02

Влияние допирования ионами Ce^{3+} на центры окраски в кристалле KY_3F_{10} , индуцированные рентгеновским излучением

© А.К. Наумов 1,2 , Е.Ю. Целищева 3 , Д.И. Целищев 4 , Р.Д. Аглямов 1,2 , \P

1 Казанский Приволжский федеральный университет,

Казань. Россия

Москва, Россия

e-mail: aglyam92@mail.ru

Поступила в редакцию 12.01.2024 г. В окончательной редакции 11.11.2024 г. Принята к публикации 27.08.2025 г.

Представлены результаты исследований оптических свойств центров окраски, образующихся при рентгеновском облучении, в номинально чистом кристалле KY_3F_{10} и допированном ионами Ce^{3+} , определены типы и постоянные времени их эволюции. Рассмотрено влияние на эволюцию центров окраски допирования кристалла ионами Ce^{3+} . Проведено сравнение параметров центров окраски в допированном кристалле и номинально чистом. Индуцированные рентгеновским излучением центры окраски определены в номинально чистом кристалле как центры окраски F- и F_2 -типов, а в допированном — F-, F_2 - и F_A -типов. В кристалле KY_3F_{10} , допированном ионами Ce^{3+} , времена рекомбинации свободных носителей заряда, обусловленных центрами окраски F-типа, существенно отличаются от времен рекомбинации зарядов, обусловленных этими типами центров окраски в номинально чистом кристалле. В допированном кристалле (в сравнении с номинально чистым) максимумы полос поглощения смещаются в коротковолновую область.

Ключевые слова: КY₃F₁₀, Се, центры окраски, типы центров, оптические спектры пропускания, диаграмма энергетических состояний.

DOI: 10.61011/OS.2025.08.61509.5882-24

Введение

В настоящее время фторидные кристаллы, как материалы для сцинтилляторов, играют одну из первостепенных ролей благодаря широкой запрещенной зоне, простирающейся в коротковолновую область с границей вплоть до 100 nm. Эти кристаллы, допированные ионами трёхвалентного церия, обладают высокой светоотдачей благодаря разрешенным $5d \leftrightarrow 4f$ -переходам этого допанта, а также коротким (не более десятков наносекунд) высвечиванием. Их отличает типичная для этих кристаллов локализация межконфигурационных $4f \leftrightarrow 5d$ переходов ионов Се³⁺ преимущественно в УФ области спектра [1]. Поэтому эти кристаллы довольно давно используются в качестве сцинтилляторов, преобразующих жесткое излучение в излучение оптического диапазона [2-4]. Кроме того, в последнее время фторидные кристаллы, допированные ионами Ce^{3+} , применяются в лазерах в качестве УФ активных сред [5].

Кристаллы-сцинтилляторы подвержены окрашиванию под действием жесткого излучения. Это явление имеет двойственное значение: с одной стороны, образование центров окраски (ЦО) в кристаллах ухудшает их

светоотдачу в УФ области спектра — основной для сцинтилляторов, с другой стороны, именно благодаря образованию и накоплению ЦО эти кристаллы находят применение в дозиметрии, что определяется по плотности окрашивания кристаллов и/или термовысвечиванию [6]. Следует отметить, что в ряде случаев сами ЦО в кристаллах используются как активные среды лазеров ИК области спектра [7].

По всем этим причинам знание механизмов образования и разрушения ЦО в допированных и номинально чистых фторидных кристаллах под действием рентгеновского излучения, а также изучение их оптических свойств весьма актуально для их применения в качестве сцинтилляторов, дозиметров или активных сред для УФ и ВУФ лазеров.

Выбор в качестве объекта исследования кристалла KY_3F_{10} с простой кубической структурой с целью исключения проблем, связанных с зависимостью свойств спектров от поляризации света в анизотропных кристаллах, позволяет упростить исследование свойств и анализ поведения ЦО в номинально чистых и допированных кристаллах, образуемых под действием рентгеновского излучения.

 $^{^2}$ Казанский физико-технический институт им. Е.К. Завойского — ФИЦ "Казанский научный центр РАН", Казань. Россия

³ ЗАО "Транснефть-Автоматизация и метрология",

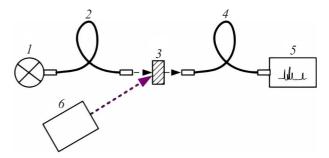
⁴ Всероссийский научно-исследовательский институт расходометрии — филиал федерального государственного унитарного предприятия "Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева", Казань, Россия

Образцы

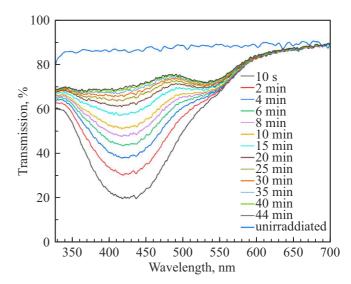
Кристалл КҮF имеет широкую запрещенную зону ($\sim 10\,\mathrm{eV}~[8]$), структура этого кристалла кубическая, пространственная группа $Fm\overline{3}m~(O_h^5)$. При активации редкоземельными ионами они преимущественно занимают позицию иттрия [9]. Образцы кристалла КҮF:Ce³⁺ были выращены методом направленной кристаллизации в графитовых тиглях при избыточном давлении фторированной атмосферы аргона. Все исходные компоненты шихты имели чистоту порядка 99.99%. Для получения допированных образцов кристаллов осуществлялось внесение в шихту соединения CeF₃ в количестве 1 at.%.

Из выращенных буль были изготовлены образцы для исследований в виде дисков диаметром 6 mm и толщиной 2 mm с полированными плоскопараллельными поверхностями.

Экспериментальная установка


В основе установки для изучения релаксации ЦО в кристаллах при комнатной температуре, индуцированных в них рентгеновским излучением, использовался спектрометр компании StellarNet с возможностью регистрации спектров в области 190—1100 nm с разрешением 0.5 nm. Этого было вполне достаточно для регистрации спектров поглощения и люминесценции ЦО, имеющих широкие спектральные полосы. Кроме того, у этого спектрометра имеется возможность автоматически регистрировать серии спектров с заданным временным интервалом. Время экспозиции при регистрации спектров составляло 3 s. На рис. 1 приведена схема экспериментальной установки.

Во всех экспериментах в качестве источника рентгеновского излучения использовалась рентгеновская трубка с вольфрамовым катодом ($I=16\,\mathrm{mA},\,U=55\,\mathrm{kV}$).

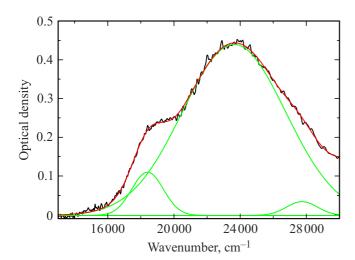

Индуцированные рентгеновским излучением ЦО и их эволюция в номинально чистом образце кристалла КУF

Для индуцирования ЦО и последующего изучения их эволюции в кристаллах КҮГ образцы кристалла КҮГ экспонировались непрерывным рентгеновским излучением рентгеновской трубки с вольфрамовым катодом в течение 10 min, после которого образец обретал желтый цвет в области облучения.

Образец с минимальной задержкой помещался в регистрирующую установку и запускался процесс измерений. Процесс регистрации спектров пропускания образцов длился 6 h. Спектры регистрировались спектрометром 5 (рис. 1) автоматически через заданные интервалы времени. Первый спектр этой серии соответствовал моменту времени спустя несколько секунд, а последний - спустя

Рис. 1. Схема экспериментальной установки: 1 — лампа, 2, 4 — световод, 3 — образец, 5 — спектрометр, 6 — источник рентгеновского излучения.

Рис. 2. Серия спектров пропускания недопированного кристалла КҮF, зарегистрированная через различные временные интервалы после облучения рентгеном.


несколько дней после прекращения экспозиции образцов.

На рис. 2 представлен результат регистрации серии спектров пропускания номинально чистого образца (НЧО) кристалла КҮГ после облучения рентгеновским излучением за первые 45 min. Внешний вид полученных спектров, их положение максимумов по длинам волн и ширина характерны для ЦО в кристаллах. Выцветающий со временем желтый цвет облученного места образца также говорит об этом.

На рис. 2 видно, что спектры пропускания НЧО кристалла КУГ после облучения рентгеновским излучением состоят из нескольких перекрывающихся спектральных полос. Спектры пропускания были пересчитаны в спектры оптической плотности, а длины волн преобразованы в волновые числа. При помощи программы для обработки и анализа спектров было осуществлено математическое разложение этих спектров на составляющие их гауссовы контуры. На рис. 3 представлен результат математического разложения, соответствующий спектру

N₂	Площадь	Центр, cm^{-1}	Ширина, cm^{-1}	Высота, rel. units
1	268	18400	1914.3	0.11
2	3448	23620	6230.4	0.44
3	84	27740	1870.4	0.04

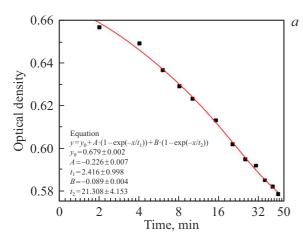
Таблица 1. Параметры гауссовых контуров

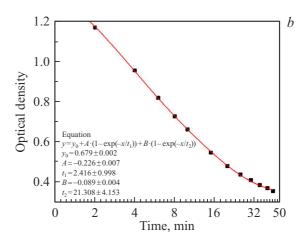
Рис. 3. Результат разложения спектра оптической плотности НЧО кристалла КҮГ на три гауссовых контура.

пропускания, зарегистрированному через 15 min после окончания экспозиции рентгеновским излучением. Из рисунка видно, что спектр хорошо описывается 3 гауссовыми контурами с максимумами при 18400, 23620 и $27740~{\rm cm}^{-1}$, параметры которых представлены в табл. 1.

При внимательном рассмотрении серии спектров облученного образца кристалла КҮГ, приведенной на рис. 2, видно, что интенсивность спектральной полосы с максимумом на $18400\,\mathrm{cm}^{-1}$ практически не меняется со временем и присутствует во всех спектрах, в то время как интенсивности полос с максимумами на $23620\,\mathrm{m}$ и $27740\,\mathrm{cm}^{-1}$ уменьшаются со временем.

Для этих полос были построены зависимости оптических плотностей на частотах 23620 и 27740 cm $^{-1}$, соответствующие максимумам, от времени после облучения, которые представлены на рис. 4. Эти зависимости аппроксимировались двухэкспоненциальными кривыми с характерными временами 21 \pm 4 и 2 \pm 1 min для полосы с максимумом 27740 cm $^{-1}$ и 13 \pm 2 и 2.0 \pm 0.5 min для полосы с максимумом 23620 cm $^{-1}$.


На рис. 4, a вклад от экспоненты с большим временем (21 min) в несколько раз больше, чем от экспоненты с малым временем (2 min), а для зависимости на рис. 4, b вклады от двух экспонент в общую зависимость также сильно отличаются: 13 и 2 min.


Появление в спектре поглощения образца дополнительных полос после облучения рентгеновским излуче-

нием обусловлено образованием в кристалле ЦО. Таким образом, исходя из полученных результатов можно заключить, что в НЧО кристалле КҮГ при его рентгеновском облучении образуется предположительно несколько типов ЦО. Наиболее интенсивная полоса в спектре оптической плотности с максимумом на 27740 cm⁻¹ обусловлена наличием самого простого электронного типа центров окраски — F-центра. Спектр этого центра состоит из одной широкой колоколообразной полосы, характерной для центров F-типа, и максимум данной полосы хорошо совпадает с максимумами полос F-центров в других близких по строению кристаллах [10]. Коротковолновая полоса с максимумом на 23620 cm⁻¹ интерпретируется как К-полоса высоколежащего состояния Fцентров, появляющаяся в результате его возбуждения. Не меняющаяся со временем полоса с максимумом на $18400\,\mathrm{cm^{-1}}$, скорее всего, принадлежит более сложному F₂-электронному ЦО, который представляет собой два близко расположенных F-центра.


На основе анализа экспериментальных данных была построена диаграмма в виде модели открытой квантовой системы с происходящими процессами в НЧО кристалле КҮГ после рентгеновского облучения, которая представленная на рис. 5. Протекающие процессы можно объяснить следующим образом. В результате поглощения образцом кристалла квантов рентгеновского излучения происходит межзонный переход: валентная зона ightarrow зона проводимости (ЗП). Состояние электронов в ЗП неравновесное. В результате блуждания по ЗП электроны из нее могут быть захвачены состояниями локальных дефектов кристалла с образованием ЦО двух типов — Fцентров с полосами поглощения на 23620 и $27740\,\mathrm{cm}^{-1}$ и F_2 -центров с полосой поглощения на $18400\,\mathrm{cm}^{-1}$. В зависимости от положения основного состояния относительно зон кристалла ЦО могут быть стабильными и нестабильными при комнатной температуре. Так как полоса поглощения с максимумом на 18400 ст-1, интерпретируемая как полоса поглощения F2-центров, не меняет свою интенсивность со временем, а полосы F-центров с максимумами на 23620 и 27740 cm⁻¹ имеют ограниченное время жизни, можно заключить, что основное состояние F2-центров находится глубже в запрещенной зоне, чем основное состояние F-центров.

Таким образом, в результате рентгеновского облучения в НЧО кристалле КҮF образуются ЦО двух типов — предположительно F- и F_2 -центры. При этом, судя по большему времени жизни F_2 -центров при комнатной

Рис. 4. Зависимости оптической плотности образца НЧО кристалла КҮF от времени после воздействия рентгеновского излучения (a) при спектральной полосе с волновым числом на 27740 cm⁻¹, (b) при спектральной полосе с волновым числом на 23620 cm⁻¹.

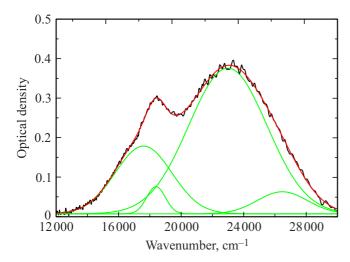
Рис. 5. Диаграмма энергетических состояний ЦО в образце недопированного кристалла КҮГ относительно фундаментальных зон (VB и CB), а также переходов между ними после облучения рентгеном.

60 50 Transmission, % 40 min min min 30 miņ min min 20 min 29 min 5 min 10 41 min 49 min unirraddiated 350 400 550 300 450 500 600 650 Wavelength, nm

Рис. 6. Спектры пропускания кристалла КҮГ:Се³⁺, зарегистрированные через различные временные интервалы после рентгеновского облучения.

температуре, чем у F-центров, можно сделать вывод, что их основное состояние находится глубже в запрещенной зоне, чем основное состояние F-центров.

Образование ЦО под действием рентгеновского излучения в кристалле КҮF, допированном ионами Ce³⁺, и их эволюция


Аналогичные процедуры, примененные к НЧО, были проделаны с образцом кристалла КҮF, допированного ионами Ce^{3+} . Была получена серия спектров пропускания кристалла КҮF: Ce^{3+} после облучения его ренттеновским излучением, зарегистрированная с определенными временными интервалами после облучения. Эти спектры приведены на рис. 6.

На рис. 6 видно, что пропускание образца кристалла КҮГ:Се³⁺ после облучения рентгеновским излучением состоит из нескольких перекрывающихся полос. Также можно видеть, что интенсивности некоторых из них убывают со временем. Спектры пропускания были преобразованы в спектры оптической плотности в зависимости от волнового числа. Затем осуществлено их математическое разложение на составляющие гауссовы контуры. На рис. 7 в качестве примера представлен результат разложения. Спектры достаточно хорошо описываются четырьмя гауссовыми контурами с максимумами при волновых числах 17600, 18400, 23580 и 27300 сm⁻¹. Параметры этих контуров представлены в табл. 2.

Из рис. 7 видно, что полосы с максимумами на 17600 и $18400\,\mathrm{cm}^{-1}$ практически не меняются со временем, а интенсивности полос с максимумами при волновых

N₂	Площадь	Центр, cm^{-1}	Ширина, cm^{-1}	Высота, rel. units
1	778	17600	3618.1	0.17
2	103	18400	1194.4	0.07
3	2316	23580	5006.9	0.37
4	224	27300	3185.2	0.06

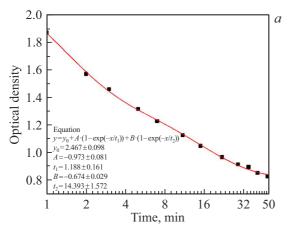
Таблица 2. Параметры гауссовых контуров спектра ЦО образца кристалла КҮГ:Се³⁺ после рентгеновского облучения

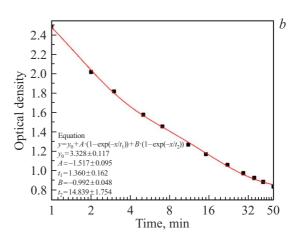
Рис. 7. Результат разложения спектра оптической плотности образца кристалла $KYF:Ce^{3+}$ на четыре гауссова контура.

числах 23580 и 27300 cm $^{-1}$ убывают. Для этих убывающих полос были построены зависимости оптических плотностей при волновых числах 23580 и 27300 cm $^{-1}$ от времени после облучения (рис. 8). Каждая из полученных зависимостей аппроксимировалась двухэкспоненциальными кривыми с характерными временами 14 ± 2 , 1.5 ± 0.5 min для полосы с максимумом на 23580 cm $^{-1}$ и 15 ± 2 , 1.5 ± 0.5 min для полосы с максимумом на 27300 cm $^{-1}$.

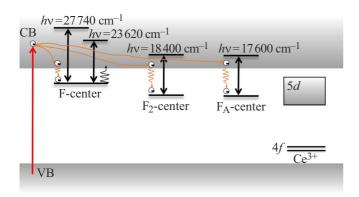
Полосы с максимумами при волновых числах 18400, 23580 и $27300\,\mathrm{cm^{-1}}$ в кристалле KYF:Ce³⁺ совпадают с полосами, наблюдаемыми после рентгеновского облучения в НЧО кристалле. Это означает, что в кристалле KYF, допированном ионами Ce^{3+} , образуются те же ЦО, которые образуются в чистом КҮГ. Однако в спектрах кристалла, допированного ионами Се³⁺, имеется полоса, отсутствовавшая в спектре чистого кристалла. Максимум этой полосы располагается на частоте $17600\,\mathrm{cm}^{-1}$ (рис. 7). Эта полосу предположительно мы относим к примесным, т.е. электронным ЦО, локализованным в кристаллической решетке рядом с примесным ионом Ce^{3+} . Доказательством тому может служить то, что данный ЦО появляется только при введении примеси. Времена жизни F-центров оказались меньше, чем для НЧО кристалла КҮГ, из чего можно сделать вывод, что примесные ионы Ce^{3+} ускоряют процесс рекомбинации свободных носителей заряда.

На основе анализа экспериментальных данных была построена диаграмма, на которой отображена модель процессов, происходящих в допированном кристалле KYF:Се³⁺ после рентгеновского облучения, которая представлена на рис. 9. При поглощении квантов рентгеновского излучения кристаллом KYF:Ce³⁺ внутри него происходит межзонный переход, вследствие чего электроны из валентной зоны попадают в зону проводимости кристалла. Из зоны проводимости электроны могут быть захвачены локальными дефектами кристаллической решетки KYF:Ce³⁺ с образованием ЦО трех типов: Fцентров с полосами поглощения на $23620 \text{ и } 27740 \text{ cm}^{-1}$, F_2 -центров с полосой поглощения на $18400\,\mathrm{cm}^{-1}$ и F_A центров с полосой поглощения на 17600 cm⁻¹. Полоса поглощения с максимумом на $17600\,\mathrm{cm}^{-1}$, интерпретируемая как полоса поглощения F_A -центров, не меняет свою интенсивность со временем, в то время как полосы F-центров с максимумами на 23580 и 27300 cm $^{-1}$ имеют ограниченное время жизни. Из этого можно заключить, что основное состояние F_A -центров в кристалле KYF:Се³⁺ находится глубже в запрещенной зоне, чем основное состояние F-центров.


Таким образом, при облучении рентгеновским излучением в кристалле образуются три типа ЦО: F-, F_2 - и F_A -центры. В случае облучения кристалла KYF:Ce³⁺ УФ излучением [11] образуются те же типы центров.


Заключение

В настоящей работе выявлены типы и параметры эволюции ЦО в НЧО кристалла КҮГ и ЦО в образце кристалла КҮГ, допированного ионами Ce^{3+} .


Таким образом, при рентгеновском облучении в номинально чистом кристалле КҮF образуются ЦО двух типов: предположительно F- и F_2 -центры. Наиболее интенсивная полоса поглощения наблюдается при максимуме с волновым числом $23620~{\rm cm}^{-1}$. Полосы поглощения с максимумами при волновых числах $23620~{\rm u}~27740~{\rm cm}^{-1}$ отнесены к центрам окраски F-типа. Полоса поглощения с максимумом при $18400~{\rm cm}^{-1}$ отнесена к центрам окраски типа F_2 .

При рентгеновском облучении допированного образца кристалла $KYF:Ce^{3+}$ образуются ЦО трех типов: наря-

Рис. 8. Зависимости оптической плотности кристалла KYF: Ce^{3+} от времени после рентгеновского облучения: (a) при спектральной полосе с волновым числом 27300 cm $^{-1}$, (b) при спектральной полосе с волновым числом 23580 cm $^{-1}$.

Рис. 9. Диаграмма энергетических состояний ЦО в образце кристалла $KYF:Ce^{3+}$ относительно фундаментальных зон и переходов между ними, образующихся после облучения рентгеном.

ду с F-центрами (23580 и 27300 сm $^{-1}$) и F $_2$ -центрами (18400 сm $^{-1}$), которые были обнаружены в номинально чистом кристалле, в допированном кристалле появляются центры предположительно примесные — F $_A$ типа с максимумом около 17600 сm $^{-1}$. Прослеживается согласованность типов ЦО на изучаемом образце с ЦО в других схожих по кристаллической структуре фторидных кристаллах [12,13]. В результате показано, что в случае облучения кристалла КYF:Се $^{3+}$ УФ излучением [11] образуются те же типы центров, что и при рентгеновском облучении, т.е. природа этих ЦО та же. Ионы Се $^{3+}$ являются "провокаторами" образования ЦО в кристалле через механизм двушажного возбуждения.

Из результатов исследований выявлено, что F_{2} - и F_{A} - центры более стабильны при комнатной температуре, из чего делается вывод, что их основные состояния находятся глубже в запрещенной зоне, чем основное состояние F-центров.

 ${
m M}$ наконец, в кристалле KYF допирование ионами ${
m Ce}^{3+}$ способствует ускорению процесса рекомбинации

свободных носителей заряда ЦО F-типа, соответствующей полосе 23580—23620 cm⁻¹, что проявляется в укорочении времени жизни с 21 до 14 min. В случае с более коротковолновой K-полосой наблюдается некоторое возрастание с 13 до 15 min, что может свидетельствовать о перетекании зарядов. Также наблюдается влияние допирования на смещение максимумов этих полос в коротковолновую область.

Кроме того, наряду с образованием центров F-типа в кристалле, допированном ионами Ce^{3+} , образуются стабильные ЦО — примесные центры F_A -типа, связанные с присутствием допанта.

Финансирование работы

Эксперименты по выращиванию кристаллов были выполнены за счет средств субсидии, выделенной Казанскому федеральному университету для выполнения государственного задания в сфере научной деятельности № FZSM-2023-012. Спектроскопические исследования были выполнены в рамках государственного задания Министерства науки и высшего образования Российской Федерации.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- P.A. Rodnyi, I.V. Khodyuk, G.B. Stryganyuk. Phys. Solid State, 50 (9), 1639–1643 (2008).
 DOI: 10.1134/S1063783408090072
- W.W. Moses, S.E. Derenzo. Nucl. Instrum. Methods Phys. Res. A, 299 (1-3), 51-56 (1990).
 DOI: 10.1016/0168-9002(90)90746-S
- [3] A. Gektin, N. Shiran, S. Neicheva, V. Gavrilyuk, A. Bensalah,
 T. Fukuda, K. Shimamura. Nucl. Instrum. Methods Phys. Res.
 A, 486 (1-2), 274-277 (2002).
 DOI: 10.1016/S0168-9002(02)00717-9

- [4] T. Nakazato, Y. Furukawa, M. Cadatal-Raduban, M. Pham, T. Tatsumi, A. Saiki, Y. Arikawa, N. Sarukura, H. Nishimura, H. Azechi, K. Mima, T. Fukuda, M. Hosaka, M. Katoh, N. Kosugi. Jpn. J. Appl. Phys., 49 (12R), 122602 (2010). DOI: 10.1143/JJAP.49.122602
- [5] M.A. Dubinskii, V.V. Semashko, A.K. Naumov,
 R.Yu. Abdulsabirov, S.L. Korableva. J. Mod. Optics,
 40 (1), 1–5 (1993). DOI: 10.1080/09500349314550011
- [6] N. Shiran, A. Gektin, S. Neicheva, V. Voronova, V. Kornienko,
 K. Shimamura, N. Ichinose. Radiat. Meas., 38 (4-6),
 459-462 (2004). DOI: 10.1016/j.radmeas.2004.03.010
- A.M. Prokhorov. Sov. Phys. Usp., 29 (1), 3–19 (1986).
 DOI: 10.1070/PU1986v029n01ABEH003077
- [8] N.G. Debelo, F.B. Dejene, K.T. Roro. Mater. Chem. Phys., 190, 62–67 (2017).
 DOI: 10.1016/j.matchemphys.2016.12.064
- [9] S.L. Chamberlain, L.R. Corruccini. Phys. Rev. B, 71, 024434 (2005). DOI: 10.1103/PhysRevB.71.024434
- [10] А.А. Воробьев. *Центры окраски в ЩКГ* (Издательство Томского университета, 1968), 386 с.
- [11] E.Yu. Tselishcheva, A.K. Naumov, D.I. Tselishchev, O.A. Morozov, S.L. Korableva, Opt. Spectrosc., **114** (6), 901–906 (2013).
- [12] W. Chen, P. Song, Y. Dong, Y. Zhang, W. Hua. Sci. Bull.,
 58 (11), 1321-1324 (2013).
 DOI: 10.1007/s11434-012-5615-z
- [13] J.V.R. Kaufman, C.D. Clark. J. Chem. Phys., 38, 1388–1399 (1963). DOI: 10.1063/1.1733863