
Technical Physics Letters, 2025, Vol. 51, No. 8

03

The physics of the movement of a composite microparticle with a thin

ion-selective shell in an external electric field
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The movement of a nonuniform particle in an electrolyte solution under the action of an external electric field

is considered in the work. The inner part (the core) of the particle is assumed to be a solid dielectric, which

is surrounded by a thin ion-selective shell. It is believed that such a model describes the behavior of a number

of real particles (especially biological ones) more precisely than the uniform one. The features of electrophoretic

movement of such a particle have been theoretically investigated, the velocity of this movement has been obtained,

a comparison with electrophoresis of a uniform dielectric particle and of a uniform ion-selective particle has been

made. Several movement regimes have been found, their stability has been estimated.
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The phenomenon of electrophoresis, which is the motion

of particles in a liquid under the influence of an external

electric field, allows for efficient control of microparticles

(in particular, in lab-on-chip (LOC) devices) in medical

diagnostics and chemical analysis [1]. One of the key

characteristics of such motion is the dependence of the

microparticle’s velocity on the intensity of an external

electric field. Dielectric particles were the examined

initially [2], and a linear dependence was obtained for them.

Later Dukhin has demonstrated [3] that this dependence for

ion-selective particles in strong fields becomes quadratic. A

deviation from the linear dependence in the case of strong

fields and highly charged particles has also been predicted

in theoretical studies performed by Yariv’s group [4].
The nonlinear nature of this dependence has later been

confirmed experimentally [5].
Electrophoresis of ion-selective particles in a liquid elec-

trolyte has a much more complex behavior due to the

presence of concentration polarization and electrokinetics of

the second kind [6,7]. The rate of electrophoresis remains

linearly dependent on the field intensity as long as the

latter is low [8]. This linearity is violated at higher field

strengths [9], and various flow regimes with different types

of instabilities arise in strong fields [10].
The shape and internal structure of a particle were

neglected in the theoretical studies discussed above. This

approach is ill-suited to the study of biological particles

and cells [11,12]. The model of a composite particle

consisting of several concentric layers fits more, while still

preserving the simplicity of theoretical research. Theoretical

studies focused on composite particles are relatively few in

number [13,14] and are often limited to the case of a weak

field that allows for linear approximation of motion. Direct

numerical modeling is the only existing method capable

to provide a complete description of the electrophoresis of

composite particles. It was used to examine qualitatively the

flow around a stationary microparticle in [15], and the aim

of the present study is to investigate electrophoretic motion.

A spherical microparticle with radius r0 consisting of

a spherical dielectric core with surface charge density σ

and a homogeneous ion-selective shell with thickness L is

considered (Fig. 1). The particle is submerged into a dilute

solution of a symmetric binary univalent electrolyte with

salt concentration C∞; the system is exposed to an external

electric field with intensity E∞.

If we neglect chemical reactions and dissociation of

the solvent liquid, the behavior of this system may be

described with the system of Nernst−Planck, Poisson, and

Navier−Stokes equations in the Stokes approximation:

∂C±

∂t
+ U · ∇C± =

DF
RT

∇ ·
(

±C±∇8
)

+ D∇2C±, (1)

ε∇28 = −F
(

C+ −C−
)

, (2)

∇5− µ∇2U = −F
(

C+ −C−
)

∇8,∇ · U = 0. (3)

The unknown functions are molar concentrations of ions

C±, electric potential 8, pressure 5, and velocity vector U.

Symbol F denotes the Faraday constant, R is the universal

gas constant, T is absolute temperature, D is the ion

diffusion coefficient, µ is the dynamic viscosity of the

electrolyte solution, and ε is its absolute permittivity. The

permittivity of the shell is also assumed to be equal to ε,

and the core permittivity is denoted as εp .

The system of equations (1)−(3) is written in the spheri-

cal coordinate system with its origin at the particle’s center.

Therefore, the particle motion is represented as an oncoming

flow of the electrolyte solution with velocity U∞ (i. e., the
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Figure 1. Schematic diagram of a composite microparticle. 1 —
Dielectric solid core, 2 — ion-selective shell, and 3 — electrolyte

solution.

particle moves in the direction opposite to the arrow in

Fig. 1). The three-dimensional system of equations allows

for an axisymmetric solution with the axis of symmetry

passing through the particle’s center and directed along the

external electric field. With this simplification introduced,

the only spatial variables remaining are the radius r and the

polar angle 0 6 θ 6 π.

The system (1)−(3) is valid in region r > r0 . Inside

the core (r < r0 − L), only Poisson equation (2), which

degenerates into Laplace equation ∇2ϕ = 0, is applicable

(for convenience of further analysis, the core’s electric

potential is denoted as ϕ). The shell is considered to be

impermeable to liquid but permeable to ions, so U = 0

should be assumed in Eq. (1). The following additional

term arises in (2):

r0 − L < r < r0 : ε∇28 = −F
(

C+ −C− + N
)

. (4)

The quantity N in (4) has the physical meaning of the space

charge density and specifies the selectivity of the shell: it is

cation- and anion-selective at N < 0 and N > 0, respectively.

At |N| ≫ C∞, the selectivity tends to the ideal one. This

model has already been used by the authors in the study of

flat non-ideal membranes [16].
The electric potential is assumed to be continuous

throughout the entire space and has no singularity at the

point r = 0. A jump in field strength is observed and the

ion flow is absent at the boundary of the core:

r = r0 − L : ε
∂8

∂r
= εp

∂ϕ

∂r
− σ,

8 = ϕ, ±
F

RT
C± ∂8

∂r
+

∂C±

∂r
= 0. (5)

At the outer boundary of the shell (r = r0), no-slip

conditions are set for U = 0; and the continuity conditions

for 8 and C± are satisfied. Away from the particle, the

ion concentrations tend to the equilibrium value, the field

strength tends to that of the external field, and the velocity

tends to that of the oncoming flow.

r → ∞ : C± → C∞, 8 → −E∞r cos θ,

Uθ → −U∞ sin θ, Ur → −U∞ cos θ. (6)

The concentrations of electrolyte ions at the initial time

(t = 0) are assumed to be equal to the equilibrium value,

C± = C∞ .

The system (1)−(6) is solved numerically in the region

r0−L < r < Rmax, where Rmax ≫ r0, using the grid method

of the second order of approximation in space and the

third one in time. The distribution of potential ϕ is

determined analytically. The condition of balance between

the viscous and electric forces acting on the particle is used

to calculate U∞ . A detailed description of the numerical

method was provided in [17].
It is natural to compare the behavior of a composite parti-

cle with that of similar dielectric [17] and ion-selective [9,10]
ones. The velocity of the ion-selective particle in weak fields

is given by the Helmholtz−Smoluchowski formula

U∞ =
εζ

µ
E∞, (7)

where ζ is the zeta potential calculated through σ . A similar

relation for an ion-selective particle was proposed in [9]:

U∞ =
εζ

µ

(

1− 0.22
ζ F
RT

)

E∞. (8)

These dependences change in strong fields: the approxima-

tion (7) is refined with an O(E3
∞) term [18], and (8) is

replaced either with a quadratic dependence U∞ ∝ E2
∞ [3]

or a weaker one. U∞ ∝ E4/3
∞ [9].

The calculations were performed for particles with a

radius of 5 µm and a 0.5 µm shell in an aqueous solution

of potassium chloride with the concentration of 0.1mol/m3.

The shell thickness is taken relatively small (10%) to make

the comparison of composite and dielectric particles valid.

The value of N is assumed to be 10 times higher than

the concentration of the solution N = −1mol/m3. The

calculations show that the motion of the composite particle

does not depend qualitatively on σ . Specifically, at a

relatively strong field of 500 kV/m and σ varying from

zero to a moderate level of +55µC/m2, the value of

U∞ changes by 12%. When σ varies in the opposite

direction (to −55µC/m2), the velocity changes just by 3%.

The dependence on σ is much more pronounced for

the dielectric particle: as the charge varies from −55

to −62µC/m2 (which is also a moderate value), the velocity
changes by 15%.

Figure 2 presents the dependences of the electrophoresis

rate on the applied field intensity. The electrophoresis of
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Figure 2. Comparison of electrophoresis rates of dielectric

(circles), composite (squares), and ion-selective (triangles) par-

ticles. σ = −55µC/m2 . Downward-pointing triangles indicate the

instability of the concentration jet. Dotted lines are the power

asymptotics; the power-law exponent is indicated on the plot.

the first kind (7) is observed for the dielectric particle

at E∞ < 100 kV/m; a pronounced nonlinearity emerges at

field strength above 300 kV/m. In the case of the ion-

selective particle, the second-kind regime appears already

at 5 kV/m. The dependence of the velocity on the field

intensity is quadratic at first, but then gets weaker, to a

power of 4/3. An electrokinetic instability emerges at an

intensity of about 80 kV/m, leading to the formation of

additional vortices near the particle’s surface at its front [9].
These vortices are carried backwards along the surface and

eventually vanish. At field strengths above 500 kV/m, the

vortices are generated so actively that the behavior of the

electrolyte solution near the particle appears chaotic.

The second-kind regime is also established for the com-

posite particle, but the electrokinetic instability is observed

much later, at E∞ > 600 kV/m. The velocity of the

composite particle at low and high E∞ follows closely the

U∞ ∝ E4/3
∞ law (for clarity, the corresponding asymptotics

are drawn separately); at moderate E∞, the power exponent

reaches 5/3.

The distributions of salt K = C++ C− and charge density

ρ = C+− C− are shown in Fig. 3. In sufficiently strong

fields, a space charge region is formed in front of the

particle, and a concentration jet is formed behind it. This

behavior is typical of both ion-selective and dielectric

particles. The jet behind the ion-selective particle becomes

unstable at a field strength about of 200 kV/m: the boundary

of region 3 in Fig. 3, b starts to oscillate [10]. The particle’s

velocity also oscillates, and Fig. 2 shows its time-averaged

values in this regime. The jet behind the composite particle

remains stable within a wider range of field intensities

(up to E∞ ∼ 500 kV/m), which is closer to the behavior

of dielectric particles. Although the shell is rather thin,

concentration polarization is observed near the composite

particle, which is typical of the ion-selective particle.

A theoretical study of electrophoresis of a two-layer

particle with a thin shell was carried out. Its velocity was

calculated. It turned out to be similar to the velocity of
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Figure 3. Normalized charge density ρ/C∞ (a) and salt con-

centration K/C∞ (b) near a composite particle. E∞ = 500 kV/m;

σ = −62 µC/m2. The unit of distance is r0 . 1 — Space charge

region, 2 — depletion layer, and 3 — enriched region.

an ion-selective particle and virtually independent of the

core charge. Concentration polarization and electrokinetic

instability were detected near the composite particle; in

addition, the concentration jet behind the particle was found

to be unstable. Compared to the ion-selective particle,

these instabilities emerge at significantly higher electric field

intensities.
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