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Model of intrinsic anomalous Hall effect in polycrystalline ferromagnets
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Introduction

The anomalously high value of transverse conductivity in
ferromagnetics was noted by E. Hall already in 1881 [1]
when systematically studying electron transport in various
metals in the external magnetic field. The anomalous
Hall effect (AHE) is characterized by dependence of
transverse resistivity both on magnetic induction B and
magnetization M as well:

pr = pH = R()BZ + RSHOMZ9 (1)

where uo is the magnetic constant. Here, as in the classic
Hall effect, the coefficient Ry is mainly determined by the
concentration of carriers, whereas Rs is intricately related
to many material parameters, in particular, it depends on
longitudinal resistivity pxx = p. The microscopic theory
that explains the AHE by means of spin-orbit interaction
of polarized conductivity electrons was developed in 1954
by R. Karplus and D. Lattinger [2].

Presently, the AHE is described by three competing
mechanisms [3-5], which manifest themselves or get weaker
depending on conductivity of the material and presence
of foreign impurities therein. It is known that the same
mechanisms are responsible for origin of the spin Hall
effect (SHE) in non-magnetic materials [6]. When the metal
contains impurities, the AHE can occur due to side jump
perpendicular to a direction of electron momentum after
scattering of any type. This mode is characterized by low
longitudinal conductivity (oxx < 10° (2 -m)~!), while the
transverse conductivity depends almost quadratically on the
longitudinal one.

In pure metals, when oyx > 10°(Q-cm)~! , the basic
mechanism of AHE origination is nonsymmetrical scattering
on magnetic moments (skew-scattering) due to spin-orbit
interaction [7]. It is quite difficult to experimentally study

this mode, since the magnetic field H that is necessary for
saturation of magnetization M, greatly contributes to the
common Hall effect, while Ry is about R [8], ie. the
common Hall effect with high conductivity is approximately
the same as the anomalous one or higher.

The mode when longitudinal conductivity is within the
range 10% < oyx < 103 (2 -m)~! is an intrinsic (internal)
or dissipation-independent one. The AHE of this mode
is determined by a band structure of the material and
transverse conductivity weakly depends on the longitudinal
one. In the modern model of intrinsic AHE, the material
band structure is analyzed in terms of an integral of the
electron Berry curvature across an occupied part of the
Brillouin zone. It has been shown in the paper [9] that
in the strong coupling approximation and in the Vanier
representation this integral could be reduced to the integral
across the Fermi surface only. The illustrative calculation of
anomalous Hall conductivity by this method provided the
results that qualitatively match the experimental ones [10-
12].  However, the studies [10,11] have measured not
the anomalous Hall conductivity oyy, but rather the AHE
coefficient Rs, [Q2-cm/G]. The study [12] includes only
temperature dependences of the anomalous Hall conductiv-
ity without any initial magnetic-field dependences.

It should be noted that the studies [10-12] do not identify
contribution of the intrinsic AHE. The paper [9] does not
list a method of such identification. The studies of the
paper [11] were on nickel of technical purity within the tem-
perature range —200—360°C. The paper [10] investigated
single-crystal iron whiskers. In this geometry, there is an
additional AHE mechanism — charge carrier scattering on
the sample surface [13], whose contribution to AHE does
not depend on longitudinal conductivity in the same way
as for the intrinsic mode. It is impossible to identify the
intrinsic AHE by the temperature dependence of transverse
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conductivity within a range of the helium temperatures for
thin films. That is why, despite existence of the developed
theoretical description of the mechanism of the intrinsic
AHE, it is difficult to experimentally substantiate it. The
study [14] dedicated to it was not further confirmed [5].

By comparing the magnetic-field and temperature de-
pendences of an anomalous component of Hall resistance
with the temperature dependence of longitudinal resistance,
the study [5] has obtained experimental confirmation of
an essential role of the intrinsic AHE mechanism in the
two-dimensional heterosystem. It seems that the two-
dimensional nature of charge carriers’ motion excludes
influence of scattering on the film surface. In the 3D-
structures, it is advisable to experimentally confirm the
intrinsic AHE on macroscopic polycrystalline samples. The
model of the intrinsic AHE in these structures can be
presumably obtained by supplementing the strong coupling
approximation and the Vanier representation used in [9] with
taking into account specific features of the Fermi surface
through a constant of the normal Hall effect [15,16).

1. Dynamics of conductivity electron in
single-domain ferromagnetic

A spin-orbit additive to the single-energy electron in
the defined electric field with the potential ®(r) is as
follows [17]:

N he 0D
V= —m Sﬂyg Sﬂ m Ps. (2)

Here, m — the mass of electron with the charge —e,
h — the reduced Planck constant, ¢ — the speed of light in
vacuum, £qg, — the unit antisymmetric Levy—Civita tensor.
The formula (2) and further on implies summing with
respect to repeated indices over the entire range of their
variation. The electron momentum dynamics induced by
disturbance (2) is characterized by the following equation
for the averages [18]:

_r _ . heeﬁyg

dp, i .- 32d
v g Y- )
A crystallite of pure metal can be regarded as a
homonuclear macromolecule with a metallic bond. Within
the framework of the single-electron Hartree—Fock approx-
imation, each collectivized electron is in a self-consistent
field created by ion residues and other collectivized elec-
trons [18]. The self-consistent field is usually constructed
by the method of successive approximations. In the
initial approximation, the wave function of the collectivized
electron is considered to be a molecular spin-orbital and
represented as a linear combination of the atomic spin-
orbitals.
In any given spin state of an electron, one may
choose such a direction of the axis z that the projection
of its spin onto this axis assumes a specific value S,

ie. Y(r,o) =Y(r)d(o, s;). In doing so, the vector of the
average value of the spin s = (§) will be directed along the
axis z [8]. In the strong coupling approximation, such a
combination for a coordinate part of the wave function ¥ (r)
may be the Vanier function [19]:

SIOREE

where W¢(r) — the atomic function of the external electron,
R, — the translation vector, N — the number of nodes in
the crystallite.

The model potential of the initial approximation is
taken by us to be a potential of the crystal field of the
ionic residuals with the effective charge +Ze and the
coordinates ry:

—Ry) exp(ikRy), 4)

4;7[80 Z [r — rk| )

Here & is the electric constant.

If as the initial approximation, the atomic wave function
W(r) in the relationship (4) is considered to be a hydrogen-
like one, then the magnitude Z may be evaluated by
equating the coordinate of the maximum of a radial
component of this function to the atom radius. The effective
charge in the model potential (5) together with the strong
coupling approximation (4) means that construction of the
self-consistent field for the collectivized electron takes into
account only its interaction with the nuclei and localized
electrons of the ion residues.

Within the framework of the Hartree—Fock, electron
identity, ie. exchange interaction of the conductivity
electron with the localized electrons is taken into account
by representing the wave function of the equation (3) as
a Slater determinant that is composed of spin-orbitals of
the conductivity electron and all the localized crystallite
electrons. In this approximation, the exchange interaction
energy of the conductivity electron with all the localized
electron is disintegrated into a sum of pairwise exchange
interactions of the conductivity electron with each of the
localized electrons separately [20]. The similar conclusion
can be made about the right-hand side of the equation
(3), too. The following approximation shall take into
account interaction (including the exchange interaction) of
the collectivized electron with other conductivity electrons.

For pairwise interaction of the first and second electrons
the average of the formula (3) is in the state

(1(r1, 01)12(r2, 02)
— P1(r2, o2)¥a(r1, 01)) /V2.

Y(r1, 01,12, 02) =

We assume that (3) describes the dynamics of momentum
of the first conductivity electron, while the second electron
is a localized one. Then, taking into account the Hermitian
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quality of the momentum operator, we obtain

9% . %
arqor, Ps[t) = (¥1]Sp araar,

(¥lsp Ps[¥1)

32
_Re{< vilss orqar,

Here, the quantum average means integration across the
coordinates and summation over the spin variables. By
assuming that

Ps|¥2) (Wa|th1) }

Yi(r, o) =1(r)é(o, sz1),

ha(r, o) = C11h21.(r)8(0, Sz1) + €12 (r)8(0, —Sz1),
e+ +le-> =1,
we obtain

2 2

0-d 0P
(¥ls TS T o, Ps|p) = <1P1|ar ar, Ps|1)

20

— |c s Re{(l/)ll ps|1/)2+><¢2+|1/)1>}

Taking into account that |c, |*> = 1/2 + 2s;s, and neglect-
ing that the coordinate part of the wave function of the
localized electron depends on its spin state, we transform
this formula:

20

-d
WIS 5 DoY) =

92

Sip {<¢1| araor
¥

Ps[t1) — 1]

< Re{<¢1| p5|w2><w2|w1>} 28181052

2

< Re{ (] 5 Bl ()} ©

In the formula (6), the quantum average is calculated
by integration across the coordinates. The formula (3) is
written for the momentum dynamics of one conductivity
electron. In order to find the dynamics of the average
momentum for an assembly of the conductivity electrons,
the formula (6) shall be averaged along the spin states
of these electrons. If the conductivity electrons are not
polarized, then in a macroscopically isotropic medium
<Slﬁ> =0, <Slﬁ515> = 5,35/4. Then

dpa . ﬁefﬁyg BRI
dt 4mecz ¥ s Re W’l'ar ar,

Ps|2) (W2 |1h1) }
(7)

The left-hand side of relation (7) is equal to the force
acting on an electron. It may be presented as a result
of influence of the foreign electric field Eaq on the
electron. The right-hand side of the relationship (7) is
associated with pairwise interaction of the conductivity
electron with one localized electron. In order to find the
full field Eay, the formula (7) shall be summated over all
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the localized electrons taking into account their spins. In
the ferromagnetic, the spins of the localized electrons of
magnetization are oriented similarly within a domain due
to exchange interaction, and it can be assumed for them
that all s;3 = sg. The spins of the other localized electrons
are arbitrarily oriented and their total contribution to the
field Eay is zero.

Let each node have only one localized electron with the
wave function 1,(r) = W (r — ;). Here r; is the coordinate
of the i-th node, the starting point is a node with the
collectivized conductivity electron with the wave function
like in (4). Then, for the potential of the effective field like
in (5), by substituting the variables r — rx — r, we obtain

heZsg
167eomPc2N

Epyslal &
x <3 s aﬁ8>p5|‘IJL( +rc—1i))

Epng= Re{exp(ik(Rn—Rm))<\IJc (r+rc—Rn)|

< (W (r — ) W(r — Rm>>}. ®)

The atomic functions are exponentially small when
r > Ry =nag/Z, nis the principal quantum number. At
the same time, the distance between atoms in the crystal
is substantially higher than R,. Therefore, in the first
approximation only the summands with r; = r¢ can be left
in the relationship (8). The different atomic wave functions
are orthogonal so when Ry—r¢ = 0 the right-hand side of
(8) is zero. The operator

EpysTaly | &aps | o
<3T+r—a Ps

in the right-hand side of the relationship (8) is odd. If the
wave functions W, and Wc have the same parity (s—d-
interaction), then when Rj—rx =0 the right-hand side
of (8) is zero. It is possible to limit by a nearest neighbors
approximation and to restrict the right-hand side only with
summands for which Ry—r¢ = aj, and Ry—r¢ = aj, where
aj — the vector from the considered atom with a center
in the point r = 0 to the nearest neighbor. Thein, in the
relationship (8) in the first order of smallness for ka; we
obtain:

hZesgk
Eaa = ot (@

et (@, — ) I (e (r-a)

X <3 % + 8aﬁ5> Ps |‘I’L><‘I’L|‘I’C(r—al)>} ©)

Considering the AHE only in metals, we will use the
ideal Fermi gas approximation for conductivity electrons.
Applicability of this model for the conductivity electrons in
the metals is justified by the fact that thermodynamics of
the Fermi system is determined by its microscopic structure
only near the Fermi surface and is completely irrelevant
of what is happening outside blur of the order of kgT,
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where kg — the Boltzmann constant, T — the temperature.
As a result, the denser Fermi gas in the metal, the more
ideal it is [21]. The experimental studies of the temperature
dependence of the electron heat capacity in the metals show
that it well corresponds to the model of the ideal Fermi gas
with the scalar effective mass m*.

2. Dissipation-independent AHE in a
polycrystalline ferromagnetic

Let us consider a homogeneous and isotropic macro-
scopic area of the polycrystalline ferromagnetic, within
which the current density and magnetization may be
considered to be constant. Assume within the framework
of the effective mass method in (9) k = —jm*/(hene),
where j — the density of the charge current, ne — the
concentration of the conductivity electrons. Within this area
we average the equation (8) along the spin momentums of
the localized electrons. Each crystallite is split into domains
magnetized to saturation Ms = Bs/ug, where Bs — the
saturation induction, and within the crystallite it can be
assumed that (s) = —M/(upna), where up — the Bohr
magneton, N, — the atom concentration. Then

Zm* Mg ju (@i — aju)
8megmicugne,

Im{ (e (r—aj)|

EAHe =

Fof R
o (3 S g e - | (10

The energy of the electron in the atom in the electric
field depends on a projection of its orbital moment to the
field direction [8]. Therefore, orientation of the atom orbitals
is determined by a position of crystallophysical axes of the
crystallite and it may be assumed that the relationship (10)
is written in the system of coordinates that is associated with
the crystallite symmetry axes. Let us introduce a laboratory
coordinate system associated with the instruments that set
the conductivity current and magnetization and measure
components of the electric field. That is why the vectors
of the current density, magnetization and the electric field
shall be assumed to be defined in the laboratory coordinate
system. The components of vectors and tensors in the
laboratory system will be denoted by hatched indices, and
the components of vectors and tensors in the coordinate
system associated with the domain crystal axes will be
denoted by non-hatched indices.

Let us transform, within the crystallite, the vector of
the current density and the magnetization vector from the
laboratory system into the system of the crystallophysical
axes, ju = Py’ Ju» Mg = PgsrMps, and transform the vector
of the Hall electric field from the system of the crystal-
lophysical axes into the laboratory one Enn = p;/}IEHa,
where Py, — the unitary rotation matrix. By inserting
this conversion into the equation (10), we average the vec-
tor Eay in the macroscopic area over random orientations of

the crystallites. The rotation matrix is convenient to express
through Euler angles:

cos(a) cos(y)— — cos(a) sin(y)— sin(a) sin(B)
sin(a) cos(B) sin(y)  sin(a) cos(B) cos(y)
Pij = | sin(e) cos(y)+ — sin(a) sin(y )+ — cos(a)sin(B) |>
cos(a) cos(B)sin(y)  cos(a) cos(B) cos(y)
sin(f) sin(y) sin(8) cos(y) cos(B)

where 0 < a < 27 — the precession angle, 0 < <mw —
the nutation angle, 0 <y <27 — the angle of intrinsic
rotation. Then for the macroscopically isotropic polycrys-
talline ferromagnetic averaging over the random orientations
of the crystallite is reduced to averaging over the random
uniformly-distributed Euler angles.

Zm* oMy 7 P P P

Eu. — g
Ha 8ﬂm2‘UBnena (al,u allu)
X Im{(‘l’c(r—ai)| (3 M + &#)
r r
) (ol (r —ay) . (11)
Here
20 7w 2w

P [ [ [sinbiptapridadssy.  (12)
00 0
With analytical averaging of the equation (11), the
integrals of the type (12) were calculated in a coordinate
form, and then the result was transformed into an invariant
form. As a result, we obtain

Ean = Ry[j x poM],

heZ m*/m

R =
! 48mrmugn, €ne

Re{(lllc (r—aj)]

3r(r(ai —aj)) — (a —aj)r* 3
X r3 or

) (e (r —a)) . (13)

3. Calculation of AHE coefficient

The first relationship (13) is similar in a form wit the
expression for the classic Hall effect if the vector yoM is
replaced by the vector of magnetic induction B. Therefore,
it can be expected that the intrinsic AHE coefficient R; also
depends on the effective mass of the conductivity electrons
including its sign and on their concentration as does the
coefficient Ry of the classic Hall effect. Then the second
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part of the formula (13) can be written as

Rl = %mj:na Re{(%;(r—aiﬂ
3r(r(ai —aj)) — (ai —aj)r? 9
% r3 or
<) (e - ) (14)

We transform the double sum of the formula (14) in curly
brackets into a product of the sums:

r ]
A= avctr— )| 5 (v 2 )

1
Biy = (aiuVc(r — aj) 2o
u

Ci = (W |Uc(r —a))),

D= (e(r - )| 5 (v 57 ) )
B = (Wo(r —a) 5 - 9. (16)

Let’s proceed to the spherical system of coordinates and
direct in each of the averages (15) the polar axis z along
the vector aj. Then, there is only one non-zero component
of this vector aj; = a; = |aj| in each of the summands in
(15). At the same time, the first and second summands of
the formula (15) have only

Ao = A = ailo(r—a) =0 D)

and

1 a 1 0
1z=Bi=ai (Ye(r—ai)| 5 <C°S( ) or ") ae>| L
Let us consider interaction of the 4s conductivity electron
with the wave function

We(p)=Rao(p)= ;03+24p2—144p+192)exp<_£)’

768 ( 4

1z
where p = G’
wave function

and the 3d magnetization electron with the

2
WL(P) = Z CmWLm(p)
m=-—2
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Wim(p) = Rs2(p)Yam(0) exp(imp),
Ra2(p) = ﬁﬂz exp(—%).

Here m is the magnetic quantum number. Then

Rao(p0i),

o= \/p2 +b? — 2pbj cos(0), by = Za;/as,

and all the magnitudes (16) are provided with a non-zero
contribution only by the state

W|_0 =\ 5/16:7[ R32

In this state the vectors D; and E; are directed along the
vector a;.

The experimental values of a portion of the orbital
component of the magnetic moment of the magnetization
electron at 300K are (0.0918 £+0.003)) for iron; are
(0.1472 £ 0.003) for cobalt; and are (0.0507 = 0.0027) for
nickel [22,23]. Therefore, it can be assumed that the states
with different values of a projection of the orbital moment
to the arbitrary axis of quantization are equally probable and
that a portion of the states Wy with the magnetic quantum
number m= 0, which contribute to (15), is 1/5. Then in
the formulas (16) we obtain

We(r —aj) =

)(1 —3cos*(6)).

o 1

21Z3b; dRsx(p)/dp 5
P = (1 — 3y?)ydody,
A aSB*/m—”o//l p Rao(pi)(1 — 3y“)ydpdy
aj
b=

i_az;”j%//{ 1—3y? dR32( )/dp 6R32( )}

E Za—izBi,

x Rao(pi)ydpdy,

21
16

Q

oo 1
/ / Rez(0)Raolpi)(1 = 3y)dpdy.  (17)
0 —1

Here, y = cos(0). It is clear from the formulas (17)
that the magnitudes A, B; and C; like in (16), which are
included in the sums (15) depend only on the distance from
the considered atom to the nearest neighbor. Therefore, dur-
ing their calculation the nearest neighbors of the considered
atom can be divided into groups with the same distances
thereto. If the lattice is symmetrical and each neighbor with
the coordinate a; is matched with the neighbor with the
coordinate — aj, then the third and fourth summands of
the formula (15) are zero. Let us note that Ny = Na/vm,
where v, — the molar volume, Np = 6.02214 - 1023 —
the Avogadro’s number. The formula (14) then takes the
following form

R heZvn

%_48nmuBNA(Zm3A B)(ch) 18
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Here my is the number of the nearest neighbors of the
considered atoms at the distance of a; thereto.

For nickel Z = 10.5; vy = 6.6 - 107 m3. The numerical
calculation of the relationship R;/Ry by the formulas (17)
and (18) gives the value 0.16. For cobalt Z = 10.42;
Um=6.7-10°m? R;/Ry=0.35. For iron Z=10.3;
Um=7.1-10"°m3; R;/Ry = 0.33.

4. Comparison with experiment

From the formula (1), assuming that M(B >> Bs) = Ms,
we obtain q
. PH
= 1 _
RO Bgl;l35< dB )’

pu(B —0,M = Mg) _ it (u(B) ~ RiB)
BS BS
The graphs illustrating the formulas (19) are provided

in the paper [24]. In the study [25], the AHE coefficient
was calculated by the formula Rg = I%im0 (dpn/dB)—Ry in

Rs =

. (19)

assuming that I%im0 (toM/B) = 1. For ferromagnetics in the

Rayleigh region this condition may not be satisfied. So, the
values of Rs were recalculated by the data of the paper [25]
on Fig. 2,3, 6 and 7.

When T = 4.2K for nickel

Ro = —0.34-10"""m?/C,

pn(B=2.08T) = —0.73-1071°Q - m,
Bs=0.61T.

Then
Rs= —0.035-10""m?/C,

Rs/Ro = 0.11.

For cobalt
Ro=—-1.0-10"""m3/C,

pr(B=2.5T)=-2.96-10"1°Q - m,
Bs= 17T,
Rs = —0.27-10""m?/C,
Rs/Ry = 0.27.

For iron
Ro = 0.052-10"'"m?/C,

pH(B =2.84T)=0.25-10"1Q - m,
Bs=2.15T,
Rs = 0.048 - 10~ "m3/C,
Rs/Ry = 0.92.

For nickel py92/p4.2 = 57.2; for cobalt pr92/04.2 = 66.3.
For nickel and cobalt the conductivity when T = 4.2K is
about 10° S/m, and within the measurement error it can be
assumed that Rs ~ R;. The calculated values of the ratio

R1/Ro exceed the measured values of Rs/Ry approximately
by 25%. This discrepancy agrees with the measurement
error, since according to the second formula (18) the value
of Rg is found as a small difference of two close values. For
iron pa92/pa2 = 11.45; the conductivity when T = 4.2K is
1.2 - 108 S/m, while the AHE constant and the calculated
value of the intrinsic AHE coefficient are in 20 times less
than those for cobalt. The measured value of the ratio Rs/Ry
exceeds the calculated ratio R;/Ry in 2.7 times. For pure
iron pa92/p10 ~ 10* [26], and it can be presumed that with
iron purity of 99.998 % contribution to AHE by impurity-
dependent dissipation substantially exceeds the dissipation-
independent one, so Rg is substantially higher than R;.

Conclusion

A promising field for implementing a new generation of
devices of information and sensor technologies is antifer-
romagnetic spintronics based on AHE [27]. Substantiation
of methods of designing the spintronics systems, calculat-
ing and optimizing their characteristics requires additional
assumptions about the system. These assumptions include
the representation of the wave function of the collectivized
conductivity electron in the form of the Vanier function, the
effective charge approximation and the nearest neighbors
approximation in the relationship (8) as well as the model
of the ideal Fermi gas for the conductivity electrons and
taking into account the structure of the Fermi surface by
the constant of the normal Hall effect. The SHE coefficients
calculated within the framework of these models comply
with the measured ones [15,16].

For AHE analysis, these assumptions are supplemented
with an assumption that it is possible to regard the ferromag-
netic crystallite as the homonuclear macromolecule within
framework of the single-electron Hartree—Fock method.
The magnetic structure of the planar antiferromagnetic
can be presented as two sublattices that are shifted by
a lattice vector and magnetized to saturation in opposite
directions. The magnetic structure of a helimagnetic can be
presented as a result of twisting of the centrally-symmetrical
lattice of the saturation-magnetized ferromagnetic around
a chirality axis [28]. Compliance of the AHE coefficients
in the ferromagnetics calculated in these assumptions with
the measured ones makes it possible to use the proposed
method for constructing the AHE model in antiferromag-
netics.

Presently, the AHE is actively studied in Heusler-type
alloys, which belong to a group of the Weyl semimetals,
including with a Kagome structure, and together with metal
antiferromagnetics are regarded as promising materials for
the spintronics elements. In the volume single crystal of
the Weyl ferromagnetic semimetal ferromagnetic (SMFM)
CoyMnAl at the room temperature the anomalous Hall
conductivity (AHC) of 1.3-10°S/m was recorded with
the record value tan(6ay) =0.21. By comparing the
temperature dependences of longitudinal resistivity and

Technical Physics, 2025, Vol. 70, No. 7
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AHC, it is shown that the AHE is an intrinsic one [29]. The
SMFM LiMneSne with the Kagome structure has exhibited
the intrinsic AHC of 3.8 - 10*S/m when T = 50K. At the
room temperature, the AHC decreases approximately in
two times [30]. The authors explain the large AHE by
the fact that the band structure of LiMngSng has several
band intersections, including a spin-polarized Dirac point
in the point K close to the Fermi energy. In the Weyl
antiferromagnetic semimetal HoAgGe with the Kagome
distorted lattice, the AHC of 2.8 -10° S/m was recorded
when T = 45K [31]. The authors believe that distortion of
the ideal Kagome lattice by oppositely rotating the triangles
results in formation of a noncentrosymmetric structure. As
a result, a doubly-degenerate Dirac cone of the Kagome
lattices turns into a pair of the Weyl points that can generate
the large Berry curvature and, therefore, the large intrinsic
AHE.

A review of theoretical and experimental studies for the
SMFM properties is given in the paper [32]. It is noted that
one of the causes of a non-trivial topology of the electron
band structure of the Weyl semimetals manifested in the
gigantic AHE is spin-orbit interaction [33]. The gigantic
AHE in combination with SHE and the Nernst spin effect is
found in manganese-based semimetals that are promising for
spintronics [34]. It can be assumed that the intrinsic AHE
in the SMFM as well as AHE in the metal ferromagnetics
and SHE in the non-magnetic conductors is of a spin-
orbit nature. The topology of the electron band structure
determines all the SMFM transport properties, including its
longitudinal and transverse conductivities. The experimental
temperature and magnetic-field dependences of longitudinal
and transverse conductivity for the SMFM given in the
papers [29-31] are similar to respective dependences for
the metal ferromagnetic [10-13,24,25]. This suggests that
the proposed method can be used for constructing the
AHE model in the SMFM. In doing so, it is necessary
to modify the formula (7) obtained in an assumption,
valid for the metal ferromagnetics, that the conductivity
electrons are not polarized. Vice versa, in the SMFM at
the low temperatures, the conductivity electrons are highly
polarized [32,35]. Besides, presence of non-quasiparticle
states in the SMFM can bring about some complexity.

The SMFM crystal lattice, especially with the Kagome
structure, is much more complicated than that of the
metals. It is advisable to regard it as a superposition of
several homonuclear sublattices Thus, the presentation of
the complex lattice A15 of B-tungsten as the superposition
of two simple sublattices made it possible to analyze the
gigantic SHE in it with satisfactory accuracy [16]. Here, an
approach developed in the paper [36] can be promising.
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