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The emergence of large-scale correlations in plastic flow
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Within the framework of a two-component model of plastic flow using thermal activation analysis of the kinetics
of elementary acts of plastic deformation, the cause is determined and the conditions for the birth of a macroscopic
(autowave) scale during the development of localized plastic flow are analyzed. On this basis, the nature of the
elastic-plastic invariant of plastic flow, which links the characteristics of the elastic and plastic components of
material deformation, is explained.
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The key problem of the autowave theory of plastic
flow [1] is the emergence of an autowave of localized
plasticity of a macroscopic scale (λ ≈ 10−2 m) in a medium
where the main carriers of plastic deformation, which are
edge and screw dislocations, have a characteristic scale on
the order of the Burgers vector (10−10 ≤ b ≤ 10−9 m) [2].
The huge range of scales encompassed by deformation
(λ/b ≈ 107) is hard to interpret, but it is absolutely
necessary to do it, since the presence of large-scale
inhomogeneities of plastic flow in the form of autowave
modes of localized plasticity is indicative of a correlation
of deformation events in volumes separated by a distance
of ∼ λ.
The reason for the emergence of this scale (correlation

radius) of ∼ λ during plastic flow is discussed below. The
proposed explanation relies on a two-component model of
autowave plasticity [1], which advances the theory of ther-
mally activated plastic deformation [3] where plastic flow
is regarded as a set of thermally activated relaxation acts
realized spontaneously under the influence of deforming
stress. In this case, the rate of thermally activated plastic
flow is governed by the Arrhenius relation

ε̇ ≈ ε̇0 exp

(
−

U − γσ

kBT

)
, (1)

where kBT has the usual meaning, ε̇0 = const, U is the
potential barrier height, γ is the activation volume, and
stress σ includes contributions of various nature.
The two-component model of autowave plasticity pro-

posed in [1] complements model [3] in that, in addition
to spontaneous relaxation shifts emerging independently
of each other during plastic flow, it allows for correlated
development of elementary plasticity acts. Correlation
is established through the

”
exchange“ of acoustic signals

(phonons), which are emitted in a relaxation act, between
local stress concentrators. Acting on a stress concentrator
in the

”
waiting“ mode, these signals initiate its relaxation

due to the acoustoplastic effect [4]. The inclusion of
the

”
exchange“ interaction makes elementary shifts in the

deformed medium correlated (i. e., not spontaneous), and
the correlation effects may be taken into account directly
via a proper contribution to effective stress σ in Eq. (1).
The scenario for the emergence of correlation of con-

centrators in the two-component model is presented in the
figure and is implemented by the following sequence of
steps. Let us assume that concentrator 1 relaxes at the
initial moment of time, both generating new dislocations in
its vicinity and emitting an acoustic pulse. New dislocations
activate nearby concentrator 2 by contacting it directly and
induce accommodative plastic deformation at the plasticity
front, ensuring continuous or jump-like motion of the front.
The acoustic pulse emitted during relaxation of concentra-

tor 1 plays a more significant part. It initiates the relaxation
of concentrator 3 located at a distance of ∼ λ from the
original via the acoustoplastic mechanism [4]. The numerical
estimate obtained in [1] demonstrated that the additive effect
of an acoustic pulse reduces the time of thermally activated
separation of the plastic front from the local barrier from
5 · 10−5 to 9 · 10−7 (i. e., by a factor of more than 50).
One may use the following equality as the start condition

for an acoustically initiated relaxation act of concentrator 3:

U − γ(σ + δσac) = U − bl
χ

2
(σ + εacG) ≈ 0, (2)

upon the fulfillment of which the plasticity front sepa-
rates from the local barrier and the regime of thermally
activated dislocation motion changes to a quasi-viscous
one [2,5]. Here, χ ≈ b is the local barrier width,
(blχ/2)εacG ≈ (blχ/2)δσac is the acoustic pulse energy
transferred to concentrator 3, l is the length of the plasticity
front section between adjacent barriers, εac is the amplitude
of deformation in an acoustic pulse, and G is the shear
modulus.
The figure makes it clear that condition (2) is satisfied if

an acoustic pulse generated in relaxation of concentrator 1
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Diagram of development of thermally activated plastic deformation.
Emergence of macroscale ∼ λ.

reaches concentrator 3 when U − γσ ≈ (blχ/2)εacG is at it.
This is possible if time ϑ ≈ λ/Vt of propagation of an
acoustic pulse to concentrator 3 over a distance equal to
the autowave length is the same as time ϑ ≈ χ/2Vaw within
which the autowave front shifts by χ/2 along the slope of
the local barrier. In this case, we have

λ

Vt
≈ ϑ ≈

χ

2Vaw
. (3)

Velocities Vaw ≈ (2π)−1λωaw ≈ 10−4 m/s and Vt ≈
≈(2π)−1χωD ≈ 103 m/s in Eq. (3) are specified by spatial
scales λ and χ of the problem and oscillations frequencies:
ωaw for an autowave and ωD for an elastic wave, respec-
tively. Thus, it turns out that the relaxation of concentrator 1
is correlated with the relaxation of concentrator 3 located
at a distance of λ ≫ χ from it, which is what causes the
generation of an autowave of localized plasticity [6].
Expression

λVaw

χVt
= Ẑ ≈

1
2
, (4)

which is known as the elastic-plastic deformation invariant,
follows immediately from relation (3). The existence of this
invariant has already been established experimentally [1].
Verification of the feasibility of invariant (4) revealed that it
is valid at the stages of linear strain hardening and easy
slip (in FCC single crystals), where σ ≈ θε and strain
hardening coefficient θ = dσ

dε = const. Phase autowaves of
localized plasticity emerge in the deformed medium under
these conditions [1]. The interest in the nature of this
invariant is attributable to its versatility; relation (4) remains
valid for different deformation mechanisms: dislocation slip,
deformation due to the motion of individual dislocations
and phase transformation deformation, and deformation by
twinning in γ-Fe single crystals [1]. It follows from the
comparison of average values of λVaw and χVt for the
studied metals (see the table) that their order of magnitude
is ∼ 10−7 m2·s−1 in all cases, and their ratio is 〈Ẑ〉 ≈ 1/2.
Invariant (4) acts as the main equation of the autowave

theory of plasticity of solids and relates the characteristics

Experimental verification of the elastic-plastic invariant

Metal λVaw · 107, m2
·s−1 χVt · 107, m2

·s−1 Ẑ

Cu 3.6 4.8 0.75
Zn 3.7 11.9 0.3
Al 7.9 7.5 1.1
Zr 3.7 11.9 0.3
Ti 2.5 7.9 0.3
V 2.8 6.2 0.45
Nb 1.8 5.3 0.33
γ-Fe 2.5 4.7 0.54
α-Fe 2.2 6.5 0.34
Ni 2.1 6.0 0.35
Co 3.0 6.0 0.5
Mo 1.2 7.4 0.2
Sn 2.4 5.3 0.65
Mg 9.9 15.8 0.63
Cd 0.9 3.5 0.2
In 2.6 2.2 1.2
Pb 3.2 2.0 1.6
Ta 1.1 4.7 0.2
Hf 1.0 4.2 0.24

of elastic (χ and Vt) and plastic (λ and Vaw) deformation.
Numerous corollaries of invariant (4) explain the patterns of
development of localized plastic flow [1] and, what is very
important, establish a direct connection between the au-
towave theory of plasticity and the theory of dislocations [2].
In light of the above estimates, condition (3) may

be regarded as the reason for the existence of invariant
relation (4), which plays an important part in the autowave
description of plasticity. The above is illustrative of
versatility and importance of the elastic-plastic invariant in
the characterization of plastic deformation processes.
Two explanations for the meaning of the elastic-plastic

invariant have been proposed in [1]. In the first one
(thermodynamic), the dimensionless ratios of scales and
velocities were regarded as scale ws = λ/χ ≈ 107 ≫ 1 and
kinetic wk = Vt/Vaw ≈ 107 ≫ 1 thermodynamic probabil-
ities, respectively. This allows one to use Boltzmann
formula S = kB lnw to calculate the summands of entropy
of the process of formation of localized plasticity autowaves,
which, as it turns out, yield a negative sum. This is a sign of
self-organization of the structure of a plastically deformed
medium [7].
The second explanation (mechanical) involves the analy-

sis of elastic and plastic displacements during deformation
in an autowave of localized plasticity. In this case, products
λVaw and χVt , the ratio of which forms invariant (4),
are assigned the meaning of off-diagonal components of
a 2× 2 matrix of transport coefficients of the autowave
plasticity equations for the rates of variation of deformations
and stresses (ε̇ and σ̇ ). Equating them in accordance
with Onsager’s principle [8], one may immediately obtain
invariant (4) [1].
Unfortunately, both explanations failed to clarify the issue

of quantitative interpretation of relation (4). This is achieved
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in the approach presented here, which provides a consistent
explanation of the causes and the mechanism of emergence
of macroscopic scales in the process of development of
plastic flow. The discussed interpretation is consistent with
earlier concepts regarding the nature of the elastic-plastic
deformation invariant [1] and verifies the opinion that the
autowave model of plasticity is based on the coherence
of elastic and plastic deformation processes, which are
characterized by substantially different rates.
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