10

Эффект Фарадея в трехпериодических бигиротропных фотонных кристаллах

© Н.Н. Дадоенкова¹, И.А. Глухов^{1,2,3}, И.С. Паняев^{1,2}, Д.Г. Санников^{1,2}, Ю.С. Дадоенкова⁴

Ульяновск, Россия

⁴ Université Jean Monnet Saint-Etienne, CNRS, Institut d'optique Graduate School,

Laboratoire Hubert Curien UMR 5516, Saint-Etienne, France

e-mail: panyaev.ivan@rambler.ru

Поступила в редакцию 09.12.2024 г. В окончательной редакции 06.05.2025 г. Принята к публикации 14.06.2025 г.

> Теоретически исследован магнитооптический эффект Фарадея в одномерных трехпериодических фотоннокристаллических структурах на основе диэлектриков (SiO2, TiO2) и ферритов-гранатов (YIG, Bi:YIG), образующих сверхъячейки вида $[(ab)^N(cd)^M]$. Рассмотрена полярная магнитооптическая конфигурация, при которой векторы намагниченности магнитных слоев фотонных кристаллов ортогональны границам слоев, а электромагнитная волна, распространяющаяся в фотонно-кристаллической структуре, имеет составляющую волнового вектора вдоль направления векторов намагниченности. С использованием метода матриц (4 × 4) получены частотно-угловые спектры прохождения плоских электромагнитных волн сквозь данные фотонные кристаллы. Исследованы положение и структура полос пропускания в спектрах запрещенных фотонных зон, зависимости углов фарадеевского вращения от частоты и угла падения электромагнитной волны для фотонных кристаллов при $N=3,\ M=5$ и K=7 (оптимальное количество периодов) при различных толщинах магнитных слоев. Показано, что в трехпериодических фотонных кристаллах возможно совмещение высоких значений коэффициентов пропускания и углов фарадеевского вращения, что делает данные структуры перспективными для различных технических приложений.

Ключевые слова: магнитооптический эффект Фарадея, запрещенная фотонная зона, фотонные кристаллы.

DOI: 10.61011/OS.2025.08.61513.7412-25

Введение

Магнитооптический эффект Фарадея известен как изменение состояния поляризации электромагнитной волны (ЭМВ) при прохождении сквозь магнитную среду или сложную структуру на основе магнитных материалов. В частности, проявлением этого эффекта является вращение плоскости поляризации линейнополяризованного оптического луча — фарадеевское вращение (ФВ) [1,2]. В настоящее время эффект Фарадея широко применяется для исследования магнитной структуры тонких магнитных пленок и многослойных магнитных материалов [1-3], а также для различных приложений, включая создание таких невзаимных устройств, как оптические изоляторы, циркуляторы или фазовращатели [1], магнитные датчики [4] или даже датчики химического обнаружения [5]. Большой интерес к исследованию ФВ вызывают перспективы многочисленных приложений в связи с возможностью управления эффектом при помощи внешних воздействий (внешние магнитное или электрическое поля, температура и т.д.) в различных функциональных материалах, в частности в электрооптических [6,7], плазмонных, магнитоплазмонных структурах [8], в комбинированных магнитных и электрооптических гетероструктурах [9], а также в магнитофотонных [10,11] и фотонно-магнонных кристаллах [12–16].

Фотонные кристаллы (ФК) благодаря искусственной периодичности показателя преломления имеют запрещенные фотонные зоны (ЗФЗ) в спектрах пропускания [17]. Нарушение периодичности ФК внедрением отдельных дефектных слоев или периодически распределенных других структурных элементов приводит к появлению узких пиков пропускания (дефектных мод) или систем пиков — полос пропускания структуры, сложность которых зависит от архитектуры дефекта. Внутри ЗФЗ однопериодического ФК с единственным дефектным слоем может находиться один или несколько (в зависимости от толщины дефекта) отдельных узких пиков пропускания. Так, например, в работе [18] полуширина пика пропускания для ФК с магнитным дефектом составляет примерно 1 THz-rad при ширине 3Ф3 0.33 PHz·rad. Наличие дефектных мод позволяет использовать подобные ФК в качестве узкополосных частотных

¹ Донецкий физико-технический институт им. А.А. Галкина,

Донецк, Россия ² Ульяновский государственный университет,

³ Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Ульяновск, Россия

фильтров и сенсоров. Отдельный интерес представляют собой ФК со сложной структурой элементарной ячейки на основе нескольких различных материалов, образующих внутри нее периодические подсистемы, ввиду модифицированной структуры их 3Ф3. К ним относятся, в частности, двухпериодические [12-16] и трехпериодические ФК [19-23]. В отличие от однопериодических структур с дефектным слоем в более сложных системах, к которым относятся двух- и трехпериодические ФК, внутри ЗФЗ имеются достаточно широкие полосы пропускания, которые, в частности, могут состоять из нескольких близко расположенных пиков (аналог "оптической гребенки") [12–14]. Количество внутризонных полос пропускания, их положение внутри 3Ф3 и ширина существенно зависят от комбинации материалов, образующих подьячейки трехпериодического ФК и геометрических параметров системы [19-23]. Включение магнитных слоев в структуру с комплексной элементарной ячейкой позволяет сочетать особенности сложного трехпериодического ФК с магнитооптическими свойствами, что дает возможность активного управления оптическими характеристиками такой системы.

В работе [12] был исследован эффект Фарадея в фотонно-магнонных структурах, представляющих собой одномерные двухпериодические магнитные ФК на основе чередующихся слоев SiO2, TiO2 с периодически внедренными между ними магнитными слоями железоиттриевого граната (YIG) Y₃Fe₅O₁₂. Как известно, YIG, который отличается низким поглощением в ближнем инфракрасном (ИК) диапазоне в сочетании с эффектом Фарадея, является одним из традиционных магнитных материалов для СВЧ и магнитооптических приложений. Однако для создания миниатюрных устройств актуально получение больших углов поворота плоскости поляризации и достижение высокой чувствительности обнаружения на основе ФВ, что является достаточно важной и сложной задачей. Для этих целей необходим подбор и поиск материалов с большим ФВ, например Се:ҮІС [24,25] или Ві:ҮІС [26] и структур [27], усиливающих эффект Фарадея. Так, например, в экспериментах [28,29] на магнитофотонных структурах на основе слоев оксидов кремния и титана SiO2, TiO2 с комплексным магнитооптическим дефектом, составленным из слоев висмут-замещенных железо-иттриевых гранатов Ві:ҮІG, Φ В достигало максимального значения 20.6° . Таким образом, для достижения больших значений ФВ важен поиск магнитофотонных композитов, в которых можно ожидать большого ФВ для мод, локализованных в магнитной подсистеме [8,11,29-32]. В качестве таких сред в работе [12] были рассмотрены магноннофотонные кристаллы, где эффект Фарадея рассчитан теоретически. Для магнонно-фотонных кристаллов вблизи внутризонных полос пропускания были получены максимальные значения ΦB , составляющие около 2° (или $0.11^{\circ}/\mu m$) для *s*-поляризованного света и на порядок меньше для света р-поляризации. При этом было показано, что положение максимумов ФВ не совпадает с частотами пиков пропускания. В итоге для магноннофотонных ФК при близкой к единице пропускательной способности углы ФВ оказывались порядка одной десятой или даже сотой доли градуса.

Преимущество трехпериодической структуры по сравнению с фотонно-кристаллическими структурами с дефектами, двухпериодическими фотонными кристаллами и другими условно более простыми структурами заключается в большем количестве степеней свободы при создании систем с наперед заданными оптическими свойствами, что позволяет производить более тонкую настройку положения центра 3Ф3, регулировать ее ширину, положение и четкость краев 3Ф3 [19–23].

В настоящей работе мы ставим целью нахождение таких ФК-систем, в которых максимумы ФВ и высокие значения коэффициентов пропускания ЭМВ совмещаются спектрально. Для этого мы рассматриваем более сложную структуру — трехпериодический магнитный ФК – систему на основе слоев четырех различных материалов a, b, c, d, элементарная ячейка которой $[(ab)^N(cd)^M]$ составлена из фрагментов двух различных $\Phi \mathbf{K} \ (ab)^N$ и $(cd)^{M}$, где N, M — количество соответствующих периодов. Подъячейки трехпериодического ФК (ав) и (cd) могут быть сформированы из слоев a,b,c и dмножеством различных способов, и, как было показано в работе [19], оптические свойства таких ФК могут существенным образом отличаться в зависимости от подбора материалов в пары и чередования слоев. Различия проявляются в спектрах пропускания (отражения) в положении и ширине 3Ф3, количестве и расположении внутризонных полос пропускания (отражения) и их структуры. В работе [33] нами был рассмотрен трехпериодический магнитный ФК, в котором первая ячейка (ав) состояла из диэлектрических немагнитных слоев SiO_2 и TiO_2 , а вторая (cd) — из магнитных бигиротропных слоев YIG и Bi:YIG. Такой выбор материалов позволил получить достаточно широкую 3Ф3 с системой узких внутризонных пиков пропускания [33]. В настоящей работе мы акцентируем внимание на трехпериодическом ФК, в котором обе составляющие его подъячейки содержат магнитные слои YIG или Bi:YIG, что приводит к отличной от прежних структур 3Ф3 и полос пропускания.

2. Постановка задачи и теория

Рассмотрим трехпериодический ФК $[(SiO_2/YIG)^N(TiO_2/Bi:YIG)^M]^K$, сверхъячейка которого, повторенная K раз, представляет собой комбинацию фрагментов двух магнитных периодических структур (SiO_2/YIG) N и $(TiO_2/Bi:YIG)$ М (рис. 1, a). В дальнейшем для упрощения записи введем следующие обозначения для слоев SiO_2 , TiO_2 , YIG и Bi:YIG: S, T, Y, B соответственно. Таким образом, ФК-структура запишется в виде $[(SY)^N(TB)^M]^K$. Толщины подъячеек (SY) и (TB), т.е. подпериоды, обозначены как

 $D_1 = d_S + d_Y$ и $D_2 = d_T + d_B$, а толщина сверхьячейки (сверхпериод) равна $D_3 = ND_1 + MD_2$. Общая толщина рассматриваемой структуры из K сверхпериодов равна KD_3 . Слои ФК расположены параллельно плоскости (xy), а ось z совпадает с осью роста ФК. Будем предполагать, что продольные размеры ФК по осям x и y достаточно велики, так что граничными эффектами в этих направлениях можно пренебречь.

Слои YIG и Ві:YIG намагничены до насыщения вдоль или против оси z путем приложения внешнего магнитного поля \mathbf{H}_0 в соответствующем направлении. С учетом слагаемых первого порядка малости по компонентам вектора намагниченности тензоры диэлектрической и магнитной проницаемостей имеют следующий вид [1]:

$$\hat{\varepsilon}_{j} = \begin{pmatrix} \varepsilon_{j} & i\varepsilon'_{j} & 0\\ -i\varepsilon'_{j} & \varepsilon_{j} & 0\\ 0 & 0 & \varepsilon_{j} \end{pmatrix},$$

$$\hat{\mu}_{i} = \begin{pmatrix} \mu_{i} & i\mu' & 0\\ -i\mu_{j} & \mu_{j} & 0\\ 0 & 0 & \mu_{i} \end{pmatrix}, \quad (j = Y, B), \tag{1}$$

где магнито-индуцированные недиагональные компоненты тензоров ε_j и μ_j отвечают за бигиротропные свойства ферритов-гранатов YIG и Bi:YIG. Немагнитные диэлектрики SiO2 и TiO2 обладают изотропными оптическими свойствами и характеризуются соответствующими диагональными тензорами $\varepsilon_{S(\alpha\beta)} = \varepsilon_S \delta_{\alpha\beta}, \, \mu_{S(\alpha\beta)} = \delta_{\alpha\beta}, \, \varepsilon_{S(\alpha\beta)} = \varepsilon_T \delta_{\alpha\beta}, \, \mu_{T(\alpha\beta)} = \delta_{\alpha\beta} \, (\alpha\beta = x,y,z; \, \delta_{\alpha\beta} - \text{дельтасимвол Кронекера}). Все материалы, образующие ФКструктуру, прозрачны в ближнем ИК диапазоне длин волн и характеризуются вещественными значениями диэлектрических проницаемостей <math>\varepsilon_j$ (j=0,S,T,Y,B), причем входная и выходная среды (воздух) обозначены как 0.

Плоская ЭМВ s- или p-поляризации (красный (\mathbf{E}_s^i) или синий (\mathbf{E}_p^i) векторы на рис. 1,b соответственно) с угловой частотой ω и волновым вектором $\mathbf{k}_0^i = (k_x,0,k_{0z})$ падает из воздуха на поверхность ФК под углом θ так, что плоскостью падения является плоскость (xz). С учетом направления векторов намагниченности в слоях YIG и Bi:YIG это соответствует полярной магнитооптической (MO) конфигурации [1] (рис. 1,b). В этом случае нормальными ЭМВ в магнитных средах являются волны эллиптических поляризаций [2] с волновыми векторами $\mathbf{k}_{zi}^+ = (k_x 0, k_{zi}^+)$, (j = Y, B):

$$k_{zj}^{\pm} = \left(\Omega^{2}(\varepsilon_{j}\mu_{j} + \varepsilon_{j}'\mu_{j}') - k_{x}^{2} \pm \Omega(\varepsilon_{j}\mu_{j}' + \mu_{j}\varepsilon_{j}')\right) \times \left[(-k_{x}^{2} + \Omega^{2}\varepsilon_{j}\mu_{kj})/\varepsilon_{j}\mu_{j}\right]^{1/2}, \quad (2)$$

где введено обозначение $\omega = \omega/c$.

Прошедшая ЭМВ \mathbf{E}^t поляризована эллиптически, ее плоскость поляризации повернута на угол φ_s или φ_p (угол Φ В) по отношению к плоскости поляризации падающей волны s- или p-поляризации соответственно (рис. 1, c и d).

Электрическое и магнитное поля в бигиротропных слоях могут быть записаны в виде суперпозиции четырех волн: двух (падающих) волн, распространяющихся вдоль оси \mathbf{z} , и двух волн, идущих в обратном направлении (отраженных), обозначенных соответственно индексами i и r:

$$E_{\alpha,j}(z) = E_{\alpha,j}^{i+} \exp(lk_{zj}^{+}z) + E_{\alpha,j}^{r+} \exp(-ik_{zj}^{+}z)$$

$$+ E_{\alpha,j}^{i-} \exp(ik_{zj}^{-}z) + E_{\alpha,j}^{r-} \exp(-ik_{zj}^{-}z),$$

$$H_{\alpha,j}(z) = E_{\alpha,j}^{i+} \exp(lk_{zj}^{+}z) + H_{\alpha,j}^{r+} \exp(-ik_{zj}^{+}z)$$

$$+ H_{\alpha,j}^{i-} \exp(ik_{zj}^{-}z) + H_{\alpha,j}^{r-} \exp(-ik_{zj}^{-}z),$$
 (3)

где $\alpha = x, y, z, j = Y, B$.

В каждом из изотропных слоев SiO_2 и TiO_2 электромагнитное излучение представляет собой суперпозицию независимых волн s- и p-поляризаций с составляющими компонентами волновых полей $\{H_x, E_y, H_z\}$ и $\{E_x, H_y, E_z\}$ соответственно, волновые векторы которых $\mathbf{k}_j = (k_x, 0, k_{jz}), (j = S, T)$ совпадают:

$$E_{\alpha,j}(z) = E_{\alpha,j}^{i} \exp(ik_{q}z) + E_{\alpha,j}^{r} \exp(-ik_{q}z),$$

$$H_{\alpha,j}(z) = H_{\alpha,j}^{i} \exp(ik_{q}z) + H_{\alpha,j}^{r} \exp(-ik_{q}z).$$
(4)

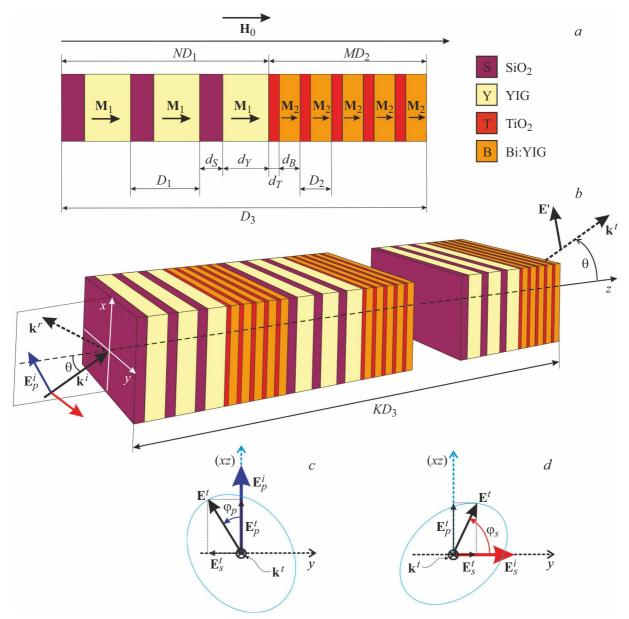
Здесь $k_q = \sqrt{-k_x^2 + \Omega^2 \varepsilon_j \mu_j}$ — z-компоненты волновых векторов, совпадающие для s- и p-поляризованных волн в каждой из изотропных сред.

Из уравнений Максвелла, дополненных материальными соотношениями для бигиротропных сред, получаем соотношения амплитуд для компонент электрического и магнитного полей:

$$H_{x}^{+} = -\delta_{\varepsilon}^{+} E_{y}^{+}, \ E_{x}^{+} = i \gamma_{s}^{+} E_{y}^{+}, \ H_{y}^{+} = -i \beta_{\varepsilon}^{+} E_{y}^{+},$$

$$E_{x}^{-} = \delta_{\mu}^{-} H_{y}^{-}, \ H_{x}^{-} = i \gamma_{\mu}^{-} H_{y}^{-}, \ E_{y}^{-} = -i \beta_{\mu}^{-} H_{y}^{-},$$
(5)

где коэффициенты $\beta_{\varepsilon j}^+,\, \gamma_{\varepsilon j}^+$ и $\delta_{\varepsilon j}^+$ определены следующим образом:


$$\begin{split} \gamma_{\varepsilon j}^{+} &= i \left[\varepsilon_{j}^{\prime} (\varepsilon_{j} \Delta \mu_{j} \Omega^{2} - \mu_{j} k_{x}^{2}) + \mu_{j}^{\prime} \varepsilon_{j} (k_{zj}^{+})^{2} \right] / N_{\varepsilon j} (k_{zj}^{+}), \\ \delta_{\varepsilon j}^{+} &= k_{q}^{+} \varepsilon_{J} \left[(k_{zj}^{+})^{2} - k_{x}^{2} - \Omega^{2} (\varepsilon_{j} \mu_{j} + \varepsilon_{j}^{\prime} \mu_{j}^{\prime}) \right] / N_{\varepsilon j} (k_{zj}^{+}), \\ \beta_{\varepsilon j}^{+} &= i \varepsilon_{j} \mu_{j}^{\prime} + \mu_{j} \varepsilon_{j}^{\prime}) k_{zj}^{+} \Omega / N_{\varepsilon j} (k_{zj}^{+}) \end{split}$$
(6)

и введены обозначения

$$N_{\varepsilon j}(k_{zj}^+) = \varepsilon \mu [(k_{zj}^+)^2 + k_x^2] - \Omega^2 \varepsilon^2 \Delta \mu,$$

$$\Delta \varepsilon_j = \varepsilon_j^2 - \varepsilon_j^2, \ \delta \mu_j = \mu_j^2 = \mu_j^2 - \mu_j^2.$$

Остальные коэффициенты $\beta_{\mu j}^+, \gamma_{\mu j}^+$ и $\delta_{\mu j}^+$ получаются из соответствующих выражений (6) путем замены $\varepsilon \leftrightarrow \mu$.

Для нахождения амплитуд прошедшей ЭМВ использован стандартный метод матрицы переноса размерности (4×4) [34]. Для записи в матричном виде уравнений непрерывности для тангенциальных компонент электрического $E_{x,y}$ и магнитного $H_{x,y}$ полей на каждой

Рис. 1. Схема трехпериодического магнитооптического $\Phi K [(SY)^N (TB)^M]^K$: a — сверхъячейка ΦK при N=3, M=5 (черными стрелками обозначены векторы намагниченности \mathbf{M}_1 и \mathbf{M}_2 в слоях YIG и Ві:YIG соответственно), \mathbf{H}_0 — постоянное внешнее магнитное поле, b — эффект Фарадея при прохождении ЭМВ сквозъ трехпериодический ΦK . Синими и красными стрелками обозначены электрические составляющие падающих ЭМВ s- или p-поляризаций (\mathbf{E}_s^i , \mathbf{E}_p^i соответственно), черной стрелкой — вектор электрического поля прошедшей ЭМВ \mathbf{E}^t . c и d — схематическое представление углов ΦB φ_p и φ_s в случаях падающих ЭМВ p- и s-поляризаций соответственно. Вертикальные штриховые линии показывают проекцию плоскости (x_z).

из границ раздела сред мы вводим векторы-столбцы амплитуд полей в каждом из слоев ΦK :

$$\psi_j = (E_{yj}^{I+} E_{yj}^{r+} H_{yj}^{I-} H_{yj}^{r-})^{\tau},$$

где τ означает операцию транспонирования. Аналогичным образом для входной и выходной сред (учитывая наличие отраженной волны в первой из них и прошедшей во второй) запишем

$$\label{eq:psi_norm} \pmb{\psi}_{0}^{\rm in} = (E_{y0}^{I(s)} E_{y0}^{r(s)} H_{y0}^{I(p)} H_{y0}^{r(p)})^{\tau},$$

$$\psi_0^{\text{out}} = (E_{y0}^{t(s)} \, 0 \, H_{y0}^{t(p)} \, 0)^{\tau}.$$

Фотонный кристалл вида $[(SY)^N(TB)^M]^K$ содержит 2K(N+M)+1 границ раздела сред, включая внешние границы с воздухом, для каждой из которых выполняются 4 алгебраических уравнения. Из системы имеющихся 4[2K(N+M)+1] уравнений путем последовательного исключения амплитуд полей внутри ФК переходим к следующей системе четырех алгебраических уравнений, связывающих поля в воздухе на противоположных гра-

ницах ФК и записанных в матричном виде:

$$\hat{A}_0 \hat{E}_0(KD_3) \psi_0^{(\text{out})} = \hat{A}_S(\hat{T}_g)^K \hat{S}_{S0} \psi_0^{(\text{in})}. \tag{7}$$

Здесь $\hat{A}_S(\hat{T}_g)^K\hat{S}_{S0}$ — матрица переноса размерности (4×4) , связывающая амплитуды полей волны в точках z=0 и $z=KD_3$ по левым сторонам внешних поверхностей ΦK , где $\hat{T}_g=\hat{S}_{SB}(\hat{T}_{02})^M\hat{S}_{BS}|(\hat{T}_{01})^N$ — матрица переноса для сверхьячейки, \hat{T}_{01} и \hat{T}_{02} — матрицы переноса для подъячеек (SY) и (BT) соответственно:

$$\hat{T}_{01} = \hat{S}_{SY}\hat{E}_Y(d_T)\hat{S}_{YS}\hat{E}_S(d_S),$$

$$\hat{T}_{02} = \hat{S}_{BT}\hat{E}_T(d_T)\hat{S}_{TS}\hat{E}_B(d_B).$$
(8)

При этом $\hat{S}_{ij} = \hat{A}_i^{-1} \hat{A}_j$ и $\hat{S}_{S0} = \hat{A}_S^{-1} \hat{A}_0$ — матрицы, связывающие амплитуды полей по разные стороны границы слоев i и j соответственно, а также на границе слоя S и воздуха:

$$\psi_i = \hat{S}_{ij} \psi_j,$$

$$\psi_S = \hat{S}_{S0} \psi_0^{\text{in}}.$$
(9)

Матрицы коэффициентов \hat{A}_j для вычисления матриц \hat{S}_{ij} в выражениях (9) для магнитных слоев (j=Y,B) имеют следующий вид:

$$\hat{A}_{j} = \begin{pmatrix} 1 & 1 & \eta_{\mu j}^{-} & -\beta_{\mu j}^{-} \\ \delta_{\varepsilon j}^{+} & -\delta_{\varepsilon j}^{+} & \gamma_{\mu j}^{-} & \gamma_{\mu j}^{-} \\ -\beta_{\varepsilon j}^{+} & \beta_{\varepsilon j}^{+} & 1 \\ \gamma_{\varepsilon j}^{+} & \gamma_{\varepsilon j}^{+} & -\delta_{\mu j}^{-} & \delta_{\mu j}^{-} \end{pmatrix}.$$
(10)

Для немагнитных слоев ФК (j=S,T) и для воздуха (j=0) матрицы \hat{A}_j имеют квазидиагональную форму:

$$\hat{A} = egin{pmatrix} \hat{A}_j^{(s)} & \hat{0} \ \hat{0} & \hat{A}_j^{(p)} \end{pmatrix}$$
 ,

где $\hat{A}_{j}^{(s)}$ и $\hat{A}_{j}^{(p)}$ — матрицы размерности (2×2) для s- и p-поляризованных волн:

$$\hat{A}_{j}^{(s)} = \begin{pmatrix} 1 & 1 \\ \delta_{arepsilon j}^{+} & -\delta_{arepsilon j}^{+} \end{pmatrix}, \quad \hat{A}_{j}^{(p)} = \begin{pmatrix} 1 & 1 \\ -\delta_{\mu j}^{-} & \delta_{\mu j}^{-} \end{pmatrix},$$
 $\delta_{arepsilon i}^{+} = k_{zj}/\Omega arepsilon_{j}, \quad \delta_{\mu j}^{-} = k_{zj}/\Omega \mu_{j},$

а $\hat{0}$ — нулевые матрицы размерности (2×2) . Диагональные матрицы $\hat{E}_{i}(d_{i})$ в уравнениях (7):

$$\hat{E}_{j}(d_{j}) = \left(\exp(ik_{zj}^{+}d_{j})\exp(-ik_{zj}^{+}d_{j})\exp(ik_{zj}^{-}d_{j})\right)$$

$$\times \exp(-ik_{zj}^{-}d_{j}), \quad (j = Y, B),$$

$$\hat{E}_{j}(d_{j}) = \left(\exp(ik_{zj}d_{j})\exp(-ik_{zj}d_{j})\exp(ik_{zj}d_{j})\right)$$

$$\times \exp(-ik_{zj}^{-}d_{j}), \quad (j = S, T)$$

характеризуют набег фазы внутри слоев j, а $\hat{E}_0(k_{z0}KD_3)$ определена как

$$\hat{E}_{0}(k_{z0}KD_{3}) = \left(\exp(ik_{z0}KD_{3})\exp(-ik_{z0}KD_{3})\right)$$

$$\times \exp(ik_{z0}KD_{3})\exp(-ik_{z0}^{-}KD_{3}).$$

Система уравнений (7) дает возможность найти связь амплитуд падающей и прошедшей волн через амплитудные коэффициенты пропускания T_{ss} , T_{pp} , T_{sp} и T_{ps} , являющиеся сложными функциями частоты и угла падения ЭМВ:

$$\begin{pmatrix} E_s^{(t)} \\ E_p^{(t)} \end{pmatrix} = \begin{pmatrix} T_{ss} & T_{sp} \\ T_{ps} & T_{pp} \end{pmatrix} \begin{pmatrix} E_s^{(i)} \\ E_p^{(i)} \end{pmatrix}. \tag{11}$$

Когда падающее электромагнитное излучение содержит только s-поляризованную составляющую ($\mathbf{E}_p^i=0$) или, наоборот, только p-поляризованную ($\mathbf{E}_s^i=0$), энергетические коэффициенты пропускания, как отношения интенсивности прошедшей ЭМВ к интенсивности падающей, могут быть записаны в виде

$$T_s = |T_{ss}|^2 + |T_{ps}|^2$$
 (при $\mathbf{E}_p^i = 0$), $T_p = |T_{sp}|^2 + |T_{pp}|^2$ (при $\mathbf{E}_s^i = 0$). (12)

Следует отметить, что в отсутствие поглощения энергетические коэффициенты отражения определяются следующим образом:

$$R_s = 1 - T_s, \quad R_p = 1 - T_p.$$

Углы $\Phi B \varphi_s$ и φ_p в случаях падения на поверхность ΦK волны s- или p-поляризации определены так же, как в монографии [2]:

$$\tan \varphi_s = -\text{Re}\left(\frac{T_{ps}}{T_{ss}}\right), \ \tan \varphi_p = \text{Re}\left(\frac{T_{sp}}{T_{pp}}\right).$$
 (13)

3. Численные расчеты и обсуждение

Для численных расчетов коэффициентов пропускания и углов ФВ при прохождении ЭМВ сквозь исследуемый ФК мы учитываем частотную дисперсию показателей преломления $n_i(\omega)$ материалов в ближнем ИК диапазоне в соответствии с данными работ [35-39]. Для немагнитных материалов SiO₂, TiO₂ диэлектрическая проницаемость определяется как $\varphi_i(\omega) = (n_i(\omega))^2$, (j = S, T) [35,36]. Для YIG дисперсионная зависимость диагональных компонент тензора диэлектрической проницаемости $\varepsilon_V(\omega)$ определена в соответствии с [37], диагональные компоненты тензора магнитной проницаемости $\mu_Y = 1$, а недиагональные компоненты этих тензоров равны соответственно $\varepsilon_Y' = -2.47 \cdot 10^{-4}$, $\mu_T' = 8.76 \cdot 10^{-5}$ [38]. Для Bi:YIG соответствующие материальные параметры имеют следующие значения: $\varepsilon_B = 5.76 \ [39,40], \ \mu_B = 1, \ \mu_B' = 1.65 \cdot 10^{-5} \ [41,42].$

Толщины слоев в подъячейках (SY) и (TB) d_{0i} были выбраны в соответствии с условием Брэгга [43]:

$$n_j(\lambda_{01,2})d_{0j} = \lambda_{01,2}/4,$$
 (14)

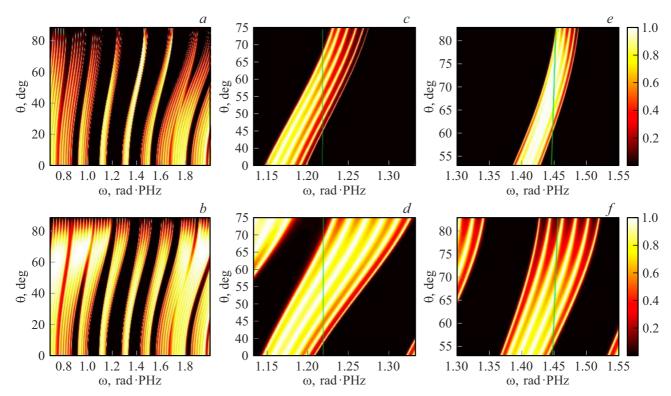
где $\lambda_{01,2}$ — брэгговские длины волн подъячеек (SY)и (TB) соответственно, а $n_i(\lambda_{01,2})$ — показатели преломления слоев на соответствующей брэгговской длине волны. Оценим характерный размер ФК-структуры, взяв брэгговские длины волн подъячеек равными основной телекоммуникационной длине волны, т.е. $\lambda_{01} = \lambda_{02} = 1.55 \,\mu$ m. С учетом дисперсии показателей преломления для данной длины волны получаем следующие толщины слоев: $d_{0S} = 0.269 \,\mu\text{m}, \ d_{0T} = 0.158 \,\mu\text{m},$ $d_{0Y} = 0.176 \,\mu\text{m}, \, d_{0B} = 0.162 \,\mu\text{m}.$ Тогда толщина структуры $[(SY)^3(TB)^5]^7$ равна 20.545 μ m.

 \mathbf{C} практической наибольший точки зрения частотная интерес представляет область. соответствующая телекоммуникационным длинам волн $\lambda_0=1.55\,\mu\mathrm{m}$ $(\omega_0\approx 1.215\,\mathrm{rad}\cdot\mathrm{PHz})$ и $\lambda_0=1.3\,\mu\mathrm{m}$ $(\omega_0 \approx 1.449\,\mathrm{rad}\cdot\mathrm{PHz})$. На рис. 2, a,b представлены частотно-угловые зависимости энергетических коэффициентов пропускания $T_s(\omega,\theta)$ и $T_p(\omega,\theta)$ в области первой 3Ф3 соответственно для случаев s- и р-поляризованных падающих ЭМВ для ФК-структуры $[(SY)^3(BT)^5]^7$. Рис. 2, c, d и e, f показывают детализированные фрагменты внутризонных полос пропускания для ЭМВ s- и p-поляризаций; вертикальные линии на рис. 2, c, d соответствуют частоте $\omega_0 \approx 1.215 \,\mathrm{rad}\cdot\mathrm{PHz}$ $(\lambda_0 = 1.55 \,\mu\text{m})$, на рис. 2, $e, f - \omega_0 \approx 1.449 \,\text{rad} \cdot \text{PHz}$.

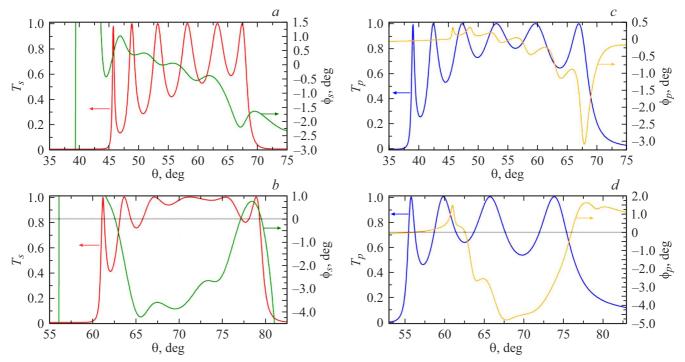
Как видно из рис. 2, a, b, обе $3\Phi 3$ содержат четыре достаточно широкие внутренние полосы пропускания, полуширины которых при $\theta=0$ составляют $\Delta\omega_1\approx 0.078\,\mathrm{PHz}\cdot\mathrm{rad},\ \Delta\omega_2\approx 0.056\,\mathrm{PHz}\cdot\mathrm{rad},$ $\Delta\omega_3\approx 0.106\,\mathrm{PHz}$ -rad и $\Delta\omega_4\approx 0.077\,\mathrm{PHz}$ -rad. Для сравнения, в двухпериодическом магнитофотонном кристалле $[YIG/(TiO_2/SiO_2)^4/TiO_2]^5$ [13] соответствующие величины составляют порядка 0.01 PHz·rad, т.е. примерно в 5-10 раз уже, чем в случае трехпериодического ФК.

Каждая из полос пропускания (рис. 2, c-f) имеет сложную структуру с расщеплением на шесть пиков, на которых коэффициент пропускания достигает значений, близких к единице. Такая кратность расщепления, как было показано в работах [13,14], определяется количеством сверхпериодов структуры и равна (K-1), что в данном случае (при K = 7) дает шесть максимумов. На отдельных участках полос пропускания эти пики могут сливаться в "плато", где коэффициент пропускания незначительно колеблется, не доходя до единицы (например, рис. 2, e).

При фиксированной частоте с увеличением угла падения пики становятся менее выраженными: уменьшается разность между соседними максимальными и минимальными значениями коэффициента пропускания в пределах внутризонной полосы. При фиксированном угле падения θ с увеличением частоты ЭМВ контрастность пиков пропускания возрастает, особенно в случае sполяризованных волн (рис. 2, c, e).


При нормальном падении электромагнитного излучения $(\theta = 0)$ положения краев $3\Phi 3$ и внутризонных полос пропускания практически совпадают. С отклонением угла падения от нормали к поверхности 3Ф3 sполяризованных волн расширяется, а р-поляризованных сужается. При этом поведение полос пропускания с увеличением θ носит обратный характер: внутризонные полосы пропускания *s*-поляризованных волн заметно сужаются, а р-поляризованных, наоборот, расширяются (рис. 2, a, b).

Кроме внутризонных мод пропускания характерной особенностью спектров пропускания трехпериодических структур является наличие сателлитных зон по краям основной $3\Phi 3$, которые с увеличением θ могут раскрываться: например, сателлитная зона для волн sполяризации расположена по частоте ниже 0.8 rad·PHz при углах $\theta > 40^{\circ}$, а для *p*-поляризованных волн при $\theta > 75^{\circ}$ — правее высокочастотного края основной 3Ф3. Кроме того, в спектре р-поляризованных волн низкочастотный край 3ФЗ может сливаться с внутризонной полосой пропускания, как на рис. 2, b при $\theta > 55^{\circ}$. Наконец, с увеличением θ имеет место синее смещение спектра, что характерно для всех 1D ФК-структур.


Следует отметить, что в ФК вида $[(SY)^3(BT)^5]^7$ внутризонные полосы пропускания значительно шире, чем в ФК $[(ST)^3(YB)^{10}]^3$, рассмотренном нами в работе [33]. Например, для $[(SY)^3(BT)^5]^7$ при $\lambda_0 = 1.55\,\mu\mathrm{m}$ и $\theta = 54^\circ$ ширина второй внутризонной полосы пропускания (расположена при $\theta = 0$ в интервале $1.0\,\mathrm{rad}\cdot\mathrm{PHz} < \omega < 1.2\,\mathrm{rad}\cdot\mathrm{PHz}$ (рис. 2)) равна $\Delta\omega_s=0.052\,\mathrm{rad}\cdot\mathrm{PHz}$ для s-поляризованной ЭМВ и $\Delta\omega_p=0.083\,\mathrm{rad}\cdot\mathrm{PHz}$ для p-поляризованной волны. Тогда как соответствующие значения для структуры $[(ST)^3(YB)^{10}]^3$ составляют $\Delta\omega_s = 0.011\,\mathrm{rad}\cdot\mathrm{PHz}$ и $\Delta\omega_n = 0.023 \, \text{rad} \cdot \text{PHz}.$

На рис. 3, а, b показаны зависимости коэффициентов пропускания и углов ΦB для структуры $[(SY)^3(BT)^5]^7$ от угла падения ЭМВ на выбранной длине волны $\lambda_0 = 1.55 \, \mu {\rm m}$ для ЭМВ *s*- и *p*-поляризаций соответственно. Аналогично, угловые зависимости T_s и T_p при $\lambda_0 = 1.3 \, \mu {\rm m}$ приведены на рис. 3, *c*, *d*. Красная и синяя кривые соответствуют коэффициентам пропускания, зеленая и оранжевая — углам ФВ, рассчитанным с использованием формулы (13). Каждый из шести максимумов коэффициентов пропускания $T_{s\,(\mathrm{max})}$ и $T_{p\,(\mathrm{max})}$ имеет значения, близкие к 1, при углах $\theta_{s\alpha}$ и $\theta_{p\alpha}|$ соответственно ($\alpha = 1, ..., 6$), а минимальные значения на полосе пропускания между пиками далеки от нуля: не ниже $T_{s\,(\mathrm{min})}=0.18$ и $T_{p\,(\mathrm{min})}=0.25$ для s- и pполяризованных волн при $\lambda_0 = 1.55 \, \mu \mathrm{m}$ (рис. 3, a, b) и аналогично $T_{s\,(ext{min})} = 0.4$ и $T_{p\,(ext{min})} = 0.45$ при $\lambda_0 = 1.3\,\mu ext{m}$ (рис. 3, a, b).

Как видно из сравнения рис. 3, a и b, а также рис. 3, cи d, угловая область пропускания ЭМВ s-поляризации несколько уже области пропускания р-поляризованной волны, а также ее левый край T_s сдвинут в область

Рис. 2. Спектры пропускания $T_s(\omega,\theta)$ и $T_p(\omega,\theta)$ для случаев s- и p-поляризованных падающих ЭМВ (верхний и нижний ряды соответственно) для $\Phi K \ [(SY)^3(TB)^5]^7$: a,b — в первой $3\Phi 3$; c,d — фрагмент внутризонной полосы пропускания в окрестности $\lambda_0=1.55\,\mu\mathrm{m}$ ($\omega_0\approx1.215\,\mathrm{rad\cdot PHz}$); e,f — в окрестности $\lambda_0=1.3\,\mu\mathrm{m}$ ($\omega_0\approx1.449\,\mathrm{rad\cdot PHz}$). Брэгтовские длины волн для обеих ячеек равны $\lambda_{01}=\lambda_{02}=1.55\,\mu\mathrm{m}$. Вертикальными зелеными линиями на рис. c-f отмечены частоты $\omega_0\approx1.215\,\mathrm{rad\cdot PHz}$ и $\omega_0\approx1.449\,\mathrm{rad\cdot PHz}$. Цветовая шкала представляет значения T_s , T_p .

Рис. 3. Угловые зависимости коэффициентов пропускания и углов ΦB : $a,c-T_s(\theta)$ и $\varphi_s(\theta)$; $b,d-T_p(\theta)$ и $\varphi_p(\theta)$ для структуры $[(SY)^3(TB)^5]^7$ при $\lambda=1.55\,\mu\mathrm{m}$ $(a,b),\ \lambda=1.3\,\mu\mathrm{m}$ (c,d). Красная и синяя кривые соответствуют коэффициентам пропускания, зеленая и оранжевая — углам ΦB .

больших θ по сравнению с левым краем T_p : положение первых пиков пропускания соответствует углам падения $heta_{s1} = 45.80^\circ$ и $heta_{p1} = 39.13^\circ$ для $\lambda_0 = 1.55\,\mu\mathrm{m}$ (рис. 3, a, b). При этом положения последних (шестых) пиков пропускания для волн обеих поляризаций разнятся значительно меньше: соответственно $\theta_{s6} = 67.4^{\circ}$ и $\theta_{p6} = 66.93^{\circ}$. Для *s*-поляризованных волн угловое расстояние между крайними пиками пропускания составляет $\Delta \theta_s = 21.6^{\circ}$, тогда как для *p*-поляризованных ЭМВ $\Delta\theta_p = 27.8^{\circ}$. Что касается углов ФВ, то в области полосы пропускания они меняются в пределах $3.05^{\circ} \leq \varphi_p \leq 0.3^{\circ}$ и $-2.3^{\circ} \leq \varphi_s \leq 1.0^{\circ}$. При наибольшем отрицательном значении ФВ коэффициент прохождения ЭМВ высокий: $T_s = 0.9$, но при наибольшем положительном ФВ составляет всего $T_s=0.15$ при угле падения $\theta_s\approx 44^\circ.$ Здесь и далее $\varphi_{s\,({
m max})}^\pm$ обозначают максимальное (при данных конкретных параметрах) положительное или отрицательное ФВ. Для волн p-поляризации $\phi_{p({
m max})}^- = -3.05^\circ$ при $heta_s pprox 66^\circ$ также совпадает с достаточно хорошим пропусканием ЭМВ: $T_p=0.82$, а $\varphi_{p(\max)}^+=0.3^\circ$ соответствуют коэффициентам пропускания $T_p=0.65$ и $T_p=0.85$ при $\theta_ppprox 46^\circ$ и $\theta_p \approx 48^\circ$ соответственно.

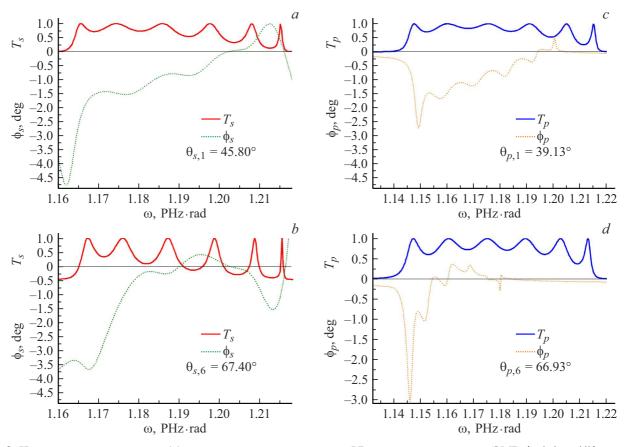
Следует также отметить, что в некоторых частотных интервалах, а также на некоторых интервалах углов падения ЭМВ углы ФВ могут достигать нескольких десятков градусов, как, например, при $39^\circ \le \theta \le 43^\circ$ для *s*-поляризованных ЭМВ (рис. 3,a,b). Однако эти области соответствуют отсутствию пропускания ($T_s \to 0$), что не имеет практического значения.

В случае $\lambda_0=1.3\,\mu\mathrm{m}$ максимальные значения углов ФВ даже несколько больше: $\varphi_{s\,(\mathrm{max})}^-=-4.2^\circ$ при $T_s=0.79$ и $\varphi_{p\,(\mathrm{max})}^-=-4.78^\circ$ при $T_p=0.71$ (для сравнения рис. 3, a,b и c,d).

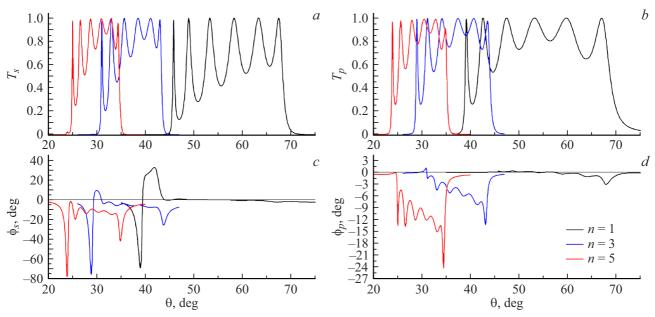
Далее рассмотрим частотные зависимости коэффициентов пропускания и углов ΦB при углах падения $\theta_{s\alpha}$ и $\theta_{p\alpha}$, определенных выше и соответствующих пикам пропускания при $\lambda_0 = 1.55 \, \mu \mathrm{m} \, \left(\omega_0 \approx 1.215 \, \mathrm{rad \cdot PHz} \right)$. На рис. 4 представлены частотные зависимости коэффициентов пропускания $T_s(\omega)$ и $T_p(\omega)$ и углов $\Phi B \varphi_s(\omega)$ и $\varphi_p(\omega)$ для s- и p-поляризованных ЭМВ (левый и правый столбцы соответственно) при углах падения $\theta_{s1} = 45.80^{\circ}$ (a) и $\theta_{p1} = 39.13^{\circ}$ (d); $\theta_{s6} = 67.40^{\circ}$ (b); $\theta_{p6} = 66.93^{\circ}$ (c). Эти углы соответствуют первому и шестому пикам T_s и T_p на рис. 3, a, b соответственно. Для *s*-поляризованных волн в пределах полосы пропускания значения углов ФВ меняются в пределах $-4.73^{\circ} \le \varphi_s \le 0.99^{\circ}$ при $\theta_{s\,1} = 45.80^{\circ}$ и $-2.16^{\circ} \le \varphi_s \le 0.59^{\circ}$ при $\theta_{s6} = 67.40^{\circ}$. Однако здесь наибольшие по абсолютной величине отрицательные значения $\Phi B \ \phi_{s\,(max)}^- = -4.73^\circ$ достигаются при малом значении $T_s = 0.067$ и при $\theta_{s1} = 45.80^\circ$. Максимальным, близким к единице значениям коэффициента пропускания $T_s = 0.99$ (первый, нижайший по частоте пик при $\omega = 1.166\,\mathrm{rad}\cdot\mathrm{PHz})$ соответствует $\varphi_s = -2.98^\circ$ и, кроме того, $\varphi_s = -1.45^{\circ}$ (второй пик при $\omega = 1.174\,\mathrm{rad}\cdot\mathrm{PHz}$).

Для рассматриваемой ФК-структуры также может иметь место и положительное ФВ, но оно несколько слабее. При $\theta_{s1}=45.80^\circ$ положительному ФВ соответствует узкий интервал частот $1.202\,\mathrm{rad}\cdot\mathrm{PHz} \leq 1.216\,\mathrm{rad}\cdot\mathrm{PHz}$ в области пятого и шестого пиков пропускания (рис. 3,a), при $\omega=1.112\,\mathrm{rad}\cdot\mathrm{PHz}$ максимальное положительное ФВ $\varphi_s=0.99^\circ$ достигается при незначительном коэффициенте пропускания $T_s=0.134$.

С увеличением угла падения область частот, соответствующих положительным значениям угла ΦB φ_s , расширяется, захватывая при $\theta_{s6}=67.40^\circ$ интервалы от третьего до пятого пиков и промежутка между вторым и третьим пиками: $1.226\,\mathrm{rad}\cdot\mathrm{PHz} \le \omega \le 1.255\,\mathrm{rad}\cdot\mathrm{PHz}$, при этом смещаясь вверх по частоте вместе с полосой пропускания (рис. 4,a,b). Максимум положительного вращения $\varphi_{s(\mathrm{max})}^+=0.598^\circ$ при $\omega=1.241\,\mathrm{rad}\cdot\mathrm{PHz}$ возникает при $\theta_{s6}=67.40^\circ$.


В случае p-поляризованных ЭМВ максимальные значения углов Φ В соответствуют несколько большим значениям T_p , чем при s-поляризации. В отличие от случая s-поляризации области частот, на которых Φ В имеет положительный знак, очень узкие (рис. 4, c, d).

Для сравнения в работе [12] для двухпериодических ФК вида $[YIG/(TiO_2/SiO_2)^4]^5/YIG$ теоретические расчеты показали, что вблизи внутризонных полос пропускания максимальные значения (до 0.25° для p-поляризованного света и около 1.8° для sполяризованного света) углов ФВ соответствуют низкой пропускающей способности. А на частотах внутризонных мод пропускания пики ФВ невелики: вращение достигает значений до 0.1° для падающего света sполяризации, а для р-поляризованного падающего света ΦB не превышает -0.02° на соответствующих пиках пропускающей способности. Значения углов ФВ для трехпериодической структуры $[(SY)^3(TB)^5]^7$, полученные в настоящей работе, при некоторых частотах могут значительно (на один-два порядка) превышать значения для магнонно-фотонных кристаллов [12], причем области максимумов φ_s и φ_p могут совмещаться с соответствующими областями высокого пропускания.


Таким образом, при фиксированных углах падения настройка частоты в пределах полосы пропускания позволяет достичь хороших результатов — значительных углов ФВ при максимальном прохождении ЭМВ.

Для еще большего увеличения эффекта Фарадея в трехпериодическом ФК можно выбрать магнитооптические слои YIG и Bi:YIG больших толщин d_Y , d_B по сравнению с теми, что были использованы для вышеприведенных расчетов, оставляя без изменения толщины немагнитных слоев d_S и d_T . На рис. 5, a, b представлены зависимости коэффициентов пропускания T_S , T_p , а также углов ФВ ϕ_S , ϕ_P для длины волны $\lambda_0 = 1.55\,\mu\mathrm{m}$ при n-кратном увеличении d_Y и d_B .

Как видно из рис. 5, a, b, при n-кратном увеличении толщин магнитных слоев угловые области пропускания значительно сужаются и смещаются в сторону

Рис. 4. Частотные зависимости коэффициентов пропускания и углов ФВ для s-поляризованных ЭМВ $(T_s(\omega), \varphi_s(\theta))$ при углах падения $\theta_{s1} = 45.80^\circ$ $(a), \theta_{s6} = 67.40^\circ$ (b) и p-поляризованных ЭМВ $(T_p(\omega), \varphi_p(\theta))$ при $\theta_{p1} = 39.13^\circ$ $(c), \theta_{p6} = 66.93^\circ$ (d). Интервалы частот соответствуют второй внутризонной полосе пропускания.

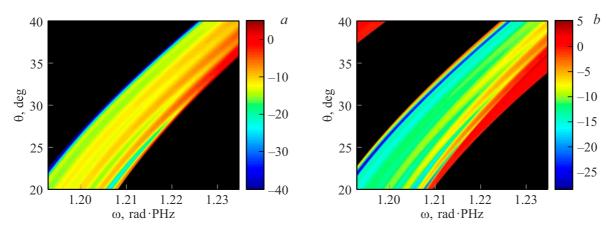
Рис. 5. Эволюция угловой зависимости коэффициентов пропускания $T_s(\theta)$ (a), $T_p(\theta)$ (b) и углов ФВ $\varphi_s(\theta)$ (c), $\varphi_p(\theta)$ (d) для ФК $[(SY)^3(TB)^5]^7$ при $\lambda_0=1.55\,\mu\mathrm{m}$ $(\omega_0\approx1.215\,\mathrm{rad}\cdot\mathrm{PHz})$ при n-кратном изменении толщин магнитных слоев: $d_Y=n\,d_{0Y},\,d_B=n\,d_{0B}$ (n=1,3,5). Здесь $d_{0Y}=0.1760\,\mu\mathrm{m},\,d_{0B}=0.1615\,\mu\mathrm{m}$.

меньших углов падения. Так, например, для волн sполяризации при n = 1 (магнитные слои без увеличения) угловое расстояние между крайними (первым и шестым) пиками T_s составляет $\Delta\theta_s = 21.60^\circ$, $\Delta\theta_s = 11.48^\circ$ при n=3 и $\Delta\theta_s=9.34^\circ$ при n=5. Соответствующие значения $\Delta\theta_p$ для ЭМВ p-поляризованных несколько больше и при n=1 составляют $\Delta\theta_p = 27.87^{\circ}$, при $n=3~\Delta\theta_p=14.31^\circ$, а при $n=5~\Delta\theta_p=10.87^\circ$. Вместе с пиками T_s и T_p соответственно смещаются и графики зависимости углов ΦB (рис. 5, c, d), а значения φ_s и φ_p , попадающие в область угловой полосы пропускания $(0 \le T_{s,p}(\theta) \le 1)$, существенным образом увеличиваются. Максимальное отрицательное вращение при n=1 составляет для s-поляризованной волны $\varphi_{s\,({
m max})}^{-}=-2.19^{\circ}$ при $heta_{s}=67.07^{\circ},$ а коэффициент пропускания при этом $T_s = 0.926$. Максимальное положительное вращение $\phi_{s\,({
m max})}^{+}=1.02^{\circ}$ при $\theta_{s}=46.93^{\circ}$, коэффициент пропускания низкий: $T_s = 0.129$. На шестом пике $T_s = 0.998$ достигается $\varphi_s = -2.17^{\circ}$. Отметим, что область высоких (до нескольких десятков градусов) значений φ_s не совпадает с полосой пропускания и не рассматривается как потенциально применимый результат.

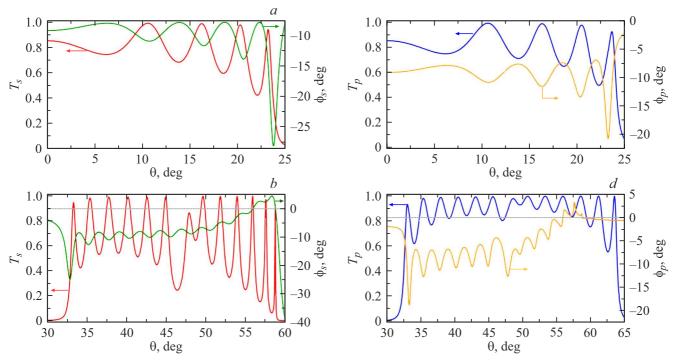
р-поляризованных ЭМВ при Для n=1. $\phi^-_{p(\mathrm{max})} = -3.06^\circ$ $\theta_p = 67.93^{\circ}$ при коэффициент $T_p = 0.919.$ пропускания высокий: Максимальное положительное вращение $\varphi_{p(\max)}^-=0.362^\circ$ имеет место при $\theta_s = 45.8^{\circ}$, но коэффициент пропускания низкий: $T_s = 0.129$. На шестом пике $T_p = 0.999$ достигается значение $\varphi_P = -1.61^{\circ}$.

Троекратное утолщение магнитных слоев (n=3) дает для s-поляризованной волны $\varphi_{s(\max)}^- = -24.85^\circ$ при низком коэффициенте пропускания $T_s = 0.101$. Но на пятом пике пропускания $T_s = 0.997$ достигается ФВ $\varphi_s = -7.31^\circ$ при $\theta_s = 43.5^\circ$. Для случая p-поляризации максимальное отрицательное значение $\varphi_{p(\max)}^- = -13.2^\circ$ при $\theta_p = 45.42^\circ$, и коэффициент пропускания при этом высокий: $T_p = 0.804$.

При дальнейшем утолщении магнитных слоев до n=5 получаем для s-поляризованной волны $\varphi_{s\,({\rm max})}^-=-41.78^\circ$ при низком коэффициенте пропускания $T_s=0.191$. Но на шестом пике при $T_s=0.946$ получаем большое ФВ $\varphi_s=-20.25^\circ$ при $\theta_s=34.4^\circ$. В случае p-поляризации максимум ФВ $\varphi_{p\,({\rm max})}^-=-24.29^\circ$ достигается при хорошем пропускании: $T_p=0.814$, а на пятом пике коэффициента пропускания при $T_p=0.911$ ФВ составляет $\varphi_p=-13.78^\circ$.


На рис. 6 показаны спектры ФВ $\varphi_s(\omega,\theta)$ (a) и $\varphi_p(\omega,\theta)$ (b) для структуры $[(SY)^3(TB)^5]^7$ с пятикратно утолщенными магнитными слоями YIG и Ві:YIG в областях расположения внутризонных полос пропускания, соответствующих s- и p-поляризованным падающим ЭМВ (в окрестности $\lambda_0=1.55\,\mu\mathrm{m}$ $(\omega_0\approx 1.215\,\mathrm{rad\cdot PHz})$). Как видно из рис. 6, a, наиболее сильное отрицательное ФВ имеет место для s-поляризованного излучения на низкочастотном

краю полосы пропускания: $\varphi_s \sim (-40^\circ - -30^\circ)$. На высокочастотном краю полосы пропускания в зависимости от угла падения θ ФВ φ_s может принимать как отрицательные, так и положительные значения в пределах $\pm 5^\circ$. Для p-поляризованных ЭМВ наибольшие значения положительного вращения φ_p (несколько градусов) достигаются либо на высокочастотном краю полосы пропускания, либо (с увеличением θ) в точках, смещенных от него к центру полосы. Но в отличие от случая s-поляризации резкий отрицательный экстремум порядка $\varphi_p \sim -25^\circ - 20^\circ$ расположен не по высокочастотному краю полосы пропускания, а при частотах, слегка смещенных от края в направлении ее центра (рис. 6, b).


Для длины волны $\lambda_0 = 1.3 \, \mu \mathrm{m}$ в случае пятикратно утолщенных магнитных слоев в $[(SY)^3(TB)^5]^7$ расчеты дают хорошие совпадения максимумов ФВ и коэффициентов пропускания. Здесь имеются два угловых интервала: $0 < \theta < 25^{\circ}$ и $30 < \theta < 65^{\circ}$, разделенные областью ЗФЗ. В первом интервале, представленном на рис. 7, а для *s*-поляризованных волн, при высоких значениях коэффициентов пропускания $T_s = 0.976$ (при $heta_s = 16.42^\circ)$ и $T_s = 0.904$ (при $heta_s = 20.58^\circ)$ углы ΦB составляют $\varphi_s = -11.63^\circ$ и $\varphi_s = -13.81^\circ$ соответственно. В этом случае максимальное значение ФВ для s-поляризованной волны $\phi_{s(\max)}^- = -28.05^\circ$ достигается при $\theta_s = 23.75^{\circ}$ и $T_s = 0.334$. Для *p*-поляризованных ЭМВ (рис. 7, b) максимальное отрицательное значение $arphi_{p(\max)}^- = -20.74^\circ$ при $heta_p = 23.25^\circ$ и коэффициенте пропускания $T_p = 0.762$. Также имеется совпадение других максимумов, например, $\varphi_{p(\max)}^- = -13.43^\circ$ (при $\theta_p = 20.33^\circ$) и $T_p = 0.967$ (рис. 7, b). Второй интервал показан на рис. 7, c, d и соответствует уже краю 3Ф3, где максимум ФВ составляет для *s*-поляризованной ЭМВ $\phi_{s(max)}^{-} = -25.13^{\circ}$ $(\theta_s = 32.86^\circ)$, $T_s = 0.339$. В достаточно широком интервале углов падения $(33.8^\circ < \theta_p < 49.0^\circ)$ значения ΦB изменяются в пределах $-13^\circ < \phi_p < -7^\circ$ при пропускании $0.43 < T_p < 0.99$. Для p-поляризованной волны (рис. 7,d) максимальное отрицательное ΦB $\varphi_{p({
m max})}^{-} = -18.78^{\circ}$ достигается при высоком пропускании $T_p = 0.8516 \ (\theta_p = 33.27)$. Большинство остальных пиков ФВ расположены в интервале значений $-14^{\circ} < \phi_p^- < -7^{\circ} \ (33.5^{\circ} < \theta_p < 49.8^{\circ})$, которым соответствуют высокие значения коэффициента пропускания в пределах $0.62 < T_p < 0.97$.

Отметим, что 180-градусное перемагничивание ФКструктуры будет приводить к изменению знака ФВ на противоположный. Таким путем можно для тех же поляризаций ЭМВ, частот и углов падения получить такие же по абсолютной величине, но положительные значения ФВ $\varphi_s \sim (30^\circ - 40^\circ)$ и $\varphi_s \sim (20^\circ - 25^\circ)$.

Возможность совмещения спектральных максимумов оптического пропускания и больших значений угла Фарадея, хотя и не является уникальным эффектом, остается в рассматриваемом диапазоне длин волн (ближ-

Рис. 6. Спектры углов ФВ $\varphi_s(\omega,\theta)$ (a) и $\varphi_p(\omega,\theta)$ (b) для структуры $[(SY)^3(TB)^5]^7$ с утолщенными магнитными слоями YIG и Bi:YIG: $d_Y = 5d_{0Y} = 0.8800\,\mu\text{m}$, $d_B = 5d_{0B} = 0.8075\,\mu\text{m}$. Черные области соответствуют пренебрежимо малым значениям коэффициентов пропускания: $T_s(\omega,\theta) \to 0$ (a) и $T_p(\omega,\theta) \to 0$ (b), т.е. показывают области 3ФЗ. Цветовая шкала представляет значения углов ФВ в градусах.

Рис. 7. Угловые зависимости коэффициентов пропускания и углов ФВ: $T_s(\theta)$ и $\varphi_s(\theta)$ (a,c); $T_p(\theta)$ и $\varphi_p(\theta)$ (b,d) при $\lambda=1.3\,\mu\mathrm{m}$ ($\omega_0\approx1.449\,\mathrm{rad}\cdot\mathrm{PHz}$) для структуры $[(SY)^3(TB)^5]^7$ с утолщенными магнитными слоями YIG и Bi:YIG: $d_Y=5d_{0Y}=0.8800\,\mu\mathrm{m}$, $d_B=5d_{0B}=0.8075\,\mu\mathrm{m}$. Красная и синяя кривые соответствуют коэффициентам пропускания, зеленая и оранжевая — углам ФВ.

ний ИК) довольно редким результатом. Совмещения максимальных значений пропускания с гигантскими значениями углов ФВ в различных однопериодических ФК с дефектным слоем были описаны в работах [18,29,30,44]. Например, в [30] на ФК-структурах ($\mathrm{SiO_2/TiO_2}$) $^k/\mathrm{BiYIG/(TiO_2/SiO_2)}^k$ численно получено ФВ с удельным значением $-28^\circ/\mu\mathrm{m}$. Однако такие гигантские значения имеют место при очень низком ($\sim 2\%$) пропускании. Хорошее пропускание ($\sim 73\%$ и $\sim 87\%$) сопровождается удельным вращением $-1^\circ/\mu\mathrm{m}$

и $-0.83^\circ/\mu$ m соответственно, а среднему коэффициенту прохождения ($\sim 42\%$) соответствует ФВ $-2.8^\circ/\mu$ m [30]. Расчеты, проведенные в [44] для магнитного ФК на основе GGG и Ві:YIG с двумя (магнитным и немагнитным) дефектными слоями показали, что при определенных параметрах структуры удельное ФВ достигает $2^\circ-4.8^\circ/\mu$ m при высоких значениях коэффициента пропускания (0.95-0.98). В работе [18] проведены теоретические расчеты ФВ на одномерном ФК (SiO₂/GGG)^N/Ві:YIG/(GGG/SiO₂)^N, содержащем магнитный дефект.

При некоторых комбинациях толщин дефектного слоя и количества периодов получено ФВ удельное вращение до нескольких градусов на микрон: $\Phi \sim -1.5^\circ/\mu \mathrm{m}$ (при $T_p \sim 0.9$), $\Phi \sim -3^\circ/\mu \mathrm{m}$ (при $T_p \sim 0.5$). Наибольшее значение $\Phi \sim -6^\circ/\mu \mathrm{m}$ соответствует незначительному пропусканию $T_p \sim 0.1-0.15$. В работе [29] экспериментально наблюдалось гигантское ФВ в ФК с комплексными магнитными дефектами (два разных слоя Bi:YIG) вида ($\mathrm{TiO_2/SiO_2}$) $^m/\mathrm{M/(SiO_2/TiO_2)^m}$. В видимом диапазоне длин волн $613-761\,\mathrm{nm}$ на некоторых образцах достигалось удельное вращение до $66^\circ/\mu \mathrm{m}$ при T=0.6 ($\theta_F=-20.3^\circ$).

Как правило, бездефектные периодические ФК не дают таких высоких значений ФВ, а также заметное ФВ имеет место при небольших значениях коэффициента пропускания ЭМВ. Например, в двухпериодическом (фотонно-магнонном) кристалле [YIG /(TiO₂/SiO₂)⁴/TiO₂]⁵, рассмотренном в [12], максимальные значения удельного ФК для волн s- и p-поляризованных ЭМВ составляли соответственно $\varphi_{s(\max)}^{\pm} = -1.5^{\circ}~(T_s \sim 0.02)$ и $\varphi_{p(\max)}^{-} = -0.3^{\circ}~(T_p \sim 0.15)$, что с учетом толщины всего ФК дало значения удельного вращения порядка $\Phi_s = \pm 0.11^{\circ}/\mu$ m и $\Phi_p = -0.02^{\circ}/\mu$ m. При пропускании, близком к единице, ФВ очень мало: $\varphi_s \sim 0.01^{\circ},~\varphi_s \sim 0.03^{\circ}$.

В настоящей работе мы показываем возможности достижения достаточно больших значений ФВ (от нескольких градусов до десятков градусов) при значительном пропускании именно на бездефектной периодической структуре. В $\Phi K [(SY)^3 (TB)^5]^7$, имеющем общую длину $L_s = 20.511\,\mu{\rm m}$, удельное $\Phi{\rm B}$ на длине волны $\lambda_0=1.3\,\mu\mathrm{m}$ достигает наибольших $\Phi_p = -0.233^\circ/\mu\mathrm{m}$ $(\varphi_{p(\max)}^- = -4.78^\circ,$ значений $T_p = 0.71)$ и $\Phi_s = -0.21^\circ / \mu \mathrm{m}$ $(\varphi_{s(\mathrm{max})}^- = -4.2^\circ,$ $T_p = 0.79$). Для случая $\lambda_0 = 1.55\,\mu{
m m}$ соответствующие удельные значения составляют $\Phi_p = -0.15^\circ/\mu\mathrm{m}$ $(\phi_{p(\max)}^- = -3.05^\circ, \quad T_p = 0.82)$ и $\Phi_s = -0.11^\circ/\mu \text{m}$ $(arphi_{s(ext{max})}^- = -2.3^\circ, \quad T_s = 0.9).$ Для ФК с пятикратно увеличенными толщинами магнитных $(L_s = 57.903 \, \mu {
m m})$ наибольшие значения удельного ΦB на длине волны $\lambda_0 = 1.55 \, \mu \mathrm{m}$: $\Phi_p = -0.72^\circ / \mu \mathrm{m}$ $(\varphi_{p(\max)}^- = -41.78^\circ, T_p = 0.19),$ $\Phi_p = -0.42^\circ/\mu\mathrm{m}$ $(\phi_{p({
m max})}^- = -24.29^\circ, \quad T_p = 0.81)$ и $\Phi_s = -0.32^\circ/\mu{
m m}$ $(arphi_{s(ext{max})}^- = -20.25^\circ, \quad T_p = 0.946).$ Для длины волны $\lambda_0 = 1.3 \, \mu \mathrm{m}$ наибольшие значения удельного $\Phi \mathrm{B}$ $\Phi_s = -0.49^\circ/\mu \mathrm{m}$ составляют $(\varphi_{s\,(\text{max})}^{-} = -28.05^{\circ},$ $T_p = 0.34)$ и $\Phi_p = 0.36^\circ/\mu{
m m}$ $(\phi^-_{p({
m max})} = -20.74^\circ,$ $T_p = 0.762$). Эти значения удельного ΦB сравнимы с результатами теоретических расчетов, полученными в работе [11] для двух ФК-структур на основе SiO₂ и Ta₂O₅ с комплексными магнитными дефектами из слоев Ві:ҮІС и SiO₂, где удельные значения ΦB достигают $0.446^{\circ}/\mu m$ и $0.676^{\circ}/\mu$ m при коэффициенте пропускания, близком к единице. В случае трехпериодического $\Phi K [(SY)^3 (TB)^5]^7$ полученные значения удельного ФВ в несколько раз

меньше, чем в работе [18], но они на один — два порядка превосходят соответствующие значения ФВ в двухпериодических магнитных ФК [12].

Заключение

В настоящей работе мы показали, что в одномерном бездефектном трехпериодическом ФК на основе слоев из оксидов кремния и титана, а также магнитных слоев ферритов-гранатов YIG и Bi:YIG возможно сочетание высоких (близких к единице) значений коэффициентов пропускания и больших углов ФВ (до нескольких десятков градусов) в области внутризонных полос пропускания, близких к телекоммуникационным длинам волн $\lambda_0 = 1.55\,\mu\text{m}$ и $\lambda_0 = 1.3\,\mu\text{m}$.

Значения углов ФВ для структуры $(SiO_2/YIG)^3(TiO_2/Bi:YIG)^5]^7$ при некоторых частотах могут значительно (на один—два порядка) превышать значения для магнонно-фотонных кристаллов вида $[YIG/(TiO_2/SiO_2)^4]^5/YIG$ [12]. Помимо этого, в трехпериодическом ФК максимумы ФВ s- и p-поляризованных волн могут совмещаться с соответствующими областями высокого пропускания. Таким образом, при фиксированных углах падения настройка частоты в пределах полосы пропускания позволяет достичь хороших результатов — значительных углов ФВ при максимальном пропускании ЭМВ.

Показана возможность поляризационной настройки (переключение поляризации падающей ЭМВ) угла ФВ и коэффициентов пропускания, а также настройки этих параметров путем изменения угла падения излучения ИК диапазона. Для обеих длин волн ($\lambda_0=1.55\,\mu\mathrm{m}$ и $\lambda_0=1.3\,\mu\mathrm{m}$) углы ФВ могут достигать сравнимых значений при достаточно высоком (> 70%) пропускании, т. е. структура может быть функциональной на двух рабочих частотах.

Приведенные результаты указывают на перспективность использования мультипериодических магнитофотонных кристаллов для потенциальных технических разработок устройств оптоэлектроники и нанофотоники. При этом следует отметить также, что по аналогии с ФК, рассмотренным в [10-12], трехпериодические ФК с магнитными слоями, в частности ФК вида $[(ST)^{N}(YB)^{M}]^{K}$, могут выступать в роли комплексных магнонных кристаллов, способных поддерживать и передавать (независимо от ЭМВ) магнонные возбуждения гигагерцевого диапазона. Согласно нашим оценкам, на структуре $[(ST)^{N}(YB)^{M}]^{K}$ ФВ может достигать -63° при умеренном пропускании ЭМВ. С учетом этой особенности такие трехпериодические системы можно использовать в качестве многофункциональной структуры (магнонно-фотонные кристаллы) с запрещенными магнонными и фотонными зонами в гигагерцевом и петагерцевом режимах соответственно, которые могут лечь в основу новых многофункциональных устройств на стыке фотоники и магноники.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (проект № 23-22-00466).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A.K. Zvezdin, V.A. Kotov. *Modern Magnetooptics and Magnetooptical Materials* (Bristol, Institute of Physics Publishing, 1997). DOI: 10.1201/9780367802608
- [2] Magnetism, ed. by É. Du Trémolet de Lacheisserie, D. Gignouxand, M. Schlenker. (Boston, Springer, 2005).
- [3] J. Grafe, M. Schmidt, P. Audehm, G. Schutz, E. Goering. Rev. Sci. Instrum., 85, 023901 (2014). DOI: 10.1063/1.4865135
- [4] M. Atatüre, J. Dreiser, A. Badolato, A. Imamoglu. Nature Phys., 3, 101 (2007). DOI: 10.1038/nphys521
- [5] N. Dissanayake, M. Levy, A. Chakravarty, P.A. Heiden, N. Chen, V.J. Fratello. J. Appl. Phys., 99, 091112 (2011). DOI: 10.1063/1.3633344
- [6] Y.S. Dadoenkova, I.L. Lyubchanskii, Y.P. Lee, T. Rasing. Appl. Phys. Lett., 97 (11), 011901 (2010). DOI: 10.1063/1.3488679
- [7] T. Goto, A.V. Baryshev, K. Tobinaga, M. Inoue. J. Appl. Phys., 107, 09A946 (2010). DOI: 10.1063/1.3365431
- [8] T. Mikhailova, A. Shaposhnikov, A. Prokopov, A. Karavainikov, S. Tomilin, S. Lyashko, V. Berzhansky. In: *EPJ Web of Conferences* (2018), vol. 185, 02016.
 DOI: 10.1051/epjconf/201818502016
- [9] Y.S. Dadoenkova, F.F.L. Bentivegna, S.G.Moiseev. Phys. Scr., 98, 105006 (2019). DOI: 10.1088/1402-4896/ab2780
- [10] E.A. Diwan, F. Royer, D. Jamon, R. Kekesi, S. Neveau, M.F. Blanc-Mignon, J.J. Rousseau. JNN, 16, 10160 (2016). DOI: 10.1166/jnn.2016.12844
- [11] B. Gaiyan, D. Lijuan, F. Shuai, F. Zhifang. Opt. Mater., 35 (2), 252 (2012). DOI: 10.1016/j.optmat.2012.08.015
- [12] Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J. Klos, M. Krawczyk. IEEE Trans. Magn., 53, 2501005 (2017). DOI: 10.1109/TMAG.2017.2712278
- [13] J.W. Klos, M. Krawczyk, Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 115 (17), 174311 (2014). DOI: 10.1063/1.4874797
- [14] Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J.W. Klos, M. Krawczyk. J. Appl. Phys., 120 (7), 73903 (2016). DOI: 10.1063/1.4961326
- [15] J.W. Klos, M. Krawczyk, Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. IEEE Trans. Magn., 50 (11), 2 (2014). DOI: 10.1109/TMAG.2014.2321532
- Y.S. Dadoenkova, N.N. Dadoenkova, J.W. Kłos, M. Krawczyk,
 I.L. Lyubchanskii. Phys. Rev. A, 96 (4), 43804 (2017).
 DOI: 10.1103/PhysRevA.96.043804
- [17] J.D. Joannopoulos, S.G. Johnson, J.N.J. Winn, R.D. Meade. Photonic Crystals. Molding the Flow of Light, 2nd ed. (Princeton, Prinstone University Press, 2008).
- [18] S.V. Eliseeva, Y.F. Nasedkina, D.I. Sementsov. Progr. Electromag. Res. M, 51, 131 (2016).
 DOI: 10.2528/PIERM16080403

- [19] I.S. Panyaev, L.R. Yafarova, D.G. Sannikov, N.N. Dadoenkova, Y.S. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 126 (10), 103102 (2019). DOI: 10.1063/1.5115829
- [20] I.S. Panyaev, N.N. Dadoenkova, Y.S. Dadoenkova, I.A. Rozhleys, M. Krawczyk, I.L. Lyubchanskii, D.G. Sannikov. J. Phys. D, 49 (43), 435103 (2016).
 DOI: 10.1088/0022-3727/49/43/435103
- [21] I.S. Panyaev, D.G. Sannikov, Y.S. Dadoenkova, N.N. Dadoenkova. IEEE Sens. J., 22 (23), 22428 (2022). DOI: 10.1109/JSEN.2022.3217117
- [22] I.S. Panyaev, D.G. Sannikov, N.N. Dadoenkova, Y.S. Dadoenkova. Appl. Opt., 60 (7), 1943 (2021).
 DOI: 10.1364/ao.415966
- [23] И.А. Глухов, С.Г. Моисеев. Опт. и спектр., **131** (11), 1475 (2023). DOI: 10.61011/OS.2023.11.57005.5095-23
- [24] A.D. Block, P. Dulal, B.J.H. Stadler, N.C.A. Seaton. IEEE Photonics J., 6, 0600308 (2014). DOI: 10.1109/JPHOT.2013.2293610
- [25] A. Kehlberger, K. Richter, M.C. Onbasli, G. Jakob, D.H. Kim, T. Goto, C.A. Ross, G. Gotz, G. Reiss, T. Kuschel, M. Klaui. Phys. Rev. Applied, 4, 014008 (2015). DOI: 10.1103/PhysRevApplied.4.014008
- [26] S. Mito, Yu. Shiotsu, J. Sasano, H. Takagi, M. Inoue. AIP Advances, 7 (5), 056316 (2017). DOI: 10.1063/1.4976952
- [27] F. Royer, B. Varghese, E. Gamet, S. Neveau, Y. Jourlin, D. Jamon. ACS Omega, 5, 2886 (2020). DOI: 10.21/acsomega.9b03728
- [28] T.V. Mikhailova, V.N. Berzhansky, A.N. Shaposhnikov, A.V. Karavainikov, A.R. Prokopov, Y.M. Kharchenko, I.M. Lukienko, O.V. Miloslavskaya, M.F. Kharchenko. Opt. Mater., 78, 521 (2018). DOI: 10.1016/j.optmat.2018.03.011
- [29] В.Н. Бержанский, А.Н. Шапошников, А.Р. Прокопов, А.В. Каравайников, Т.В. Михайлова, И.Н. Лукиенко, Ю.Н. Харченко, В.О. Голуб, О.Ю. Салюк, В.И. Белотелов. ЖЭТФ, 150, 859 (2016). DOI: 10.7868/S004445101611002X
- [30] M. Inoue, K.I. Arai, T. Fujii, M. Abe. J. Appl. Phys., 83 (11), 6768 (1998). DOI: 10.1063/1.367789
- [31] M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P.B. Lim, H. Ushida, O. Aktsipetrov, A. Fedyanin, T. Murzina, A. Granovsky. J. Phys. D, 39, R151 (2006). DOI: 10.1109/INTMAG.2006.375428
- [32] D.O. Ignatyeva, T.V. Mikhailova, P. Kapralov, S. Lyashko, V.N. Berzhansky, V.I. Belotelov. Phys. Rev. Applied, 22 (4), 044064 (2024). DOI: 10.1103/PhysRevApplied.22.044064
- [33] И.А. Глухов, И.С. Паняев, Д.Г. Санников, Ю.С. Дадоенкова, Н.Н. Дадоенкова. Опт. и спектр., **132** (5), 557 (2024). DOI: 10.61011/OS.2024.05.58464.6401-24
- [34] D.W. Berreman. J. Opt. Soc. Am., 62 (4), 502 (1972). DOI: 10.1364/JOSA.62.000502
- [35] J.R. Devore. J. Opt. Soc. Am., 41 (6), 416 (1951). DOI: 10.1364/JOSA.41.000416
- [36] I.H. Malitson. J. Opt. Soc. Am., 55 (10), 1205 (1965).DOI: 10.1364/JOSA.55.001205
- [37] B. Johnson, A.K. Walton. Br. J. Appl. Phys., **16** (4), 475 (1965). DOI: 10.1088/0508-3443/16/4/310
- [38] M. Torfeh, H. Le Gall. Phys. Status Solidi, 63 (1), 247 (1981). DOI: 10.1002/pssa.2210630133
- [39] V. Doormann, J.P. Krumme, C.P. Klages, M. Erman. Appl. Phys. A, 34 (4), 223 (1984). DOI: 10.1007/BF00616576
- [40] M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather. J. Appl. Phys., 77 (7), 2902 (1995). DOI: 10.1063/1.359516

- [41] J.P. Krumme, C.P. Klages, V. Doormann. Appl. Opt., 23 (8), 1184 (1984). DOI: 10.1364/AO.23.001184
- [42] N.N. Dadoenkova, I.L. Lyubchanskii, M.I. Lyubchanskii, E.A. Shapovalov, Y.P. Lee. Frontiers in Optical Technology: Materials & Devices (Nova Science, New York, 2007), p. 22–72.
- [43] В.И. Белотелов, А.К. Звездин. Фотонные кристаллы и другие метаматериалы (Бюро Квантум, М., 2006) 143 с.
- [44] M.J. Steel, M. Levy, R.M. Osgood, Jr. IEEE Photonics Technology Letters, 12 (9), 1171 (2000). DOI: 10.1109/68.874225