-magnesium alloys

are actively used in oil and chemical industries, since they

have high corrosion resistance. Due to high conductivity and

temperature-gradient resistance aluminum is widely used

in electrical engineering. The alloying additives make it

possible to produce materials with desired properties, whose

basic component is aluminum. In a compressed form, full

information about production, processing, application of

aluminum and its physical, chemical and thermodynamic

properties is contained in [1]. The same article of the

encyclopedia shows that the properties of the alloys and the

compounds containing aluminum depend on a nature of the

alloying component. Prior to describing various mixtures, it

is necessary to obtain a model reliably representing behavior

of the mixtures as well as parameters of the equation of state

of each component in these mixtures. The new models for

describing the behavior of the solid and porous samples of

the mixtures [2–5] appear as it is caused by tasks of modern

science: these are problems of dynamic compacting, shock-

wave synthesis and other explosion technologies. Based

on the fact that the mixtures differ by a large variety of

the compositions, it is necessary to provide for them the

simplest model which uses only the parameters of the

equations of state of the very compositions and their mass

fractions in the mixture. In this regard, the present study is

performed to obtain the parameters of the simple equation

of state for aluminum at high pressures and temperatures.

The review [6] considers the problems and methods of

constructing the equations of state of substances, describes

principles of constructing semi-empirical models and lists

main requirements to the equations of state. Many

studies are dedicated to constructing the equation of state

of aluminum (see, for example, the papers [6–13] and

references therein). In particular, the paper [7] proposes a

rather complex equation of state of this metal taking into

account phase transformations (melting and evaporation)
in the wide range of the densities and the temperatures.

The paper [13] has developed the more simple equation of

state of aluminum in the form of dependence of pressure

on a specific volume and internal energy, which also

well agrees with the data of shock-wave experiments with

the solid and porous samples. The present paper has

constructed the equation of state of aluminum based on

the previously proposed simple model [4] (in variables the

specific volume and temperature) that is conveniently used

in the calculations of thermodynamic characteristics of the

mixtures (alloys) which include this metal.

1226



Simple equation of state to describe behavior of solid and porous samples... 1227

1. Mathematical model and calculation
procedure

It is mentioned in the paper [14] that the task of obtaining

the equation of state of a condensed body can not be solved

by methods of statistical thermodynamics in an accurate

mathematical representation. The literature contains a large

number of approaches to selecting the equation of state

when describing the shock-wave processes [5–18]. Con-

struction of the semi-empirical equations of state includes

defining a form of the functional dependence, while the

parameters of this equation are chosen to best correspond

to the experimental data [6,14].
It is noted in the paper [16] that during mathematical

modelling of the shock-wave phenomena it is possible to

used the equation of state in the form of the Mie-Gruneisen

equation in order to describe the behavior of the condensed

substances

P = PX + ργET , (1)

where PX — the elastic component of the pressure; the

second summand on the right-hand side (PT ) — the thermal

component of the pressure, PT = γρET ; ρ — the medium

density; γ — the Gruneisen coefficient; ET — the thermal

component of the internal energy. In order to describe the

thermal part of the pressure, the paper [4] proposes the

logarithmic dependence of the Gruneisen coefficient on the

density.

γ = γ0r− ln r . (2)

Here r = ρ/ρ0 — the compression ratio; ρ0 — the

parameter of the equation of state (in case of the condensed

substance it is its density at the normal conditions); γ0 —
the constant, the parameter of the equation of state. The

dependence (2) makes it possible to adequately represent

the behavior of the Gruneisen coefficient both for the

solid and the highly-porous materials as well. It is noted

in [5,14,16] that in the studies dedicated to shock-wave

loading the Gruneisen coefficient can be described by the

formula

γ = γ0r−l, (3)

where l > 0, l = const. When calculating the shock adiabats

for the highly-porous materials, use of the expression (3) for
description of the Gruneisen coefficient results in increase

of the Gruneisen coefficient with growth of intensity of the

shock wave. This is due to the fact that in anomalous

behavior of the shock adiabats, at which the final density of

the shock-compressed substance turns out to be less than

the normal density, the ratio r becomes less than unity

(r−1 > 1). The paper [19] has shown on the example of

copper that use of the Gruneisen coefficient in the form

of (3) with the exponent l > 0 for description of the porous

material does not agree with the experimental data. The pa-

per [4] discusses shortcomings of the equation of state with

the Gruneisen coefficient (3) when describing the behavior

of the porous materials and gives references to studies which

attempt to use another form of the dependence for the

Gruneisen coefficient (of those published after [4] it is worth
mentioning the studies [13,20–29]). Even the paper [4] has
already demonstrated a capability of the equation of state

with the Gruneisen coefficient (2) to adequately describe

the behavior of copper under shock compression and made

a comparison with calculated adiabats of other authors,

who use the equation of state of copper with a large

number of the parameters. The present paper demonstrates

applicability of the equation of state model as proposed in

the paper [4] for describing the behavior of aluminum under

pulse loading and subsequent unloading.

The use of the logarithm in the exponent of the relation-

ship (2) results in that the Gruneisen coefficient decreases

with any behavior of the adiabats, since a logarithm sign

depends on the argument value and when r−1 > 1 the

exponent becomes negative. When describing the elastic

part of the pressure by means of the Tait equation, the

equation of state (1) takes the form

P = PX + γ0ρ0r1−ln r cV0T,

PX = A[rn − 1] − γ0ρ0r1−ln r cV0T0, (4)

where cV0 — the specific heat capacity with the constant

volume (herein, it is assumed to be a constant value); T —
the temperature; T0 — the normal temperature, T0 = 293K;

A and n — the constants characterizing cold (when T = 0)
compression of the substance. The parameter A can be

found by the formula A = c2
0ρ0/n, where c0 — the volume

speed of sound under the normal conditions. Simplicity and

convenience of use of these equations are due to the fact

that the properties of an individual substance are described

by using a set of the small number of the parameters

(ρ0, c0, n, cV0, γ0).
The internal energy is also represented as a sum of two

summands:

E = EX + cV0T. (5)

Here EX — the elastic part of the compression energy,

which associated with the pressure elastic component by

the relationship PX = ρ2dEX/dρ. After integration, the

expression for the elastic part of the energy takes the

following form:

EX =
A

(n − 1)ρ0
[rn−1 − 1] +

A
ρ0

[r−1 − 1]

− γ0cV0T0

√
π

2
erf(ln r) − cV0T0,

where erf(x) — the error function,

erf(x) =
2√
π

x
∫

0

exp(−t2)dt,

for which the recent study [26] provides an approximation

expression of quite high accuracy; and it is this expression

that was used in the calculations below. The thermal part
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of the internal energy (5) is defined by the relationship

ET = cV0T .
The paper [30] has proposed a method of constructing the

equation of state of the equilibrium N-component mixture,

wherein the equation of state of each component is defined

in the same form. The paper [31] has substantiated

application of the equation of state of the form (4) for air.

In the present study the porous N-component mixture is

considered as a heterogeneous medium, whose pores are

filled with air. The pores are considered to be closed and

isolated, so the gaseous component does not leak out of a

solid substance-air system and it does not take into account

evaporation of the solid substance and increase of the mass

fraction of the gaseous substance under the shock wave. The

porosity m is understood as a ratio of the normal density of

a monolith (ρT0) to the initial density of the porous sample

(ρ00). The present study excludes consideration of effects of

phase transitions (melting and evaporation). As shown by

the calculations by means of more complex models of the

equations of state [7,32,33], in which the phase transitions

are taken into account, the effect of substance melting in

the shock wave is slightly noticeable at the shock adiabats

in variables of the Hugoniot equations for samples of the

different initial porosity. The results of calculations [33]
by the equation of state of aluminum with taking into

account melting and evaporation indicate that under shock

compression of the solid and porous samples with an initial

state in the solid phase of metal there are pressures which

are noticeably higher than on an evaporation curve at the

same temperatures. Therefore, a below boundary of the

applicability region in terms of pressure (with the densities

less than the density of liquid aluminum in the melting point

under the atmospheric pressure) for the represented model

of the equation of state can be an isobar passing through

the critical point of liquid-vapor transition.

By various estimates, the pressure in the critical point

(Pcr) for aluminum is 0.197 [7], 0.329 [34], 0.3988 [35],
0.45 [36], 0.597GPa [37]. It should be noted that in all the

said estimates Pcr does not exceed 1GPa. The density of

liquid aluminum in the melting point under the atmospheric

pressure, in accordance with the equation of state [7], is

approximately equal to 2.4 g/cm3. It means that at the

densities less than 2.4 g/cm3 and under the pressures below

1GPa the represented model only qualitatively describes the

metastable states of aluminum (including a region of tensile

stresses [37]).
Describing multi-component mixtures shall take into

account interaction and mutual influence of the components,

thereby highly complicating the mathematical models, since

it has to describe both processes in separate components

and effects of interaction between these components as

well. But in some cases, the multi-component mixture

may be considered as one continuum, thereby significantly

simplifying the task. For example, in case of propagation of

strong shock waves whose pressures are essentially higher

than strength-related stresses, conditions of equality of phase

pressures are used as conditions of joint motion. At this,

when the effects of relative motion of the components

are insignificant and the mixture is in the thermodynamic

equilibrium, the following conditions are met P i = P,
Ti = T , ui = u (P i , Ti , ui — pressure, temperature and

mass speed of the i component; P, T, u — the same for

the mixture). Then, the medium motion can be described

as motion of a single continuum with a special equation

of state which takes into account properties of the mixture

components and their mass fractions. It results in significant

reduction of the number of the equations. Within a

framework of such a method of mixture description, it is

assumed that the equations of state of the components in

the mixture are the same as in a free state. For simple

mixtures which do not form bonds in an atomic scale,

the paper [38] describes the principles of constructing the

model of interacting and interpenetrating continuums. The

method of describing the mixture by a single continuum

is considered in the studies [19,39,40] et al. Within the

framework of this method of describing the mixture of

the continuums in the thermodynamic equilibrium, the

paper [19,30] has proposed a method of constructing the

equation of state of the equilibrium N-component mixture,

in which the equation of state of each component is defined

in the same form.

When describing the heterogeneous mixtures (mixtures

with macroscopic nonuniformities), it is customary to

use a hypothesis of additivity of the mixture volume by

components volumes [38]:

V =

N
∑

i=1

Vi,

where V — the specific volume of the mixture; Vi — the

volume of the i component in a unit mass of the mixture.

From this relationship, the expression is obtained for the

density of the multi-component mixture as

1

ρ
=

N
∑

i=1

x i

ρi
, (6)

where x i and ρi — the mass fraction and the density of

the i component. The density of the i component is a

mass of the i-th component in a unit volume of the i-
th component (ρi = x i/Vi). After identical transformations

from the equations of state (4) written for each component

and for the mixture, the densities of the mixture and the

components are expressed via relationships of the following

type

ρ = ρ0

(

P + kAmax

A

)1/n

×
[

1− kAmax − A + γ0ρ0r1−ln r cV0(T − T0)

P + kAmax

]1/n

,

where k is a positive number; Amax = max{A1, . . . , AN};
Ai — the compression ratio of the i component. It is easy
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to substitute such expressions for the component densities

into (6) and to equate respective coefficients of P and

(T − T0) in Taylor expansions for the right and left parts of

the obtained equality to each other [19]. Then, it is possible
to obtain the expressions for the parameters of the equation

of state of the mixture A, ρ0, n, γ0 through respective

parameters and the mass fractions of the components [19]:

n =
R1R3

R2
2

− 1, A = kAmax −
nR2

R1

,

ρ0 =
1

R1

(

A
P + kAmax

)1/n

, γ0
nR4

cV0

(ρ0R1)
ln(ρ0R1), (7)

where

R1 =

N
∑

i=1

x i

ρi0
R5i, R2 =

N
∑

i=1

x i

ρi0
R5i

kAmax − Ai

ni
,

R3 =

N
∑

i=1

x i

ρi0
R5i(ni + 1)

(

kAmax − Ai

ni

)2

,

R4 =

N
∑

i=1

x iγi0cV0i

ni
R− ln R5i
5i , R5i =

(

Ai

P + kAmax

)1/ni

.

The specific heat capacity with the constant volume for the

mixture is defined by the relationship

cV0 =

N
∑

i=1

x i cV0i .

Here, ρi0, γi0, ni , cV0i are the normal density, the constant

parameter of the Gruneisen coefficient, the compression

index, the specific heat capacity with the constant volume

of the i component. The value k = 2 guarantees the

converging condition is met [19]. The paper [19] shows how
to calculate the mass fraction of the gaseous component

when knowing the values of the mixture porosity and the

mass fractions of the solid components. The paper [41]
shows that it is possible to neglect the presence of the

gas in the pores. It is clear from the relationships (7) that

”
contribution“ of the gaseous component to the mixture

parameters can be neglected due to smallness of the mass

fraction of this component. However, the present study uses

general formulation of the model [19,30] which can also be

applied for calculations of the characteristics of the mixtures

of several condensed components (which corresponds to

the aim of this study). Thus, the simple (small-parameter)
model of the equation of state of the thermodynamically

equilibrium N-component mixture is obtained. This model

is checked by comparing the calculated shock adiabats and

unloading isentropies with the experimental data.

Previously, it was shown in the paper [27] that with

variation of the pressure value in the formulas (7) the

values of the parameters of the equation of state of the

mixture A, ρ0, n and γ0 vary insignificantly. Therefore, the

subsequent calculations use the constants A, ρ0, n and γ0

found by the formulas (7) when P = 0 for the mixture of

aluminum and air with the mass fractions that correspond

to the considered porosity of the samples.

The Hugoniot equations for the initially still medium

when the pressure in the undisturbed medium is zero are

as follows

ρ00D = ρ(D − u), P = ρ00Du, E − E0 =
P
2

(

1

ρ00
− 1

ρ

)

,

(8)
where ρ00 (ρ00 = ρT0/m), E0 are the density and the

internal energy of the mixture upstream a shock wave front;

u, P, ρ, E — the mass speed, the pressure, the density and

the internal energy of the medium downstream the shock

wave front; D — the shock wave front speed. When the

relationships (8) are supplemented with the equations of

state of the medium (4), (5) with parameters defined by

the relationships (7) and the Gruneisen coefficient in the

form of (2), it results in the system of equations for the

unknown u, D, E, P, ρ. By defining the value of the mass

speed of the medium downstream the shock wave front, it is

possible to determine values of all the desired magnitudes.

2. Modeling results and comparison
with the experiment

With all the values of the sample porosities, all the calcu-

lations of the shock adiabats and the unloading isentropies

for the solid and porous samples of aluminum have used the

same parameters of the equation of state of the components

as specified in the table.

Parameters of the equations of state of air and aluminum

Substance ρi0, kg/m
3 c i0, km/s ni cV0i , kJ/(kg·K) γi0

Air 1.3 0.343 2.20 0.718 0.16

Aluminum 2.712 · 103 5.33 3.46 0.8975 1.65

The Figures 1 and 2 show the calculated shock adi-

abats for aluminum in the coordinates ”the mass speed

downstream the shock wave front-the shock wave front

speed” and ”the density-the pressure downstream the shock

wave front”, respectively, and the data obtained based

on the experiments [42–46] as well as the results of

the calculations [7,10,11,13,47]. Good qualitative and

quantitative compliance of the calculated results and the

experimental data in the wide range of the pressures shows

that the mathematical model of the equation of state in the

present study very well describes the behavior of aluminum

in the shock wave.

For comparison, the Figures 1 and 2 show the results

of calculations by means of other equations of state of

aluminum [7,10,13]. It also shows the dependences [11,47]
for the shock adiabat of the solid samples of this metal,

which are obtained by generalizing the shock-wave data

(including those of [42–46]) and the results of the calcula-

tion as per quantum-statistics models by Thomas-Fermi with

Technical Physics, 2025, Vol. 70, No. 7
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Figure 1. Shock adiabats of the solid aluminum samples in

the coordinates u−D. The calculation results: the black solid

line — the equation of state provided in the present study; the red

dots — [13]; the blue dots — [47]; the light-blue dots — [11]; the
violet crosses — [7]; the green solid line — [10]. Experimental

data: 1 — [42]; 2 — [43]; 3 — [44]; 4 — [45]; 5 —
[46]; 6 — interpretation [11]; the dashed lines I, II, III — the

shock adiabats calculated using the experimentally determined

dependences (10), (11) and (12), respectively.
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Figure 2. Shock adiabats of the solid aluminum samples in the

coordinates ρ−P . Designations as in Fig. 1.

corrections [47] and by Hartree-Fock-Slater [11]. It is clear

that all the provided approaches produce close results with

the pressures of at most 1 TPa and the densities of at most

7 g/cm3, which may be regarded as the upper boundary of

the applicability region for the equation of state of aluminum

given herein.

During the shock-wave experiments, the most accurate

and reliable measurements are measurements of the shock

wave speed (which can be measured in the easiest way) and
of the mass speed of the substance downstream the shock

wave front. The other shock wave parameters are found

by substituting the mass speed and the shock wave speed

into the Hugoniot equations (8). The fuller representation

has been provided by comparing the sound speed values

obtained by means of this model and given in the experi-

mental papers. The sound speed squared C2
s = (∂P/∂ρ)S

defines isentropic compressibility of the substance and a

slope of tangent of the Poisson adiabat in the point (ρ, P).
The unloading starts in the point (ρH , PH) on the Hugoniot

shock adiabat and the isentropic (adiabatic) sound speed

characterizes a speed of propagation of unloading waves

throughout the compressed substance. For this model of

the equation of state with the Gruneisen coefficient in the

form of (2), an expression connecting the temperature and

the density on the unloading isentropy is as follows

T
TH

= exp

(

−γ0

∞
∑

j=0

(−1) j

j !(2 j + 1)

[

(ln r)2 j+1 + (ln rH)2 j+1
]

)

.

(9)

The index H refers to the initial state in which the entropy

S = SH . Using the relationship (9) for the temperature-

density relation on the Poisson adiabat there is the expres-

sion for the sound speed squared

C2
s = V0r

−1
[

n(PX + A) + (γ + 1− 2 ln r)PT

]

+ γcVoT0(n − 1 + 2 ln r).

There is also good match shown by the results of comparing

the calculated and experimental [48–50] sound speeds in

the coordinates the mass speed — the sound speed on the

shock adiabat, as shown on Fig. 3.

The shock compression of the samples by two sub-

sequently passing waves provides information about the

thermodynamic properties of the substance within a range

of the densities exceeding the density of single-time shock-

wave compression. The comparison of the calculated

results and the experimental data [51–53] in Fig. 4 allows

concluding that the proposed model can be taken to

adequately represent the experimental data for compression

of the aluminum samples in the two shock waves.

Fig. 5 compares the calculated curves as per the pro-

posed model of the equation of state and the calculation

results [7,43]. It should be noted that on the shock adiabat

as per the results of [7] Fig. 5 clearly exhibits breaks of the

dependence of temperature on the compression ratio, which

are related to aluminum melting under shock loading at the

pressures of 113 and 178GPa. This effect is neglected both

Technical Physics, 2025, Vol. 70, No. 7
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Figure 3. Sound speed on the shock adiabat in the solid

aluminum samples in the coordinates u−Cs . The results of the

calculations: the solid line — the equation of state given herein;

the red dots — [13]. The experimental data: 1 — [48]; 2 — [49];
3 — [50].

in the proposed model of the equation of state and in the

model [43]. Under the pressures below 113GPa (i.e. at the
compression ratios ρ/ρT0 from 1 approximately to 1.6) all

the results of Fig. 5 are close to each other.

In order to obtain more complete information about

the thermodynamic properties of the substance at the

high pressures and temperatures, the same substance is

experimentally studied at the different initial densities. The

shock compression of the porous bodies is performed to

the high pressures in order to neglect effects related to the

material strength, and on the adiabat portions at which the

substance is compacted to the normal density, the pressure

is accepted to be zero. During the calculations of the shock

adiabats, with all the values of porosity the same values of

the parameters of the equation of state have been used.

The Figures 6 and 7 show the calculated shock adiabats

for the initially porous aluminum samples in the coordinates

”the mass speed downstream the shock wave front-the

shock wave front speed” and ”the density-the pressure

downstream the shock wave front”, respectively, and the

data obtained based on the experiments [44,54–56]. The

Figures 6 and 7 also include the results of the calculations

of [10,13] for comparison. Good qualitative and quantitative

compliance of the calculated adiabats as per the proposed

model, the results of [10,13] and the experimental data

of [44,54–56] within a wide range of the pressures and

the porosities shows that the mathematical model of the

equation of state given in the paper quite well describes the

behavior of the porous material in the shock wave. Hence,

a lower boundary of the applicability region of the equation

of state of aluminum given herein in terms of the density

may be indicated by the value of 1.4 g/cm3 (at the high

pressures).
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Figure 4. The shock adiabat (the solid line) and the adiabats of

repeated loading (the dashed lines) for the initially solid aluminum

samples in the coordinates u−P, which are calculated as per the

equation of state provided in the present study, and the respective

experimental data (1 — [51]; 2 — [52]; 3−8 — [53]). The

letters A, B,C, D, E mark the initial points of the adiabats of

repeated shock compression with the coordinates A (1.72, 36),
B (3.29, 87.3), C (3.657, 102), D (4.978, 162), E (5.849, 208.8).
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Figure 5. Dependences of temperature on the compression

ratio on the shock adiabat of the solid aluminum samples as

per the proposed equation of state (the solid line) and the other

models (the dashed line — [43]; the violet crosses — [7]);
ρT0 = 2.712 g/cm3 .
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The unloading isentropies represent the behavior of the

medium within a region of the reduced densities under

adiabatic expansion. The model of the equation of state

has been checked by calculations for a case of isentropic

unloading of the material subjected to the shock-wave

compression. Fig. 8 compares the calculated curves and the
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Figure 6. Shock adiabats of the initially porous aluminum samples

in the coordinates u−D. The results of the calculations: the solid

lines — the equation of state given herein; the dots — [13], the
dashed line — [10]. The experimental data: 1, 2 — [54]; 3 — [55]
(m = 2.009); 4 — [56] (m = 2.012); 5 — [57] (m = 2.009); 6 —
[58]; 7 — [56]; 8−10 — [44].
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Figure 7. Shock adiabats of the initially porous aluminum samples

in the coordinates ρ/ρT0 − P . Designations as in Fig. 6.
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Figure 8. The Hugoniot adiabat (the solid line) and the Poisson

adiabats (the solid lines) of the initially solid aluminum samples

in the coordinates u−P . Experimental data: 1 — [57]; 2 — [58];
3 — [59].

experimental data [57–59] for isentropic expansion out of

the state of the shock-compressed solid aluminum samples.

The increase of the mass speed in a depression wave on

the portion from a certain point on the Hugoniot adiabat to

a point, wherein the pressure is zero, is determined by the

Riemann integral along the isentropy

ur =

v
∫

vH

[

−
(∂ p
∂v

)

S

]1/2

dv,

where νH , ν are, respectively, specific volumes on the

Hugoniot adiabat when the pressure P = PH and on the

unloading isentropy when the pressure P = 0. The speed of

a free surface is described by the relationship u f s = uH + ur ,

uH is a mass speed downstream the shock wave front. Good

match of the results (except for the two points [58,59]
at the densities below 2.4 g/cm3 and under the pressures

below 1GPa) confirms reliability of description of the alu-

minum behavior under shock compression and subsequent

isentropic unloading as per the proposed equation of state

within the region of its applicability.

3. Region of model applicability

When describing the thermodynamic properties of metal

at high pressures and temperatures, it is customary to take

into account effects of reduction of isochoric heat capacity

of an ion subsystem with increase of the temperature

and increase of isochoric heat capacity of an electron

subsystem (in proportion to the temperature) [44]. It can

be expected that within a certain region of the densities and
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the temperatures these effect compensate each other. As

shown in the recent studies [60,61], at the temperatures

of dozes of thousand of Kelvins, a value of thermal

pressure (a sum of contributions of the ion and electron

subsystems) can be assumed to be proportional to the

temperature PT = g(V )T , where g is a certain volume

function. In this case, the form of thermal pressure

PT = γρET (γ — the Gruneisen coefficient depending on

the volume; ET = cv0T ), which is used herein, does not

require separately taking into account the contributions of

the ion and electron subsystems (which, however, narrows

the region of model applicability).
The values of γ0 under the normal conditions for

aluminum, which are obtained by the different methods

in [21,62], lie within the range from 1.7 to 2.14. When

calculating these magnitudes, various assumptions and

constants have been used. Herein, the value γ0 = 1.65 is

assumed. The limit value of the Gruneisen coefficient —
Ŵ∞ — at the temperatures tending to infinity, is assumed to

be 2/3 [6,13,14]. For the Gruneisen coefficient defined by

the dependence (2), the values of the compression ratio r ,
at which the inequality γ ≥ 2/3 is met, lie within the range

r ∈ (0.3856; 2.59). For the value r = 2.59 for the solid

aluminum samples (m = 1), in the performed calculations,

the mass speed, the pressure and the temperature down-

stream the shock wave front take the following values,

respectively u = 14.57 km/s; P = 940GPa; T = 78850K.

The test and calculated data for the solid aluminum samples

have been compared to show (Fig. 1 and 2) that the

model well describes the behavior of the samples both

for the compression ratios within the found range and

outside it as well. The paper [43] says that neither

model for the Gruneisen coefficient is advantageous for

describing the experimental data in the calculations of

pulsed loading and isentropic unloading of the materials.

In some cases, the calculation accuracy is improved by

using Ŵ∞ 6= 2/3, CV P 6= 3R (CV P — heat capacity of an

lattice with the constant volume, R — the gas constant).
Fig. 1 demonstrates qualitative and quantitative match of

the calculated adiabats and the test data up to the values of

the mass speed u ≈ 15 km/s, so does Fig. 2 up to the values

of the compression ratio r ≈ 2.6. Unfortunately, the author

could not make comparison for shock-wave loading of the

highly-porous aluminum samples with the values r < 0.5

due to absence of experimental data.

For the shock adiabat of the solid aluminum samples, the

paper [63] provides the following relationships:

D = 5.333 + 1.356u; 0 ≤ u ≤ 6.1, (10)

D = 5.9 + 1.19u; 4.28 < u < 62.3, (11)

D = 6.541 + 1.158u; 6.1 ≤ u ≤ 22. (12)

Using the linear dependence D = a + bu makes it possible

to represent the pressure on the shock adiabat (using the

break relationships (8)) in the following form

P =
a2ρ00(1− ρ00/ρ)

1 + bρ00/ρ − d)2
.
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Figure 9. Dependences of the shock wave speed (the solid

lines, the red and blue dots) and the sound speed in the shock-

compressed substance (the dashed line and the green dots) on the

mass speed. The results of the calculations: the lines 1 and 1′ —
the equation of state given herein; the line 2 — [11]; the red and

green dots — [13]; the blue dots — [47]. The experimental data:

3 — interpretation [11].

The shock adiabats calculated by these formulas are shown

in Fig. 1 and 2. In the relationships (10)−(12) the slope of

the shock adiabat is defined by a value of the coefficient b,
that is found based on results of analysis of the experimental

data. It is not fixed for each material. Description of the

shock adiabat using the relationships of the type D = a + bu
within a large interval of the mass speeds requires defining

several such relationships with different values of a and b
within subintervals. The dependence proposed in [4] for the
Gruneisen coefficient well describes variation of the adiabat

slope by applying a variable exponent (− ln r), whose values

depend on the compression ratio.

The Figures 9 and 10 have compared the shock adiabats

for the solid aluminum samples calculates as per the

proposed model with the data of [11], in the coordinates

”the mass speed — the wave speed” and ”the compression

ratio — the pressure”, respectively. The Figures 9 and 10

also include results of calculations of the shock adiabat of

aluminum as per the equation of state [13] and the quantum-

statistics models by Thomas-Fermi with corrections [47] and
by Hartree-Fock-Slater [11].

The comparison indicates that the shock adiabats within

the pressure range below 1TPa calculated as per the

proposed model well agree both with results of the other

model and with the experimental data of [11] as well.

Fig. 9 also shows the dependences of the sound speed

in the shock-compressed substance on the mass speed

18 Technical Physics, 2025, Vol. 70, No. 7
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Figure 10. Shock adiabats of the solid aluminum samples in the

coordinates ρ/ρT0 − P . Designations as in Fig. 9.

downstream the shock wave front as per the proposed

model and the equation of state [13].

The logarithmic dependence (2) has been applied to

describe the adiabats of loading and unloading by means

of the two-term Mie-Gruneisen equation of state (without

involving a term with temperature squared) for the shock-

wave data within the pressure range of at most 1 TPa at

the densities from 1.4 to 7 g/cm3. It should be noted that

the experimental points [56] of Fig. 7 at the pressures up

to 6GPa refer to an area of influence of the strength effects

hindering full closure of the pores under shock compression;

in order to describe these points [56], it is required to involve

additional models except for the equation of state (see, for
example, [64]).

Conclusions

It has been shown that the equation of state for aluminum

in the Mie-Gruneisen form with the elastic part for the pres-

sure like the Tait equation with two selected parameters n
and γ0 with good reliability describes the behavior of the

solid (in one and two shock waves) and porous aluminum

samples under shock compression and isentropic unloading.

The provided model of the Gruneisen coefficient as defined

by the formula (2) makes it possible to widen the range

of applicability of the equation of state to the high values

of porosity (m ≈ 8). Detailed comparison with the shock-

wave data confirms adequacy of the proposed model of

the equation of state for describing the aluminum behavior

within the region of its applicability of at most 1 TPa at the

densities from 1.4 to 7 g/cm3 (except for the pressure region

below 1GPa at the densities below 2.4 g/cm3).
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