Магнитное упорядочение в кристаллическом Si, имплантированном ионами Co промежуточных флюенсов

© Н.А. Поклонский [¶], Н.М. Лапчук, А.О. Коробко

Белорусский государственный университет, 220030 Минск, Белоруссия

(Получена 6 февраля 2006 г. Принята к печати 16 февраля 2006 г.)

Исследовался кристаллический Si, имплантированный ионами кобальта (флюенс $\Phi=10^{14}-10^{16}~{\rm cm^{-2}})$ с энергией 380 кэВ. Методом резерфордовского обратного рассеяния определен порог аморфизации Si ($\Phi=3\cdot10^{14}~{\rm cm^{-2}}$). При температуре $T=78~{\rm K}$ в имплантированном Co⁺ кремнии для $\Phi\ge3\cdot10^{14}~{\rm cm^{-2}}$ зарегистрирована квазирезонансная анизотропная линия электронного парамагнитного резонанса шириной порядка 170 мТл. На фоне этой линии наблюдался резонансный сигнал парамагнитных центров аморфных областей Si ($g=2.0057,~\delta B=0.74~{\rm mTn}$). Квазирезонансная линия электронного парамагнитного резонанса от атомов Co и собственных дефектов Si при $T=300~{\rm K}$ не наблюдалась.

PACS: 61.72.Hh, 61.72.Tt, 76.30.Lh, 81.05.Cy, 81.40.Rs

1. Введение

Интеграция магнитных материалов в полупроводниковую электронику делает возможным создание новых элементов хранения информации [1]. Появляется возможность управления свойствами магнитных материалов системы при помощи изменения оптических и электрических свойств полупроводника. Актуальным является также создание двумерных систем ферромагнитных частиц для использования в спинтронике [2].

Формирование магнитных структур в полупроводниках может осуществляться различными методами: химическим осаждением из газовой фазы, молекулярной лучевой эпитаксией или ионной имплантацией. Так, имплантация кристаллического кремния ионами переходных металлов (Со, Ni и Fe) используется для создания магнитных нанокластеров, а также силицидов металлов (см., например, [3–6]), которые находят применение для соединений элементов интегральных микросхем [7,8]. Перспективность использования силицидов связана не только с их термостабильностью [9] и низким удельным электрическим сопротивлением [10], но и с их совместимостью с кремниевой микроэлектроникой.

Наряду с высокофлюенсной ($\Phi \gtrsim 10^{17}\,{\rm cm}^{-2}$) имплантацией кристаллов кремния ионами переходных металлов с энергиями от десятков до сотен кэВ, которая приводит к созданию силицидов, проводится и имплантация малыми или промежуточными флюенсами ионов для изучения процессов, происходящих на ранней стадии мезотаксии. Из-за того что процессы коалесценции атомных дефектов еще не происходят (т.е. слои силицидов металлов не образуются) [6], становится возможным исследование структурных изменений, например образование аморфной фазы кремния и формирование преципитатов CoSi₂.

Цель данной работы — выявление закономерностей изменений в структуре монокристаллического кремния, возникающих в результате имплантации кристаллов

кремния ионами $\mathrm{Co^{+}}$ при комнатной температуре. Изучение распределения внедренного в кремний кобальта и наведенного при этом парамагнетизма осуществлялось методами резерфордовского обратного рассеяния (POP) и электронного парамагнитного резонанса (ЭПР).

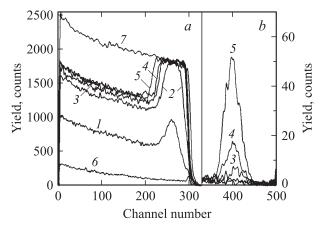
2. Методика эксперимента

Методами РОР и ЭПР исследовались пластины p-Si (толщина 300 мкм, плоскость (100), удельное сопротивление 3 кОм · см), в которые имплантировались ионы Со+ с энергией 380 кэВ (флюенсы $\Phi=10^{14},\,3\cdot 10^{14},\,10^{15},\,3\cdot 10^{\bar{15}},\,10^{16}\,\mathrm{cm}^{-2}).$ Имплантация кремния ионами Со⁺ проводилась при комнатной температуре на ускорителе частиц ROMEO (400 кВ), угол имплантации равнялся 7° (для исключения каналирования ионов), плотность ионного тока — $0.12-0.2\,\text{mkA/cm}^2$. После имплантации проводился быстрый термический отжиг (БТО) образцов при температурах $T_{\rm ann}=800$ и 1000°C в течение 60 с в атмосфере аргона. Измерение спектров РОР осуществлялось на ускорителетандетроне JULIA (3 MB)¹ в Университете им. Фридриха Шиллера, ФРГ. Зондирующие частицы — ионы Не⁺, угол обратного рассеяния ионов He⁺ составлял 170°. Регистрация спектров РОР проводилась при ориентированном (осевой спектр) и неориентированном (случайный спектр) пучке ионов гелия.

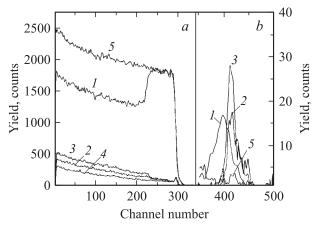
Измерения ЭПР выполнялись на спектрометре "RadioPAN SE/X 2543" с резонатором H_{102} (частота 9.321 ГГп) при модуляции поляризующего магнитного поля частотой $100\,\mathrm{kTu}$, чувствительность спектрометра — $3\cdot10^{12}\,\mathrm{спин/мTn}$. Для контроля добротности резонатора, настройки фазы модуляции магнитного поля и калибровки H_1 -компоненты СВЧ излучения использовался кристалл рубина ($\mathrm{Al_2O_3:Cr}$), размещенный на стенке резонатора. Исследуемые образцы кремния помещались в центр H_{102} -резонатора.

[¶] E-mail: poklonski@bsu.by

¹ Jena University Laboratory for Ion Acceleration.


3. Результаты и их обсуждение

3.1. Измерения резерфордовского обратного рассеяния


Общий вид спектров РОР имплантированного кремния для разных флюенсов Со⁺ представлен на рис. 1 (каналирование ионов Не⁺ вдоль направления [100]). Видно, что при регистрации спектра РОР образца с флюенсом имплантации $\Phi = 10^{14} \, \mathrm{cm}^{-2}$ аморфизация кремния не наблюдалась (рис. 1, а, кривая 1). В спектрах РОР при $\Phi = 3 \cdot 10^{14} \,\mathrm{cm}^{-2}$ (рис. 1, *a*, кривая 2) появляются очаги аморфной фазы Si, которые слабо отличимы от сильно разупорядоченных областей. Поэтому эту величину флюенса можно отнести к некоему пороговому значению, после которого наблюдается аморфизация кремния. При увеличении флюенса ионов Со+ наблюдается уширение аморфного слоя кремния за счет накопления и перекрытия аморфных областей. Максимальная ширина аморфного слоя кремния 0.44 мкм наблюдается при флюенсе $\Phi = 10^{16}$ см⁻² (рис. 1, a, кривая 5). При флюенсах имплантации $\Phi = 10^{15}$ и $3 \cdot 10^{15}$ см $^{-2}$ ширина аморфного слоя кремния практически одинакова (см. рис. 1, кривые 3,4) и составляет 0.37 и 0.38 мкм соответственно.

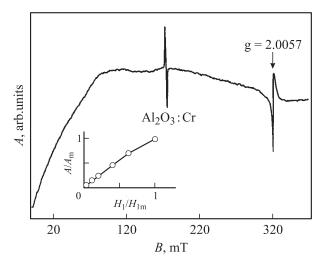
Определенная методом POP глубина залегания атомов Co в кремнии для максимального флюенса $\Phi=10^{16}\,\mathrm{cm^{-2}}$ составляет 0.3 мкм и в целом согласуется с данными моделирования по программе TRIM/SRIM2003.

Из спектров РОР образца Si, имплантированного флюенсом $3 \cdot 10^{15}$ см $^{-2}$, видно (рис. 2, a, кривые 2, 3), что после БТО как при $T_{\rm ann}=800^{\circ}{\rm C}$, так и при $T_{\rm ann}=1000^{\circ}{\rm C}$ разупорядоченный слой Si почти полностью рекристаллизовался: кривые 2, 3 сравнимы с сигналом РОР от неимплантированного кремния (кривая 4). В спектре

Рис. 1. Спектры резерфордовского обратного рассеяния: a — от образцов p-Si, имплантированного ионами Co^+ ; b — от атомов Co в образцах p-Si. Флюенсы Co^+ Ф, 10^{14} см $^{-2}$: I — 1, 2 — 3, 3 — 10, 4 — 30, 5 — 100; 6, 7 — исходный образец. Регистрация спектров проведена при ориентированном (I–6) и неориентированном (7) пучке ионов He^+ .

Рис. 2. Спектры резерфордовского обратного рассеяния: a — от образцов p-Si, имплантированного ионами Co^+ ($\Phi=3\cdot10^{15}\,\mathrm{cm}^{-2}$); b — от атомов Co в образцах p-Si. Спектры измерены: I — до отжига; 2,3 — после быстрого термического отжига при T_{ann} , °C: 2 — 800, 3 — 1000; 4,5 — исходный образец. Регистрация спектров проведена при ориентированном (1–4) и неориентированном (5) пучке ионов He^+ .

РОР можно наблюдать небольшую ступеньку в сигнале облученного Si после БТО (рис. 2, a, кривые 2, 3). Это, возможно, обусловлено восстановлением плоскостей решетки в имплантированном кристалле вследствие отжига и перестройки дефектов. В неотожженном имплантированном образце при условии каналирования наблюдается пик (кривая 1), соответствующий дефектам кремния, расположенным на пути луча ионов He^+ . После отжига пик, соответствующий собственным дефектам кремния (аморфная область), исчезает, т. е. произошло упорядочение атомов Si. В имплантированных образцах после БТО профиль залегания Со смещается к приповерхностной области (рис. 2, b, кривые 2, 3), что, возможно, связано с наличием градиента температуры между объемом и поверхностью образца или с эпитаксиальной рекристаллизацией. Как показано в [11], эпитаксиальная рекристаллизация может сопровождаться вытеснением примеси фронтом кристаллизации, в результате чего часть атомов Со смещается из объема и накапливается в приповерхностной области. После БТО (800°С, $t = 60 \,\mathrm{c}$) форма сигнала Со в кремнии практически не изменилась (рис. 2, b, кривая 2), в то время как сигнал кобальта после БТО при 1000°C, $t = 60 \,\mathrm{c}$ (рис. 2, b, кривая 3) стал более узким и возросла интенсивность сигнала. Это связано с одновременным уменьшением концентрации собственных дефектов кремния в результате отжига и локализацией атомов Со в приповерхностной области кремния.


Для образца, имплантированного Co^+ флюенсом $\Phi=10^{16}\,\mathrm{cm}^{-2}$, число регистрируемых импульсов POP после БТО уменьшается. Это, возможно, обусловлено процессами рекристаллизации аморфного слоя и трансформацией дефектно-примесной структуры в образце. Также заметно, что после БТО уменьшается толщина

аморфного слоя кремния и сигнал POP от имплантированного кобальта становится более выраженным, т. е. происходит процесс, аналогичный описанному выше для флюенса $3 \cdot 10^{15}$ см $^{-2}$.

3.2. Измерения электронного парамагнитного резонанса

При температуре $T=300\,\mathrm{K}$ в имплантированных образцах p-Si наблюдался сигнал ЭПР малой интенсивности (g=2.0057, ширина $\delta B=0.74\,\mathrm{mTn}$). Для качественной интерпретации полученных результатов можно провести аналогию с работой [12], где приводятся результаты измерений ЭПР кварцевого стекла, имплантированного ионами железа с разными флюенсами. Сигнал ЭПР при $T=300\,\mathrm{K}$, обусловленный кластерами железа или уединенными парамагнитными ионами железа, при имплантации с меньшими флюенсами может не наблюдаться в связи с незначительной концентрацией таких центров, а также с ориентационным усреднением сигналов от отдельных ионов железа в аморфном SiO₂ [12]. Скорее всего, этот же механизм действителен и при имплантации Co^+ в p-Si.

При температуре $T=78\,\mathrm{K}$ регистрировался (рис. 3) интенсивный сигнал ЭПР аморфного кремния ($g=2.0057,\,\delta B=0.74\,\mathrm{mTr}$), обусловленный оборванными связями Si–Si, возникшими в результате имплантации Co⁺. Амплитуда сигнала ЭПР при 78 K в 4 раза больше, чем при 300 K. Известно (см., например, [13,14]), что

Рис. 3. Спектр ЭПР Si, имплантированного Co $^+$ флюенсом $\Phi=3\cdot 10^{15}\,{\rm cm}^{-2}$. На квазирезонансной линии поглощения заметен сигнал рубина Al₂O₃:Сr и сигнал оборванных химических связей между атомами Si (g=2.0057). Температура регистрации $T=78\,{\rm K}$, индукция поляризующего магнитного поля B перпендикулярна плоскости (100) имплантированного слоя. На вставке — зависимость нормированной амплитуды A сигнала с g=2.0057 от величины напряженности H_1 магнитной компоненты СВЧ поля в H_{102} -резонаторе. Величина H_{1m} соответствует мощности $70\,{\rm mBr}$, $A_{\rm m}$ — максимальная амплитуда сигнала ЭПР.

д-фактор, соответствующий оборванным химическим связям в аморфном кремнии, равен 2.0055. Незначительное увеличение д-фактора может означать влияние кобальта на парамагнитные центры аморфных областей. Отметим, что сигнал ЭПР от областей аморфного кремния в p-Si регистрировался при $T = 78 \, \mathrm{K}$ на фоне квазирезонансной линии шириной порядка 170 мТл, принадлежащей кобальту (см. рис. 3). Можно предположить, что эта квазирезонансная линия ЭПР обусловлена магнитоупорядоченными группами оборванных связей, генерируемыми при имплантации кобальта в образец монокристаллического кремния и образующими выделенное направление. Однако такое предположение не позволяло объяснить аномально большую ширину наблюдавшегося сигнала ($\delta B \approx 170\,\mathrm{mTr}$), которая к тому же слабо менялась при вращении образца в магнитном поле. Сравнение же с результатами, приведенными в работе [12], показывает, что широкий анизотропный сигнал обусловлен ферромагнитным резонансом от кластеров из атомов кобальта, имплантированных в кремний.

Это заключение согласуется с данными работы [15], где наблюдался при $T=300\,\mathrm{K}$ ферромагнитный резонанс с характерной широкой линией для поликристаллических образцов Со в форме диска (диаметр $d=3\,\mathrm{mm}$, толщина $t=0.1\,\mathrm{mm}$). Аналогичная линия ЭПР шириной $\delta B\approx 200\,\mathrm{mT}$ л, обладающая магнитным гистерезисом, была замечена нами в синтетическом алмазе, содержащем включения металлов-растворителей [16]. Отметим, также, что ферромагнитный резонанс нанокластеров MnAs в кристаллическом кремнии с характерной широкой линией $\delta B\approx 50\,\mathrm{mT}$ л в малых полях наблюдался в [17] при последовательной имплантации Mn^+ (200 кэВ) и As^+ (260 кэВ) флюенсами от $5\cdot 10^{15}\,\mathrm{mo}\,5\cdot 10^{16}\,\mathrm{cm}^{-2}$.

При записи квазирезонансной линии в спектре ЭПР кремния, имплантированного ионами кобальта $(\Phi \ge 3 \cdot 10^{14} \, \mathrm{cm}^{-2})$, наблюдается гистерезис: многократная запись в прямом и обратном направлениях развертки внешнего магнитного поля выявляет остаточную намагниченность образца. Для наблюдения гистерезиса образец поворачивали в СВЧ резонаторе на угол 360°, и после такого поворота узкая линия $(g=2.0057, \, \mathrm{BHy-})$ тренняя спин-метка) не возвращается к своему начальному положению, что свидетельствует о возможности процессов намагничивания и размагничивания имплантированного Co^+ образца кремния.

В спектре ЭПР регистрируется интенсивная линия с g-фактором, близким к g-фактору, соответствующему оборванным химическим связям между атомами в аморфном кремнии, что говорит о наличии аморфных областей после достижения флюенса $3 \cdot 10^{14}$ см $^{-2}$ (порог аморфизации). Изучение зависимости интенсивности сигнала ЭПР с g=2.0057 (для флюенса $3 \cdot 10^{15}$ см $^{-2}$ ионов Co^+) от мощности СВЧ излучения показывает, что зависимость эта близка к линейной, что характерно для парамагнитных центров аморфных областей Si (см. вставку на рис. 3).

4. Заключение

- 1. Методом резерфордовского обратного рассеяния определен порог аморфизации (флюенс $\Phi=3\cdot 10^{14}\,{\rm cm}^{-2}$) кристаллического кремния, имплантированного ионами кобальта с энергией 380 кэВ при комнатной температуре. Для флюенса имплантации $\Phi=10^{16}\,{\rm cm}^{-2}$ оценена толщина аморфного слоя кремния $\sim 0.44\,{\rm mkm}$ и глубина залегания ионов кобальта $\sim 0.3\,{\rm mkm}$.
- 2. При температуре $T=78\,\mathrm{K}$ в имплантированных Co+ кристаллах кремния для $\Phi \geq 3 \cdot 10^{14}\,\mathrm{cm}^{-2}$ зарегистрирована анизотропная квазирезонансная линия поглощения CBЧ мощности в магнитном поле (шириной порядка 170 мТл). На фоне этой линии наблюдался резонансный сигнал ($g=2.0057,\ \delta B=0.74\,\mathrm{mTn}$) парамагнитных центров аморфных областей кремния. (Квазирезонансная линия ЭПР от атомов Co при $T=300\,\mathrm{K}$ не регистрируется).

Выражаем благодарность W. Wesch, E. Wendler и О. Picht за помощь и гостеприимство при прохождении А. Коробко стажировки в Университете им. Фридриха Шиллера, Йена, ФРГ.

Список литературы

- [1] Б.П. Захарченя, В.Л. Коренев. УФН, 175 (6), 629 (2005).
- [2] С.А. Гусев, Ю.Н. Ноздрин, М.В. Сапожников, А.А. Фраерман. УФН, **70** (3), 331 (2000).
- [3] Zh. Tan, F. Namavar, J.I. Budnick, F.H. Sanchez, A. Fasi-huddin, S.M. Heald, C.E. Bouldin, J.C. Woicik. Phys. Rev. B, 46 (7), 4077 (1992).
- [4] Zh. Tan, J.I. Budnick, F.H. Sanchez, G. Tourillov, F. Namavar, H.C. Hayden. Phys. Rev. B, 40 (9), 6368 (1989).
- [5] A.E. White, K.T. Short, R.C. Dynes, J.P. Garno, J.M. Gibson. Appl. Phys. Lett., 50 (2), 95 (1987).
- [6] A.P. Knights, G.R. Carlow, M. Zinke-Allmang, P.J. Simpson. Phys. Rev. B, 54 (19), 13 955 (1996).
- [7] C. Choi, S. Chang, Y. Ok, T. Seong, H. Gan, G. Pan, K. Tu. J. Electron. Mater., 32 (10), 1072 (2003).
- [8] M.A. Harry, G. Gurello, M.S. Finney, K.J. Reeson, B.J. Sealy. J. Phys. D: Appl. Phys., 29 (7), 1822 (1996).
- [9] L.J. Chen, K.N. Tu. Mater. Sci. Rep., 6, 53 (1991).
- [10] P. Murarka. Silicides for VLSI Applications (Academic, N.Y., 1983) p. 30.
- [11] Ф.Ф. Комаров, А.П. Новиков, В.С. Соловьев, С.Ю. Ширяев. *Дефекты структуры в ионно-имплантированном кремнии* (Минск, Университетское, 1990).
- [12] В.Б. Гусева, А.Ф. Зацепин, В.А. Важенин, В. Schmidt, Н.В. Гаврилов, С.О. Чолах. ФТТ, **47** (4), 650 (2005).
- [13] М.В. Власова, Н.Г. Каказей, А.М. Калиниченко, А.С. Литовченко. Радиоспектроскопические свойства неорганических материалов. Справочник (Киев, Наук. думка, 1987).
- [14] С.И. Рембеза. Парамагнитный резонанс в полупроводниках (М., Металлургия, 1988).
- [15] Н.А. Поклонский, Т.М. Лапчук, Н.И. Горбачук. ЖПС, 68 (4), 419 (2001).

- [16] Н.А. Поклонский, Т.М. Лапчук, А.О. Коробко. Тез. докл. Межд. науч. конф. "Актуальные проблемы физики твердого тела", Минск, 4–6 ноября 2003 г. (ИФТТП НАНБ, Минск, 2003) с. 44.
- [17] N.A. Sobolev, M.A. Oliveira, V.S. Amaral, A. Neves, M.C. Carmo, W. Wesch, O. Picht, E. Wendler, U. Kaiser, J. Heindrich. Mater. Sci. Eng. B, 126, 148 (2006).

Редактор Т.А. Полянская

Magnetic ordering in monocrystal Si implanted with Co ions of intermediate fluences

N.A. Poklonski, N.M. Lapchuk, A.O. Korobko

Belarusian State University, 220030 Minsk, Belarus

Abstract Silicon crystals implanted with cobalt ions (fluence $\Phi=10^{14}-10^{16}~{\rm cm}^{-2}$) with the ion energy 380 keV were investigated. By the method of Rutherford backscattering a threshold of silicon amorphisation ($\Phi=3\cdot10^{14}~{\rm cm}^{-2}$) was determined. At the temperature $T=78~{\rm K}$ a quasi resonance anisotropy line of electron spin resonance (ESR) with the order width of 170 mT was registered in silicon implanted with cobalt ions for $\Phi\geq 3\cdot10^{14}~{\rm cm}^{-2}$. In the background of this line a resonance signal (g=2.0057, $\delta B=0.74~{\rm mT}$) of the paramagnetic centers of amorphous regions of silicon was seen. The quasi-resonance ESR line from the cobalt atoms and intrinsic defects has not been observed at $T=300~{\rm K}$.