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Statistical method for determining the range limit of non-destructive load

and the range limit of non-destructive deformation ranges of synthetic

yarns

© L.F. Vyunenko, E.S. Tsobkallo, T.B. Koltsova

St. Petersburg State University of Industrial Technologies and Design, St. Petersburg, Russia

E-mail: Viunenko.LF@suitd.ru

Received April 9, 2025

Revised May 13, 2025

Accepted May 15, 2025

The paper proposes a new method for estimating the ultimate non-destructive load and deformation values

during stretching of elementary synthetic yarns, based not on critical breaking values, but on a statistical analysis of

the breaking load and deformation values determined experimentally. The described method for estimating
”
safe“

ranges of loads and deformations under mechanical impacts, using the three-parameter Weibull distribution, can be

extended to a wide range of materials.
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Polymer materials (synthetic fibers and yarns included)

are among the most important structural materials, since

they form the basis for the production of composite

materials and other marketable technical products in which

yarns and fibers act as load-bearing elements. Approaches

based on the fulfillment of strength and rigidity condi-

tions seem to be well established in calculations of the

reliability of products and feature the most important

characteristics of mechanical properties: the permissible

stress and deformation magnitudes. These values, which

depend on the properties of materials, are normally deter-

mined experimentally for various structural materials and

represent the critical values of stress (for the strength

condition) and deformation (for the rigidity condition)

at failure that are reduced by a certain factor. They

are provided as reference data for traditional construction

materials. However, the determination of permissible

values for polymer structural materials, including fibers

and yarns, requires a special approach, since their me-

chanical properties have certain peculiar features (pro-

nounced relaxation properties, nonlinearity of the tension

curve, etc.). The solution to the problem of correct

determination of permissible magnitudes of stress and

deformation is especially relevant for thin elementary syn-

thetic yarns (components of complex yarns) due to the

large relative error of determination of their cross-section

areas.

The Weibull distribution, which has various forms and

notations, is often used as a probabilistic model to de-

scribe and model the values of breaking characteristics of

materials. The most common is its two-parameter form

(Weibull−Gnedenko distribution) with probability density

function [1–3]
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where a is the shape parameter and k is the scale parameter.

It was demonstrated in [1] that the distribution of

strength parameters is characterized adequately within the

Weibull model, and the features of statistical distributions

of experimental values of breaking forces and deformations

of elementary yarns of polyamide-6, which are potentially

associated with different localization of the fracture pro-

cess, were revealed in [1,2] using model (1). The two-

parameter Weibull distribution was used in [3] to analyze

the tensile and bending strength of polymers and composite

materials produced from polymer mixtures. When applied

to synthetic materials, such a model may be used to

characterize the statistical distributions of breaking stress

values in oriented monofilament and polyfilament polymer

fibers [4]. Model (1) provides a fairly accurate description of

the center of the distribution, but is not suitable for correct

estimation of the minimum values of a random variable.

We propose to use the three-parameter form of the Weibull

distribution for this purpose. It contains shift parameter x0:
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(2)

In physical terms, x0 is the threshold (lowest) value of a

random variable. This model is used to assess the probability

of failure-free operation of technical equipment [5] and
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Figure 1. Results of statistical processing of a sample from the three-parameter Weibull distribution W (x0 = 1, k = 0.95, a = 1.8). a —
Relative frequency histogram; b — probability density functions (PDFs) of two-parameter (dotted curve), semi-empirical three-parameter

(dashed curve), and theoretical three-parameter (solid curve) distributions.

operational risks [6] and in certain applied economic and

medical problems [7]. A method for predicting the fracture

of steel plates containing surface cracks based on model (2)
was proposed in [8]. This statistical approach has not

yet been used to evaluate the characteristics (including
mechanical ones) of synthetic polymer materials. The

advantage of model (2) in studying the mechanical behavior

of synthetic oriented polymer materials (fibers, yarns) is

that it provides an opportunity to estimate the limit load or

deformation that does not induce fracture. General guide-

lines for calculating the confidence limits of parameters of

the three-parameter Weibull distribution, which are set out

in GOST 11.007–75 [9], do not allow one to construct an

estimate of the shift parameter needed in the case under

consideration. It was proposed in [9] that an estimate of

this parameter should be the smaller of two values: the

minimum of those observed in the experiment and the one

obtained in the recommended calculation. This approach

is inadequate for evaluating the boundaries of the range

of non-destructive loads and deformations. In addition,

modern numerical methods make it possible to obtain a

more accurate solution to the corresponding computational

problem. The aim of the present study is to develop a

probabilistic method for estimating the range of safe non-

destructive loads and deformations of synthetic materials

using the three-parameter Weibull distribution. Elementary

yarns of polyamide-6, which make up complex industrial-

use yarn, with a diameter of 9± 0.5µm were chosen as the

object of study. The process of yarn fracture was studied in

the mode of active tension with an Instron 1122 instrument

at a stretching rate of 20 mm/min in accordance with GOST

6611.2–73 [10]. The values of breaking force (P p, N)
and relative elongation at break (εp, %) were determined

experimentally. A total of 200 samples were tested.

The proposed method for determining the boundaries

of the ranges of non-destructive loads and deformations,

which is laid out below, is applicable if there is good reason

to assume that the experimental values follow the Weibull

distribution law. Regarding experimental data as sample

values of a random variable with probability density func-

tion (2), we construct an estimate of its minimum possible

value. Three probabilistic models are used for this purpose

in statistical processing of experimental data. The first one is

two-parameter model (1) with its parameters determined by

the maximum likelihood method (MLM) [11]. The second

one is three-parameter model (2). Shift parameter x0 in it is

determined using the semi-empirical formula from [12], and
the remaining two parameters (a and k) are determined by

MLM. In what follows, it is referred to as the semi-empirical

three-parameter model. The third one is three-parameter

model (2) with all its parameters determined simultaneously

by MLM. It is referred to as the theoretical three-parameter

model. The second and third models allow one to calculate

estimates of the minimum value of the random variable

being analyzed. The smaller value should then be chosen

as the safe value boundary. Let us clarify the proposed

method using the following example. We model sample

XN with size N = 1000 from the three-parameter Weibull

distribution with probability density function (2) and the

following parameter values: x0 = 1, k = 0.95, and a = 1.8.

The values of the random variable are considered to be

dimensionless, since the proposed method for estimating

the shift parameter is applicable to any data that follows

the Weibull distribution and does not depend on units of

measurement. The simulation result is presented in Fig. 1, a

in the form of a relative frequency histogram. In Fig. 1, b,

it is shown together with the plots of probability density

functions corresponding to the three models listed above.

The parameters of models were obtained numerically by

searching for the maximum of the logarithmic likelihood

function of sample XN of a given probability model. The

following parameter values were determined in calculations:

x0 = 0, k = 2.0189, and a = 3.9491 for the two-parameter

model; x0 = 0.9182, k = 1.0360, and a = 2.0248 for the
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Table 1. Distribution center characteristics and minimum value for probabilistic models

Statistical Median Mode Minimum

expectation value

Theoretical values 1.8448 1.7750 1.6054 1

Sampled values 1.8344 1.7694 1.6048 1.0164

Two-parameter 1.8286 1.8400 1.8750 0

model

Three-parameter 1.8337 1.7647 1.5972 0.9182

model

(semi-empirical)
Three-parameter 1.8338 1.7654 1.5995 0.9978

model (theoretical)
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Figure 2. Results of statistical processing of experimental breaking loads of elementary polyamide-6 yarns. a — Relative frequency

histogram; b — probability density functions of two-parameter (dotted curve), semi-empirical three-parameter (dashed curve), and

theoretical three-parameter (solid curve) distributions.

semi-empirical three-parameter model; and x0 = 0.9978,

k = 0.9403, and a = 1.8064 for the theoretical three-

parameter model. The maximum value of the logarithmic

likelihood function corresponded to the theoretical three-

parameter model.

When processing the results of modeling for each model,

we fixed the minimum value and calculated statistical

expectation MX , median MedX , and mode ModX , which

are the characteristics of the distribution center [13]:

MX = kŴ
(

1 +
1

a

)

+ x0, Ŵ(z ) =

+∞
∫

0

tz−1etdt

— gamma function,

MedX = k(ln 2)1/a + x0,

ModX = k
(a − 1)1/a

a1/a
+ x0, a > 1.

The calculation results are listed in Table 1. It fol-

lows from the obtained results that the theoretical three-

parameter model provides the closest agreement with

the simulation results and the most accurate estimate

of the minimum value for simulated data. The semi-

empirical three-parameter model yields a smaller value

of the shift parameter; therefore, it may be treated as

a conservative estimate. Note that the two-parameter

model overestimates MedX and ModX and is essentially

unsuitable for estimating the smallest possible value of

a random variable. Let us apply the proposed method

in estimation of the range of non-destructive loads for

elementary synthetic yarns of polyamide-6. Figure 2, a

shows the relative frequency histogram constructed based

on the data of breaking force P p measurements. The

probability density functions of the two-parameter, semi-

empirical three-parameter, and theoretical three-parameter

distributions are plotted in Fig. 2, b. The minimum values of

P p and the characteristics of the distribution center obtained

with the use of three probabilistic models are listed in

Table 2. The minimum value of P p obtained with the

theoretical three-parameter model turned out to be the

smaller of two such values. According to the proposed

probabilistic method for assessing the boundary of the range

Technical Physics Letters, 2025, Vol. 51, No. 8
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Figure 3. Results of statistical processing of experimental breaking deformations of elementary polyamide-6 yarns. a — Relative

frequency histogram; b — probability density functions of two-parameter (dotted curve), semi-empirical three-parameter (dashed curve),
and theoretical three-parameter (solid curve) distributions.

Table 2. Values of distribution center characteristics and minimum value for probabilistic models of breaking forces P p and breaking

deformations εp of polyamide-6 synthetic yarns

Average Median Mode Minimum

value value

P p, N εp,% P p, N εp, % P p, N εp,% P p, N εp,%

Sampled 0.59 17.20 0.60 17.40 0.63 17.52 0.43 9.60

values

Two-parameter 0.59 17.10 0.59 17.35 0.61 17.89 0 0

model

Three-parameter 0.59 17.17 0.59 17.18 0.59 17.27 0.42 8.29

model

(semi-empirical)
Three-parameter 0.59 17.17 0.59 17.22 0.60 17.37 0.34 7.62

model

(theoretical)

of safe non-destructive loads for the material under study,

the value of P p = 0.34N may be used as this boundary.

In addition, correct calculations of the mechanical relia-

bility of structures in many practical cases require the deter-

mination of boundaries of the range of safe deformations.

In the present study, the proposed approach was also used

to determine the boundary of the range of non-destructive

deformations. Figure 3, a shows the relative frequency

histogram constructed based on the results of measurements

of deformations at failure εp . The probability density func-

tions of the two-parameter, semi-empirical three-parameter,

and theoretical three-parameter distributions are plotted in

Fig. 3, b. The minimum values of εp and the characteristics

of the distribution center obtained with the use of three

probabilistic models are listed in Table 2. According to the

proposed method for assessing the boundary of the range

of safe non-destructive reformations for the material under

study, the value of εp = 7.62% may be set as this boundary.

In critically important areas, one may introduce strength and

rigidity assurance coefficients to ensure greater reliability.

Thus, a method for determining safe values of stresses

and deformations for materials under mechanical loads was

proposed. The method is based on a statistical approach

to determination of the range of non-destructive loads and

deformations rather than on critical breaking values. It was

demonstrated that statistical evaluation of the boundaries of

safe ranges of load and deformation of materials requires the

use of the three-parameter Weibull model. It was proposed

to calculate the parameters of the three-parameter model

in two ways (semi-empirical and theoretical), which lead to

different estimates of the shift parameter, and to determine

the boundaries of safe loads and deformations based on

the smallest of the two estimates of this parameter. The

obtained results may be used in certification of products

made from synthetic materials, to develop the methods

for their production and determination of operating modes,
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and to develop new standards and technical specifications

establishing scientifically validated performance standards.
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