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Multiple scattering of protons transmitting through thin films
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A method for calculating multiple scattering of atomic particles passing through thin films is proposed. The

angular distribution of protons passing through a thin gold film of different thicknesses is calculated. The use of the

atom−solid potential to calculate the differential scattering cross section allows good agreement with experiment to

be achieved.
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Particles passing through thin films undergo multiple

scattering and ionization and lose energy. Experimental

measurements of the angular and energy distribution of ions

and atoms passing through a film are performed in order to

determine important parameters, such as electronic stopping

losses in matter, obtain data on the potential of interaction

of particles with a solid [1], study straggling, and determine

the film roughness [2]. The passage of particles through

thin films may be used to ionize atomic particle fluxes

escaping from plasma, providing an opportunity to analyze

the parameters of the ionic component of plasma [3,4].

A review of theoretical studies of multiple scattering

may be found in monographs [5,6]. Of note among these

works are the papers authored by O.B. Firsov [7,8], where

the problem was considered in two approximations: the

diffusion approximation, which is valid for near-Coulomb

scattering where the main contribution to the mean square

of the scattering angle per unit path length is produced

by small-angle scattering, and the approximation where

the potential of interaction of incident ions with atoms

of the medium is regarded as being inversely propor-

tional to the distance squared. Numerical calculations for

the Thomas−Fermi−Firsov potential were performed by

Meyer [9]. Either the Born approximation or a specific

type of potential are used in most published works. Pa-

pers [10–14] are worthy of note among the recent research

output. The aim of the present study was to develop

a method for calculating multiple scattering for arbitrary

potential.

Let us consider the case of double scattering (Fig. 1). We

assume that the first scattering occurs at angle θ1 and lies

in plane ZX . The second scattering occurs at angle θ2, and

ϕ is the angle between the planes of the first and second

scattering. Let us rotate the coordinate system by angle θ1
about axis Y . The projections of the velocity vector onto

these axes in the Z′X ′Y coordinate system are

vX ′ = v sin θ2 cosϕ, vY = v sin θ2 sinϕ, vZ′ = v cos θ2.

Applying the matrix of rotation by angle θ1 about axis Y , we
find the magnitude of projection of the velocity vector after

the second collision in the initial XYZ coordinate system:

vX = v(cos θ1 sin θ2 cosϕ + sin θ1 cos θ2),

vY = v sin θ2 sinϕ,

vZ = v(− sin θ1 sin θ2 cosϕ + cos θ1 cos θ2).

Thus, the particle escape angle relative to the Z axis after

double scattering is

θ3 = arccos(− sin θ1 sin θ2 cosϕ + cos θ1 cos θ2). (1)

It is evident that θ3 = θ1 + θ2 when ϕ = 0 and θ3 = θ1 − θ2
when ϕ = π.

Let a particle with initial energy E0 be scattered by angle

θ1. The probability of scattering within the range of angles

θ − 1θ/2 and θ + 1θ/2 is written as

P(E, θ) =
dσ
dθ

(E, θ)Nt d1θ, (2)

where dσ/dθ is the differential scattering cross section, Nt is

the target density, and d is the thickness of the considered

layer. In scattering by angle θ1, energy E1 of an incident

particle is given by

E1

E0

=

[

M1

M1 + M2

]2

×

(

cos θ1 ±

{(

M2

M1

)2

− sin2 θ1

}
1
2
)2

= K(θ1), (3)

where M1 and M2 are the masses of an incident ion and a

surface atom, respectively.

After the second collision, the particle will have energy

E2 = E1K(θ2). The probability of the second scattering is

characterized by function P(E1, θ2).
The resulting distribution of particles over angles θ3 and

energies E2 is obtained by integrating over all possible

angles θ1, θ2, and ϕ.
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Figure 1. Geometry of double scattering.
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Figure 2. Dependence of the differential scattering cross

section in universal coordinates in comparison with approximation

formula (7).

Let us write the solution in implicit form

F(E2, θ3) =

π
∫

0

dθ1

π
∫

0

dθ2

2π
∫

0

dϕP(E0, θ1)P(E1, θ2), (4)

with angle θ3 calculated using formula (1), E1 = E0K(θ1),

and E2 = E1K(θ2).

It is convenient to solve these equations by discretizing

the values of θ3 and E2 and summing up all the cases

when these parameters are realized. This solution may be

generalized to the case of multiple scattering. The solution

for collision multiplicity m is derived from the solution for

m−1. It is taken into account that a particle scattered at

angle θm−1 may have different energies Em−1,

Fm(Em, θm) =

E0
∫

0

dEm−1

π
∫

0

dθm−1

π
∫

0

dθ2

×

2π
∫

0

dϕF(Em−1, θm−1)P(Em−1, θ2), (5)

where

θm = arccos(− sin θm−1 sin θ2 cosϕ + cos θm−1 cos θ2),

Em = Em−1K(θ2). (6)

The angular distribution of particles passing through a

thin gold film was simulated in [2] in our proprietary

program using the Monte Carlo method. It was demon-

strated that an agreement with experimental data cannot be

achieved with traditional pair potentials. Formulae introduc-

ing the screening of interaction of colliding particles passing

through a metal were proposed in [15]. These formulae

made it possible to obtain a satisfactory agreement with the

experiment and were used in the present calculation.

As an example, let us consider multiple scattering in

passage of hydrogen atoms with an energy of 9 keV

through a thin gold film with a thickness of 143 Å. The

corresponding experimental data are available [16].

The energy range of 7−9 keV and scattering angles

smaller than 45◦ are of interest to us in this case. It is

convenient to use universal coordinates to characterize the

cross section: τ = Eθ and ρ = (dσ/d�) sinθ · θ, where E
and θ are the collision energy and the scattering angle.

Figure 2 shows the calculated differential scattering cross

sections for energies of 7 and 9 keV in universal coordinates.

It is evident that the obtained results for angles smaller than

45◦ are approximated well by dependence

dσ
dθ

(E, θ)

[

Å
2

sr

]

=
43.04

θ
(θE)−0.05099−0.18106 lg (θE). (7)

This formula has a problem in that the cross section

diverges at small angles. In the case of a solid target,

this problem is solved due to the fact that the maximum

impact parameter is limited to d/2, where d is the average

distance between target atoms. The integration step in our

calculations was 0.1◦, and the same interval was chosen for

angle θ3 discretization. The energy spectrum discretization

interval was 0.01E0. The obtained results remained the

same at smaller discretization intervals.

The energy spectrum was calculated with a correction for

electronic stopping

E2 = E1K(θ2) − 1Ee = E1K(θ2) −

(

dE
dx

)

e

d
cos θ2

. (8)
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Figure 3. Variation of the angular distribution in passage through m layers with thickness d. Number m of layers is indicated next to

the curves. Experimental data (dots) [16] and data calculated using the Monte Carlo method [2] and the SRIM code are presented for

comparison. The results of calculations by the analytical formula of Sigmund from [18], where the ZBL potential was used, are also shown.

The value of electronic stopping power (dE/dx)e was taken

from [17] and approximated as

(

dE
dx

)

e

[

eV

Å

]

= 1.6E[keV]0.722. (9)

In formula (8), cos θ2 introduces extension of the trajectory

in passing through a layer with thickness d .
The calculation results are shown in Fig. 3. The calculated

curves were normalized to the experimental data at an

angle of 2◦ with account for the angular resolution of the

detector (0.58◦). Figure 3 presents the variation of angular

distribution in passage through m successive target layers

with thickness d .
It can be seen in Fig. 3 that the calculated angular

distribution for a film thickness of 143 Å(∼ 50 layers) agrees
well both with the experimental data [16] and with the

results of Monte Carlo simulations in our program [2].
It is worth emphasizing that the values calculated by the

proposed method agree with the results of Monte Carlo

calculations in our program performed using the same

potential. The complexity of iterative numerical integration

is comparable to the use of the Monte Carlo method

for calculating the passage of particles through thin films.

The considered method offers the advantages of a simpler

adjustment of modeling parameters (interaction potential,

stopping energy losses) and automatic tracking of their in-

fluence on the passage through films of different thicknesses.

The use of the atom−solid potential proposed in [15]
provides a fine agreement with experimental data.

For comparison purposes, Fig. 3 also presents the SRIM

code data and the results of calculation by the analytical

formula from [18]. The ZBL potential was used in

both cases. This potential is known to be ill-suited for

characterizing the collisions of light particles with a target,

since it was obtained by averaging data on potentials for a

large number of collisions of atoms of medium masses.

In our view, the difference between the results obtained

using the analytical formula and the SRIM calculation is

attributable to the approximate nature of this formula. Since

the data of these calculations do not fit the experiment, it

was needed to correct the interaction potential and introduce

the variation of screening in the event of particle collisions

in metal [15].
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