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Introduction

The anomalously high value of transverse conductivity in

ferromagnetics was noted by E. Hall already in 1881 [1]
when systematically studying electron transport in various

metals in the external magnetic field. The anomalous

Hall effect (AHE) is characterized by dependence of

transverse resistivity both on magnetic induction B and

magnetization M as well:

ρxy = ρH = R0B z + Rsµ0Mz , (1)

where µ0 is the magnetic constant. Here, as in the classic

Hall effect, the coefficient R0 is mainly determined by the

concentration of carriers, whereas Rs is intricately related

to many material parameters, in particular, it depends on

longitudinal resistivity ρxx = ρ. The microscopic theory

that explains the AHE by means of spin-orbit interaction

of polarized conductivity electrons was developed in 1954

by R. Karplus and D. Lattinger [2].
Presently, the AHE is described by three competing

mechanisms [3–5], which manifest themselves or get weaker

depending on conductivity of the material and presence

of foreign impurities therein. It is known that the same

mechanisms are responsible for origin of the spin Hall

effect (SHE) in non-magnetic materials [6]. When the metal

contains impurities, the AHE can occur due to side jump

perpendicular to a direction of electron momentum after

scattering of any type. This mode is characterized by low

longitudinal conductivity (σxx < 106 (� ·m)−1), while the

transverse conductivity depends almost quadratically on the

longitudinal one.

In pure metals, when σxx > 106 (� · cm)−1 , the basic

mechanism of AHE origination is nonsymmetrical scattering

on magnetic moments (skew-scattering) due to spin-orbit

interaction [7]. It is quite difficult to experimentally study

this mode, since the magnetic field H that is necessary for

saturation of magnetization M, greatly contributes to the

common Hall effect, while R0 is about Rs [8], i.e. the

common Hall effect with high conductivity is approximately

the same as the anomalous one or higher.

The mode when longitudinal conductivity is within the

range 106 < σxx < 108 (� ·m)−1 is an intrinsic (internal)
or dissipation-independent one. The AHE of this mode

is determined by a band structure of the material and

transverse conductivity weakly depends on the longitudinal

one. In the modern model of intrinsic AHE, the material

band structure is analyzed in terms of an integral of the

electron Berry curvature across an occupied part of the

Brillouin zone. It has been shown in the paper [9] that

in the strong coupling approximation and in the Vanier

representation this integral could be reduced to the integral

across the Fermi surface only. The illustrative calculation of

anomalous Hall conductivity by this method provided the

results that qualitatively match the experimental ones [10–
12]. However, the studies [10,11] have measured not

the anomalous Hall conductivity σxy , but rather the AHE

coefficient RS, [� · cm/G]. The study [12] includes only

temperature dependences of the anomalous Hall conductiv-

ity without any initial magnetic-field dependences.

It should be noted that the studies [10–12] do not identify

contribution of the intrinsic AHE. The paper [9] does not

list a method of such identification. The studies of the

paper [11] were on nickel of technical purity within the tem-

perature range −200−360 ◦C. The paper [10] investigated

single-crystal iron whiskers. In this geometry, there is an

additional AHE mechanism — charge carrier scattering on

the sample surface [13], whose contribution to AHE does

not depend on longitudinal conductivity in the same way

as for the intrinsic mode. It is impossible to identify the

intrinsic AHE by the temperature dependence of transverse
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conductivity within a range of the helium temperatures for

thin films. That is why, despite existence of the developed

theoretical description of the mechanism of the intrinsic

AHE, it is difficult to experimentally substantiate it. The

study [14] dedicated to it was not further confirmed [5].
By comparing the magnetic-field and temperature de-

pendences of an anomalous component of Hall resistance

with the temperature dependence of longitudinal resistance,

the study [5] has obtained experimental confirmation of

an essential role of the intrinsic AHE mechanism in the

two-dimensional heterosystem. It seems that the two-

dimensional nature of charge carriers’ motion excludes

influence of scattering on the film surface. In the 3D-

structures, it is advisable to experimentally confirm the

intrinsic AHE on macroscopic polycrystalline samples. The

model of the intrinsic AHE in these structures can be

presumably obtained by supplementing the strong coupling

approximation and the Vanier representation used in [9] with

taking into account specific features of the Fermi surface

through a constant of the normal Hall effect [15,16].

1. Dynamics of conductivity electron in
single-domain ferromagnetic

A spin-orbit additive to the single-energy electron in

the defined electric field with the potential 8(r) is as

follows [17]:

V̂ = − ~e
2m2c2

εβγδ ŝβ
∂8

∂rγ
p̂δ . (2)

Here, m — the mass of electron with the charge −e,
~ — the reduced Planck constant, c — the speed of light in

vacuum, εαβγ — the unit antisymmetric Levy−Civita tensor.

The formula (2) and further on implies summing with

respect to repeated indices over the entire range of their

variation. The electron momentum dynamics induced by

disturbance (2) is characterized by the following equation

for the averages [18]:

d pα
dt

=
i
~
〈[V̂ , p̂α]〉 =

~eεβγδ
2m2c2

〈ψ|ŝβ
∂28

∂rα∂rγ
p̂δ |ψ〉. (3)

A crystallite of pure metal can be regarded as a

homonuclear macromolecule with a metallic bond. Within

the framework of the single-electron Hartree−Fock approx-

imation, each collectivized electron is in a self-consistent

field created by ion residues and other collectivized elec-

trons [18]. The self-consistent field is usually constructed

by the method of successive approximations. In the

initial approximation, the wave function of the collectivized

electron is considered to be a molecular spin-orbital and

represented as a linear combination of the atomic spin-

orbitals.

In any given spin state of an electron, one may

choose such a direction of the axis z that the projection

of its spin onto this axis assumes a specific value s z ,

i.e. ψ(r, σ ) = ψ(r)δ(σ, s z ). In doing so, the vector of the

average value of the spin s = 〈ŝ〉 will be directed along the

axis z [8]. In the strong coupling approximation, such a

combination for a coordinate part of the wave function ψ(r)
may be the Vanier function [19]:

ψ(r) =
1√
N

N
∑

n=1

9C(r− Rn) exp(ikRn), (4)

where 9C(r) — the atomic function of the external electron,

Rn — the translation vector, N — the number of nodes in

the crystallite.

The model potential of the initial approximation is

taken by us to be a potential of the crystal field of the

ionic residuals with the effective charge +Ze and the

coordinates rk :

8(r) =
eZ
4πε0

N
∑

k=1

1

|r− rk |
. (5)

Here ε0 is the electric constant.

If as the initial approximation, the atomic wave function

9(r) in the relationship (4) is considered to be a hydrogen-

like one, then the magnitude Z may be evaluated by

equating the coordinate of the maximum of a radial

component of this function to the atom radius. The effective

charge in the model potential (5) together with the strong

coupling approximation (4) means that construction of the

self-consistent field for the collectivized electron takes into

account only its interaction with the nuclei and localized

electrons of the ion residues.

Within the framework of the Hartree−Fock, electron

identity, i.e. exchange interaction of the conductivity

electron with the localized electrons is taken into account

by representing the wave function of the equation (3) as

a Slater determinant that is composed of spin-orbitals of

the conductivity electron and all the localized crystallite

electrons. In this approximation, the exchange interaction

energy of the conductivity electron with all the localized

electron is disintegrated into a sum of pairwise exchange

interactions of the conductivity electron with each of the

localized electrons separately [20]. The similar conclusion

can be made about the right-hand side of the equation

(3), too. The following approximation shall take into

account interaction (including the exchange interaction) of

the collectivized electron with other conductivity electrons.

For pairwise interaction of the first and second electrons

the average of the formula (3) is in the state

ψ(r1, σ1, r2, σ2) =
(

ψ1(r1, σ1)ψ2(r2, σ2)

− ψ1(r2, σ2)ψ2(r1, σ1)
)

/
√
2.

We assume that (3) describes the dynamics of momentum

of the first conductivity electron, while the second electron

is a localized one. Then, taking into account the Hermitian
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quality of the momentum operator, we obtain

〈ψ|ŝβ
∂28

∂rα∂rγ
p̂δ |ψ〉 = 〈ψ1|ŝβ

∂28

∂rα∂rγ
p̂δ |ψ1〉

− Re

{

〈ψ1|ŝβ
∂28

∂rα∂rγ
p̂δ |ψ2〉〈ψ2|ψ1〉

}

.

Here, the quantum average means integration across the

coordinates and summation over the spin variables. By

assuming that

ψ1(r, σ ) = ψ1(r)δ(σ, s z1),

ψ2(r, σ ) = c+ψ2+(r)δ(σ, s z1) + c−ψ2−(r)δ(σ,−s z1),

|c+|2 + |c−|2 = 1,

we obtain

〈ψ|ŝβ
∂28

∂rα∂rγ
p̂δ|ψ〉 = s1β〈ψ1|

∂28

∂rα∂rγ
p̂δ |ψ1〉

− |c+|2s1β Re

{

〈ψ1|
∂28

∂rα∂rγ
p̂δ |ψ2+〉〈ψ2+|ψ1〉

}

.

Taking into account that |c+|2 = 1/2 + 2s1s2 and neglect-

ing that the coordinate part of the wave function of the

localized electron depends on its spin state, we transform

this formula:

〈ψ|ŝβ
∂28

∂rα∂rγ
p̂δ |ψ〉 = s1β

[

〈ψ1|
∂28

∂rα∂rγ
p̂δ|ψ1〉 −

1

2

]

× Re

{

〈ψ1|
∂28

∂rα∂rγ
p̂δ |ψ2〉〈ψ2|ψ1〉

}

− 2s1βs1σ s2σ

× Re

{

〈ψ1|
∂28

∂rα∂rγ
p̂δ |ψ2〉〈ψ2|ψ1〉

}

. (6)

In the formula (6), the quantum average is calculated

by integration across the coordinates. The formula (3) is

written for the momentum dynamics of one conductivity

electron. In order to find the dynamics of the average

momentum for an assembly of the conductivity electrons,

the formula (6) shall be averaged along the spin states

of these electrons. If the conductivity electrons are not

polarized, then in a macroscopically isotropic medium

〈s1β〉 = 0, 〈s1βs1σ 〉 = δβσ /4. Then

d pα
dt

= −~eεβγδ
4m2c2

s2β Re

{

〈ψ1|
∂28

∂rα∂rγ
p̂δ |ψ2〉〈ψ2|ψ1〉

}

.

(7)

The left-hand side of relation (7) is equal to the force

acting on an electron. It may be presented as a result

of influence of the foreign electric field EAH on the

electron. The right-hand side of the relationship (7) is

associated with pairwise interaction of the conductivity

electron with one localized electron. In order to find the

full field EAH , the formula (7) shall be summated over all

the localized electrons taking into account their spins. In

the ferromagnetic, the spins of the localized electrons of

magnetization are oriented similarly within a domain due

to exchange interaction, and it can be assumed for them

that all s2β = sβ . The spins of the other localized electrons

are arbitrarily oriented and their total contribution to the

field EAH is zero.

Let each node have only one localized electron with the

wave function ψ2(r) = 9L(r − ri). Here ri is the coordinate

of the i-th node, the starting point is a node with the

collectivized conductivity electron with the wave function

like in (4). Then, for the potential of the effective field like

in (5), by substituting the variables r− rk → r, we obtain

EAHα=
~eZsβ

16πε0m2c2N
Re

{

exp
(

ik(Rn−Rm)
)

〈9C(r+rk−Rn)|

×
(

3
εβγδrαrγ

r5
+
εαβδ

r3

)

p̂δ |9L(r + rk − ri)〉

× 〈9L(r− ri)|9C(r − Rm)〉
}

. (8)

The atomic functions are exponentially small when

r > Ra = naB/Z, n is the principal quantum number. At

the same time, the distance between atoms in the crystal

is substantially higher than Ra . Therefore, in the first

approximation only the summands with ri = rk can be left

in the relationship (8). The different atomic wave functions

are orthogonal so when Rm−rk = 0 the right-hand side of

(8) is zero. The operator

(

3
εβγδrαrγ

r5
+
εαβδ

r3

)

p̂δ

in the right-hand side of the relationship (8) is odd. If the

wave functions 9L and 9C have the same parity (s−d-
interaction), then when Rn−rk = 0 the right-hand side

of (8) is zero. It is possible to limit by a nearest neighbors

approximation and to restrict the right-hand side only with

summands for which Rn−rk = ai , and Rm−rk = a j , where

ai — the vector from the considered atom with a center

in the point r = 0 to the nearest neighbor. Thein, in the

relationship (8) in the first order of smallness for kai we

obtain:

EAHα =
~Zesβkµ
8πε0m2c2

(a iµ − a jµ) Im

{

〈9C(r−ai)|

×
(

3
εβγδrαrγ

r5
+
εαβδ

r3

)

p̂δ|9L〉〈9L|9C(r− a j)〉
}

. (9)

Considering the AHE only in metals, we will use the

ideal Fermi gas approximation for conductivity electrons.

Applicability of this model for the conductivity electrons in

the metals is justified by the fact that thermodynamics of

the Fermi system is determined by its microscopic structure

only near the Fermi surface and is completely irrelevant

of what is happening outside blur of the order of kBT ,
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where kB — the Boltzmann constant, T — the temperature.

As a result, the denser Fermi gas in the metal, the more

ideal it is [21]. The experimental studies of the temperature

dependence of the electron heat capacity in the metals show

that it well corresponds to the model of the ideal Fermi gas

with the scalar effective mass m∗.

2. Dissipation-independent AHE in a
polycrystalline ferromagnetic

Let us consider a homogeneous and isotropic macro-

scopic area of the polycrystalline ferromagnetic, within

which the current density and magnetization may be

considered to be constant. Assume within the framework

of the effective mass method in (9) k = −jm∗/(~ene),
where j — the density of the charge current, ne — the

concentration of the conductivity electrons. Within this area

we average the equation (8) along the spin momentums of

the localized electrons. Each crystallite is split into domains

magnetized to saturation MS = BS/µ0, where BS — the

saturation induction, and within the crystallite it can be

assumed that 〈s〉 = −M/(µBna), where µB — the Bohr

magneton, na — the atom concentration. Then

EAHα =
Zm∗Mβ jµ(a iµ − a jµ)

8πε0m2c2µBnena
Im

{

〈9C(r−ai)|

×
(

3
εβγδrαrγ

r5
+
εαβδ

r3

)

p̂δ|9L〉〈9L|9C(r− a j)〉
}

. (10)

The energy of the electron in the atom in the electric

field depends on a projection of its orbital moment to the

field direction [8]. Therefore, orientation of the atom orbitals

is determined by a position of crystallophysical axes of the

crystallite and it may be assumed that the relationship (10)
is written in the system of coordinates that is associated with

the crystallite symmetry axes. Let us introduce a laboratory

coordinate system associated with the instruments that set

the conductivity current and magnetization and measure

components of the electric field. That is why the vectors

of the current density, magnetization and the electric field

shall be assumed to be defined in the laboratory coordinate

system. The components of vectors and tensors in the

laboratory system will be denoted by hatched indices, and

the components of vectors and tensors in the coordinate

system associated with the domain crystal axes will be

denoted by non-hatched indices.

Let us transform, within the crystallite, the vector of

the current density and the magnetization vector from the

laboratory system into the system of the crystallophysical

axes, jµ = pµµ′ jµ′ , Mβ = pββ′Mβ′ , and transform the vector

of the Hall electric field from the system of the crystal-

lophysical axes into the laboratory one EHα′ = p−1
α′αEHα ,

where pα′α — the unitary rotation matrix. By inserting

this conversion into the equation (10), we average the vec-

tor EAH in the macroscopic area over random orientations of

the crystallites. The rotation matrix is convenient to express

through Euler angles:

pi j =













cos(α) cos(γ)− − cos(α) sin(γ)− sin(α) sin(β)
sin(α) cos(β) sin(γ) sin(α) cos(β) cos(γ)

sin(α) cos(γ)+ − sin(α) sin(γ)+
− cos(α) sin(β)

cos(α) cos(β) sin(γ) cos(α) cos(β) cos(γ)

sin(β) sin(γ) sin(β) cos(γ) cos(β)













,

where 0 ≤ α ≤ 2π — the precession angle, 0 ≤ β ≤ π —
the nutation angle, 0 ≤ γ ≤ 2π — the angle of intrinsic

rotation. Then for the macroscopically isotropic polycrys-

talline ferromagnetic averaging over the random orientations

of the crystallite is reduced to averaging over the random

uniformly-distributed Euler angles.

EHα′ =
Zm∗µ0Mβ′ jµ′ p−1

α′αpββ′ pµµ′

8πm2µBnena
(a iµ − a jµ)

× Im

{

〈9C(r−ai)|
(

3
εβγδrαrγ

r5
+
εαβδ

r3

)

× p̂δ|9L0〉〈9L0|9C(r− a j)〉
}

. (11)

Here

p =
1

8π2

2π
∫

0

π
∫

0

2π
∫

0

sin(β)p(α, β, γ)dαdβdγ. (12)

With analytical averaging of the equation (11), the

integrals of the type (12) were calculated in a coordinate

form, and then the result was transformed into an invariant

form. As a result, we obtain

EAH = R1[j× µ0M],

R1 =
~eZ

48πmµBna

m∗/m
ene

Re

{

〈9C(r−ai)|

× 3r
(

r(ai − a j)
)

− (ai − a j)r2

r3
∂

∂r

× |9L0〉〈9L0|9C(r− a j)〉
}

. (13)

3. Calculation of AHE coefficient

The first relationship (13) is similar in a form wit the

expression for the classic Hall effect if the vector µ0M is

replaced by the vector of magnetic induction B. Therefore,

it can be expected that the intrinsic AHE coefficient R1 also

depends on the effective mass of the conductivity electrons

including its sign and on their concentration as does the

coefficient R0 of the classic Hall effect. Then the second
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part of the formula (13) can be written as

R1 =
~eZR0

48πmµBna
Re

{

〈9C(r−ai)|

× 3r
(

r(ai − a j)
)

− (ai − a j)r2

r3
∂

∂r

× |9L〉〈9L|9C(r− a j)〉
}

. (14)

We transform the double sum of the formula (14) in curly

brackets into a product of the sums:

3

( 3
∑

µ=1

N
∑

i=1

Aiµ

)( N
∑

i=1

C i

)

−
( 3

∑

µ=1

N
∑

i=1

B iµ

)( N
∑

i=1

C i

)

− 3

( N
∑

i=1

Di

)( N
∑

i=1

aiC i

)

+

( N
∑

i=1

Ei

)( N
∑

i=1

aiC i

)

.

(15)
Here

Aiµ = 〈a iµ9C(r− ai)|
rµ
r5

(

r
∂

∂r

)

|9L〉,

B iµ = 〈a iµ9C(r − ai)|
1

r3
∂

∂rµ
|9L〉,

C i = 〈9L|9C(r− ai)〉,

Di = 〈9C(r− ai)|
r

r5

(

r
∂

∂r

)

|9L〉,

Ei = 〈9C(r − ai)|
1

r3
∂

∂r
|9L〉. (16)

Let’s proceed to the spherical system of coordinates and

direct in each of the averages (15) the polar axis z along

the vector ai . Then, there is only one non-zero component

of this vector a iz = a i = |ai | in each of the summands in

(15). At the same time, the first and second summands of

the formula (15) have only

Aiz = Ai = a i〈9C(r− ai)|
cos(θ)

r3
∂

∂r
|9L〉

and

B iz =B i=a i〈9C(r−ai)|
1

r3

(

cos(θ)
∂

∂r
− 1

r sin(θ)
∂

∂θ

)

|9L〉.

Let us consider interaction of the 4s conductivity electron

with the wave function

WC(ρ)=R40(ρ)=
1

768
(−ρ3+24ρ2−144ρ+192) exp

(

−ρ

4

)

,

where ρ = rZ
aB
, and the 3d magnetization electron with the

wave function

WL(ρ) =

2
∑

m=−2

cmWLm(ρ),

WLm(ρ) = R32(ρ)Y2m(θ) exp(imϕ),

R32(ρ) =
4

81
√
30

ρ2 exp

(

−ρ

3

)

.

Here m is the magnetic quantum number. Then

9C(r− ai) = R40(ρi),

ρi =
√

ρ2 + b2
i − 2ρbi cos(θ), bi = Za i/aB ,

and all the magnitudes (16) are provided with a non-zero

contribution only by the state

WL0(ρ) =
√

5/16π R32(ρ)
(

1− 3 cos2(θ)
)

.

In this state the vectors Di and Ei are directed along the

vector ai .

The experimental values of a portion of the orbital

component of the magnetic moment of the magnetization

electron at 300K are (0.0918 ± 0.003)) for iron; are

(0.1472 ± 0.003) for cobalt; and are (0.0507 ± 0.0027) for

nickel [22,23]. Therefore, it can be assumed that the states

with different values of a projection of the orbital moment

to the arbitrary axis of quantization are equally probable and

that a portion of the states 9L0 with the magnetic quantum

number m = 0, which contribute to (15), is 1/5. Then in

the formulas (16) we obtain

Ai =
2πZ3bi

a3
B

√
16π

∞
∫

0

1
∫

−1

dR32(ρ)/dρ
ρ

R40(ρi)(1− 3y2)ydρdy,

Di =
ai

a2
i

Ai,

B i =
2πZ3bi

a3
B

√
16π

∞
∫

0

1
∫

−1

{

(1− 3y2)dR32(ρ)/dρ
ρ

− 6R32(ρ)

ρ2

}

× R40(ρi)ydρdy, Ei =
ai

a2
i

B i,

C i =
2π√
16π

∞
∫

0

1
∫

−1

R32(ρ)R40(ρi)(1− 3y2)dρdy. (17)

Here, y = cos(θ). It is clear from the formulas (17)
that the magnitudes Ai , B i and C i like in (16), which are

included in the sums (15) depend only on the distance from

the considered atom to the nearest neighbor. Therefore, dur-

ing their calculation the nearest neighbors of the considered

atom can be divided into groups with the same distances

thereto. If the lattice is symmetrical and each neighbor with

the coordinate ai is matched with the neighbor with the

coordinate — ai , then the third and fourth summands of

the formula (15) are zero. Let us note that na = NA/vm,

where vm — the molar volume, NA = 6.02214 · 1023 —
the Avogadro’s number. The formula (14) then takes the

following form

R1

R0

=
~eZvm

48πmµBNA

(

∑

i

mi(3Ai − B i)

)(

∑

i

miC i

)

. (18)
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Here mi is the number of the nearest neighbors of the

considered atoms at the distance of a i thereto.

For nickel Z = 10.5; vm = 6.6 · 10−6 m3. The numerical

calculation of the relationship R1/R0 by the formulas (17)
and (18) gives the value 0.16. For cobalt Z = 10.42;

vm = 6.7 · 10−6 m3; R1/R0 = 0.35. For iron Z = 10.3;

vm = 7.1 · 10−6 m3; R1/R0 = 0.33.

4. Comparison with experiment

From the formula (1), assuming that M(B ≫ BS) = MS ,

we obtain

R0 = lim
B≫BS

(

dρH

dB

)

,

RS =
ρH(B = 0,M = MS)

BS
=

lim
B≫BS

(

ρH(B) − R0B
)

BS
. (19)

The graphs illustrating the formulas (19) are provided

in the paper [24]. In the study [25], the AHE coefficient

was calculated by the formula RS = lim
B→0

(dρH/dB)−R0 in

assuming that lim
B→0

(µ0M/B) = 1. For ferromagnetics in the

Rayleigh region this condition may not be satisfied. So, the

values of RS were recalculated by the data of the paper [25]
on Fig. 2, 3, 6 and 7.

When T = 4.2K for nickel

R0 = −0.34 · 10−10m3/C,

ρH(B = 2.08T) = −0.73 · 10−10� ·m,
BS = 0.61T.

Then

RS = −0.035 · 10−10 m3/C,

RS/R0 = 0.11.

For cobalt

R0 = −1.0 · 10−10 m3/C,

ρH(B = 2.5T) = −2.96 · 10−10� ·m,
BS = 1.7T,

RS = −0.27 · 10−10 m3/C,

RS/R0 = 0.27.

For iron

R0 = 0.052 · 10−10 m3/C,

ρH(B = 2.84T) = 0.25 · 10−10� ·m,
BS = 2.15T,

RS = 0.048 · 10−10m3/C,

RS/R0 = 0.92.

For nickel ρ292/ρ4.2 = 57.2; for cobalt ρ292/ρ4.2 = 66.3.

For nickel and cobalt the conductivity when T = 4.2K is

about 109 S/m, and within the measurement error it can be

assumed that RS ≈ R1. The calculated values of the ratio

R1/R0 exceed the measured values of RS/R0 approximately

by 25%. This discrepancy agrees with the measurement

error, since according to the second formula (18) the value

of RS is found as a small difference of two close values. For

iron ρ292/ρ4.2 = 11.45; the conductivity when T = 4.2K is

1.2 · 108 S/m, while the AHE constant and the calculated

value of the intrinsic AHE coefficient are in 20 times less

than those for cobalt. The measured value of the ratio RS/R0

exceeds the calculated ratio R1/R0 in 2.7 times. For pure

iron ρ292/ρ10 ≈ 104 [26], and it can be presumed that with

iron purity of 99.998% contribution to AHE by impurity-

dependent dissipation substantially exceeds the dissipation-

independent one, so RS is substantially higher than R1.

Conclusion

A promising field for implementing a new generation of

devices of information and sensor technologies is antifer-

romagnetic spintronics based on AHE [27]. Substantiation

of methods of designing the spintronics systems, calculat-

ing and optimizing their characteristics requires additional

assumptions about the system. These assumptions include

the representation of the wave function of the collectivized

conductivity electron in the form of the Vanier function, the

effective charge approximation and the nearest neighbors

approximation in the relationship (8) as well as the model

of the ideal Fermi gas for the conductivity electrons and

taking into account the structure of the Fermi surface by

the constant of the normal Hall effect. The SHE coefficients

calculated within the framework of these models comply

with the measured ones [15,16].

For AHE analysis, these assumptions are supplemented

with an assumption that it is possible to regard the ferromag-

netic crystallite as the homonuclear macromolecule within

framework of the single-electron Hartree−Fock method.

The magnetic structure of the planar antiferromagnetic

can be presented as two sublattices that are shifted by

a lattice vector and magnetized to saturation in opposite

directions. The magnetic structure of a helimagnetic can be

presented as a result of twisting of the centrally-symmetrical

lattice of the saturation-magnetized ferromagnetic around

a chirality axis [28]. Compliance of the AHE coefficients

in the ferromagnetics calculated in these assumptions with

the measured ones makes it possible to use the proposed

method for constructing the AHE model in antiferromag-

netics.

Presently, the AHE is actively studied in Heusler-type

alloys, which belong to a group of the Weyl semimetals,

including with a Kagome structure, and together with metal

antiferromagnetics are regarded as promising materials for

the spintronics elements. In the volume single crystal of

the Weyl ferromagnetic semimetal ferromagnetic (SMFM)
Co2MnAl at the room temperature the anomalous Hall

conductivity (AHC) of 1.3 · 105 S/m was recorded with

the record value tan(θAH) = 0.21. By comparing the

temperature dependences of longitudinal resistivity and
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AHC, it is shown that the AHE is an intrinsic one [29]. The
SMFM LiMn6Sn6 with the Kagome structure has exhibited

the intrinsic AHC of 3.8 · 104 S/m when T = 50K. At the

room temperature, the AHC decreases approximately in

two times [30]. The authors explain the large AHE by

the fact that the band structure of LiMn6Sn6 has several

band intersections, including a spin-polarized Dirac point

in the point K close to the Fermi energy. In the Weyl

antiferromagnetic semimetal HoAgGe with the Kagome

distorted lattice, the AHC of 2.8 · 105 S/m was recorded

when T = 45K [31]. The authors believe that distortion of

the ideal Kagome lattice by oppositely rotating the triangles

results in formation of a noncentrosymmetric structure. As

a result, a doubly-degenerate Dirac cone of the Kagome

lattices turns into a pair of the Weyl points that can generate

the large Berry curvature and, therefore, the large intrinsic

AHE.

A review of theoretical and experimental studies for the

SMFM properties is given in the paper [32]. It is noted that

one of the causes of a non-trivial topology of the electron

band structure of the Weyl semimetals manifested in the

gigantic AHE is spin-orbit interaction [33]. The gigantic

AHE in combination with SHE and the Nernst spin effect is

found in manganese-based semimetals that are promising for

spintronics [34]. It can be assumed that the intrinsic AHE

in the SMFM as well as AHE in the metal ferromagnetics

and SHE in the non-magnetic conductors is of a spin-

orbit nature. The topology of the electron band structure

determines all the SMFM transport properties, including its

longitudinal and transverse conductivities. The experimental

temperature and magnetic-field dependences of longitudinal

and transverse conductivity for the SMFM given in the

papers [29–31] are similar to respective dependences for

the metal ferromagnetic [10–13,24,25]. This suggests that

the proposed method can be used for constructing the

AHE model in the SMFM. In doing so, it is necessary

to modify the formula (7) obtained in an assumption,

valid for the metal ferromagnetics, that the conductivity

electrons are not polarized. Vice versa, in the SMFM at

the low temperatures, the conductivity electrons are highly

polarized [32,35]. Besides, presence of non-quasiparticle

states in the SMFM can bring about some complexity.

The SMFM crystal lattice, especially with the Kagome

structure, is much more complicated than that of the

metals. It is advisable to regard it as a superposition of

several homonuclear sublattices Thus, the presentation of

the complex lattice A15 of β-tungsten as the superposition

of two simple sublattices made it possible to analyze the

gigantic SHE in it with satisfactory accuracy [16]. Here, an
approach developed in the paper [36] can be promising.
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