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Surface plasma oscillations in a semiconductor nanolayer
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The problem of surface plasma oscillations propagating along a layered
”
dielectric-semiconductor-

dielectric“nanostructure is solved within the quantum theory of charge carrier transport phenomena. The case of

symmetrical charge carrier distribution at the boundaries of a semiconductor nanolayer is considered. Expressions

are derived for the wave propagation and attenuation coefficients as a function of the semiconductor layer thickness,

surface wave frequency, chemical potential, permittivity of insulating layers, and roughness parameters of the

”
semiconductor-dielectric“interfaces. Oscillations of the frequency dependences of the wave propagation length are

detected, the period and amplitude of which correspondingly depend on the semiconductor nanolayer thickness

and the surface roughness parameters.
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Introduction

Recently, researchers are greatly interested in studying

specific features of propagation of surface plasma oscilla-

tions in various nanostructures [1–5]. Active development

of plasmonics is due to improvement of technologies that

can create nanostructures of any complexity with a typical

size of on the order of nanometers. It can be exemplified

by metal nanolayers with an applied periodic lattice or with

nanoholes used as plasmon waveguides [6–8]. Plasmonics

development is facilitated by improvement of high-sensitivity

optical technologies that make it possible to experimentally

study characteristics of surface waves [9]. The above said

indicates relevance of theoretical research in the field of

plasmonics.

Today, we can highlight a number of theoretical studies

that are dedicated to investigating special features of propa-

gation of the surface plasma wave in conducting nanolayers.

In the papers [2], the authors have taken into account

spatial dispersion of polarizability of the HgTe/CdHgTe

electron gas and shown that within a high-frequency area

the plasmon dispersion law goes from the root one to the

linear one. The studies [10,11] have obtained expressions for

coefficients of propagation and decay of the surface plasmon

taking into account surface charge carrier scattering for a

symmetric and antisymmetric configuration. We note that

studies [10,11] considered a case of a metal without taking

into account quantization of the energy spectrum of the

charge carriers.

The present study has obtained an analytical solution of

the problem about surface plasma oscillations in the semi-

conductor nanolayer with taking into account the quantum

theory of the transfer phenomena. Surface charge carrier

scattering is taken into account by the Soffer boundary

conditions [12].

1. Problem formulation

Let us review a semiconductor nanolayer of the thickness

a, which is located between two non-magnetic insulating

layers with the same permittivities. We take the Cartesian

system of coordinates with the axis Z that is oriented

inwards the nanolayer and the axis X that is directed parallel

to propagation of the surface wave (Fig. 1). We note

that the surface wave can not propagate in case of TE

polarization [1]. We will review only TM polarization, when

the vectors of strengths of the electric and magnetic fields

are as follows: E = {Ex , 0, Ez}, H = {0,Hy , 0}.
It is known that plasma oscillations with the symmetric

and antisymmetric charge distribution at boundaries can

propagate along thin layers [1]. The first case corresponds

to a situation when the charge signs at the upper and lower

boundaries of the layer coincide, while the second case

correspond to a situation when they are different. The first

case will be reviewed in the present study, which is related

to the following considerations. The layer, along which

the oscillations propagate, can be conditionally divided

into areas where an excessive positive (negative) charge is

concentrated. Fig. 1 shows that a center of these areas,

where the charge is the greatest, will be dominated by the

electric field component Ez (and, therefore, Hy). Between

the areas, i.e. where the charge at the boundaries is the

least, the component Ex will be predominant. In case

of symmetrical charge distribution and the thin layer, the

electric field strength will practically be without the z -
component inside the layer. It follows from a superposition

principle, i.e. power lines of the electric field strength vector,
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Figure 1.
”
Dielectric-semiconductor-dielectric“ nanostructure,

along which the surface wave propagates: I — the semiconductor,

II — the dielectric. The dashed lines mark power lines of the

electric field strength vector.

which go from the upper and the lower boundaries of the

layer, are oppositely directed to each other. Therefore,

only the component Ex will be inside the layer. In case

of antisymmetric charge distribution, the electric field’s

transverse component Ez will be predominant. Under

effects of this field, the charge carriers move perpendicular

to the layer surface and are accumulated at the boundaries,

thereby modifying the field itself. This situation necessitates

solving a self-consistency problem that is reduced to a

system of integral equations of the function of the charge

carrier distribution and the field strength Ez . It is a more

complicated task as compared to the case when the charge

sign at the nanolayer boundaries is the same. Therefore,

we stop on reviewing the case of symmetrical charge

distribution.

We note that the surface charges at the boundaries of

the conducting layer affect a nature of distribution of the

charge and the electric field along the thickness, which

requires solution of the system of equation for determining

the function of distribution of charge carriers and the

electric field strength. This issue was reviewed in the

studies [13–15], in which dependences of the charge carrier

concentration and the electric field strength on a coordinate

were found for a lanthanum-strontium cuprate and an

indium oxide nanoparticle. The results showed that a width

of the area of nonuniform charge distribution near the layer

boundaries is estimated to be 5 nm. The surface charge

generates a quite strong transverse electric field of the

strength of 108 V/m. This field causes motion of the charge

carriers in a direction perpendicular to the layer surfaces. As

noted above, in case of symmetrical charge distribution the

nature of the plasma oscillations is predominantly affected

by a longitudinal electric field. Therefore, nonuniformity of

the charge and heterogeneity of the transverse electric field

will be omitted.

In the present study, permittivity of the insulating layers

is assumed to be constant. This factor limits a material

from which the insulating layers are made of. We will

assume that these layers are made of a nonpolar dielectric.

This case involves only electron polarization that does

not noticeably contribute to a frequency dependence of

permittivity up to ultraviolet frequencies [16]. It is possible

to use nonpolar dielectrics or wide-band semiconductors

with an ion type of a bond between atoms (for example,

the solid solutions Al1−xGaxAs, Al1−x InxSb, etc.). At the

same time, resonance absorption is possible at the IR-range

frequencies, but away from a resonance the permittivity can

be assumed to be constant.

It is assumed that a thickness of the semiconductor

nanolayer can be comparable or less than the de Broglie

wavelength of the charge carriers. In this situation the

charge carrier systems shall be reviewed as a quantum

one. The electron gas shall be reviewed as a quasi-two-

dimensional gas included in a quantum well with infinitely

high walls. The expression for the full energy of the electron

(hole) for the l-th subband will be as follows:

εl =
~
2

2m
(k2

x + k2
y) + ε1l2, (1)

l = ±1, ±2, ±3 . . . ± N, (2)

where m — the effective mass of the electron (hole), ~ —
the Planck constant, ε1 = (π~)2/(2ma2) — the eigenvalue

of the charge carrier energy at the first energy level, N —
the total number of the subbands.

In accordance with the quantum theory of the transfer

phenomena, the charge carrier system is described by a

density operator [17]:

ρ̂(z , k‖, t) =
∑

l

Wl〈ψl(z , k‖, t)〉〈ψl(z , k‖, t)〉, (3)

which complies with the Liouville’s quantum equation:

i~
∂ρ̂

∂t
= [Ĥ, ρ̂], (4)

where ψl — the wave function of the charge carrier system

at the l-th subband, Wl — the statistic weight, k‖ — the

longitudinal component of the wave vector.

We note that in reality the nanolayer surface is not

perfectly smooth. The mean square height of the surface

relief may vary from tenths to several nanometers. With

the thickness of the nanolayer of about 10 nm, surface

irregularity at an atom level can significantly affect the

transfer phenomena in the nanolayer. One of the factors

affecting surface charge carrier scattering is nontrivial

distribution of the field and the charge in dependence on

surface curvature due to its roughness. The study [18]
has investigated a distribution of the electric field and the

charge in a metal tip that imitates an element of surface

irregularity. It was shown that the most significant change

of the field strength is observed near a cone apex within

the area of the width of 0.5 nm. The value of the electric

field near the cone apex can exceed the applied field in

four times. Study of distribution of the electric field and the

charge in dependence on the surface curvature is a separate

difficult problem. It is possible to significantly simplify the

calculations when assuming that the height of the surface

relief is small as compared to the nanolayer thickness. In this
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case, the quantum well with an irregular boundary can be

replaced by a quantum well with smooth boundaries, while

the surface irregularity can be interpreted as a disturbance of

the system Hamiltonian. The full Hamiltonian of the carrier

charge system can be presented as a sum of the Hamiltonian

that describes the equilibrium state Ĥ0 and a correction that

takes into account volume and surface scattering V̂ [19]:

Ĥ = Ĥ0 + V̂ . (5)

We note that in the most semiconductors of the n type

the Hamiltonian of the electron system in the conduction

band depends on the wave number as per the quadratic

law. Some semiconductors, whose crystal structure has

no inversion center (for example, GaAs that has a zinc

blende structure) have a deviation from the quadratic

dependence of Ĥ0(k) due to spin-orbit interaction of the

charge carriers [20] by several percent. In most cases, this

deviation can be neglected. In a valence band, spin-orbit

interaction of the charge carriers becomes significant [21].
Specific features of a law of dispersion of the valence band

in the semiconductors have been analyzed to show that

the dependence of the energy on the wave vector is not

described by the quadratic law.

The present study assumes that the conducting nanolayer

is a semiconductor of the n type of conductivity. We will

think that the Hamiltonian of the charge carrier system

depends on the wave number of the charge carrier by the

quadratic law.

Ĥ0 =
~
2k2

2m
. (6)

It is shown in the papers [19,22] that in a situation

when the charge carrier system slightly deviates from the

equilibrium state, the equation (4) can be reduced to the

following kinetic equation:

−ν f (1)
l + υz

∂ f (1)
l

∂z
+

eE
~

∂ f (0)
l

∂k‖
= 0. (7)

Here, ν = τ −1 − iω — the complex scattering frequency,

τ — the relaxation time, ~ — the Planck constant, υz —
the projection of the vector of the charge carrier velocity on

the axis Z, k‖ — the component of the charge carrier vector,

which is parallel to the nanolayer plane, e — the charge of

the electron (hole), f l — the function of distribution of the

charge carriers at the l-th subband, which performs as the

l-th diagonal element of the density matrix. The function

f l can be presented in an expansion that is linear by the

external electric field:

f l(z , k‖, t) = f (0)
l + f (1)

l (z , k‖) exp(−iωt), (8)

f (0)
l =

1

1 + exp((εl − µ)/kBT )
, (9)

where f (0)
l — the equilibrium distribution function, f (1)

l —
the non-equilibrium correction, µ — the chemical potential,

kB — the Boltzmann constant, T — the temperature.

The surface charge carrier scattering is taken into account

by the Soffer boundary conditions [12] applied to the

equation (7):

{

f (1)+
l = q1(g1, θ) f (1)−

l , z = 0,

f (1)−
l = q2(g2, θ) f (1)+

l , z = a,
(10)

q1,2(g1,2, θ) = exp
(

−(4πg1,2 cos θ)
2
)

, (11)

g1,2 =
gs1,2

λB
, (12)

where f (1)±
l — the functions of distribution of electrons

with a positive and negative projection of the wave vector

to the axis Z, respectively, gs1,2 — the mean square height

of the surface relief of the upper and the lower surface,

respectively, λB — the de Broglie wavelength of the electron

(hole), θ — the incident angle of the charge carrier to the

internal surface of the semiconductor nanolayer.

We note that the Soffer model (10)−(12) is obtained

as a result of solving the problem about interaction of the

quasi-monochromatic wave with the metal boundary with

taking into account a far field approximation. A package

of the flat waves was assumed to be quite big so that the

wave could be considered to be quasi-monochromatic, but

quite small so that the far field approximation is fulfilled for

calculating an amplitude of the de Broglie wave scattered

from the nanolayer surface. We note that the author of the

study [12] expresses doubts about applicability of the model

of boundary conditions for semimetals and semiconductors

(the far field approximation is not fulfilled). We will

show that in case of a semiconductor film the far field

approximation and is applicable and the Soffer model can

be used. In a metal, free charge carriers which ensure flow

of electric current have a fixed energy that corresponds to

the Fermi energy. Therefore, the de Broglie wavelength of

electrons in the metal will be constant. The charge carriers

experience volume and surface scattering, the electron

gas can be presented as a set of spherical waves with

the same wavelength, which are reflected from scattering

sources. The wave package considered in the paper [12] is
a result of interference of the spherical waves and its size

is determined by a distance between the scattering sources

(in case of the metal it is atoms of a crystal lattice). In

the semiconductor, an additional factor that affects the size

of the wave package is a spread of thermal velocities of

the charge carriers. As a result of phonon and impurity

scattering, the wave vector can change its amplitude, i.e.

the de Broglie wavelength is changed. This factor reduces

a size of the wave package, within which the wave can be

assumed to be monochromatic. It makes it possible to apply

the far field approximation in the semiconductors. We will

assume that the mean square height of the surface relief

is assumed to be small as compared to the film thickness,

because the kinetic equation (7) was obtained within the

disturbance theory. Therefore, the parameters gs1 and gs2

are less than the de Broglie wavelength of the charge carriers
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λB in case when the nanolayer thickness is comparable with

λB. It corresponds to the condition, at which the far field

approximation is fulfilled [23]:

g2
s1,2

bλB
≪ 1, (13)

where b — the typical scale of variation of the amplitude of

the de Broglie wave.

We note that the Soffer model is applicable in case when

there are effects of dimensional quantization of the charge

carriers [12].
The non-equilibrium distribution function makes it pos-

sible to calculate the current density and the integral

conductivity by the formulas [19,22]:

j =
2ek1

(2π)3

∑

l

∫ ∫

vx

(

f (1)+
l + f (1)−

l

)

dkxdky , (14)

σa =

a
∫

0

j
E

dz , (15)

where k1 — the z -component of the wave vector of the

charge carrier at the first subband.

2. Calculation of characteristics of the
surface wave

By solving the equation (7) with taking into account the

boundary conditions (10), successively substituting f (1)+
l

and f (1)−
l into (14) and (15) and carrying out a series

of mathematical calculations, we will obtain the following

expression for the integral conductivity:

σa = σ0a6(x0, xλ, y0, g1, g2, uµ), (16)

σ0 =
nve2τv

m
, (17)

6 =

√
u0v

2x0I1/2z 0

∞
∑

l=1

ln
(

exp(uµ − u1l2) + 1
)

×
(

1− χ
(2x2

0z 0

lxλ

)

)

, (18)

χ(p)=
1

2p

(

1− e−p
) 2− q1 − q2 + (q1 + q2 − 2q1q2)e−p

1− q1q2e−2p
,

(19)

q1,2(g1, 2, θ) = exp
(

−
(

2πg1,2l/x0

)2)

, (20)

z 0 = ντv =
τv

τ
− iy0, x0 =

a
λB0

, xλ =
3

λB0
, y0 = ωτv ,

(21)

Is =

∞
∫

0

(us du)

exp(u − uµ) + 1
, (22)

u0 =
mv20
2kBT

, u0v =
mv20v
2kBT

, u1 =
mv21
2kBT

=
u0v

4x2
0

, uµ =
µ

kBT
.

(23)

Here, the following dimensionless parameters are intro-

duced: z 0 — the complex scattering frequency, x0 — the

thickness of the semiconductor nanolayer, xλ — the mean

free path of the charge carriers, y0 — the surface wave

frequency. The parameters x0 and xλ are rated to the de

Broglie wavelength of the charge carrier that moves with

the typical velocity u0u. z 0 and y0 are rated to the relaxation

time of the charge carriers τv without taking into account

quantization of their energy spectrum. u1 — the transverse

velocity of the charge carriers for the first subband, u0

and u0u — the typical velocities of the charge carriers

with and without taking into account quantization of the

energy spectrum of the charge carriers, respectively, which

are introduced as follows:

nv20 = 4
(m

h

)3

v1
5

3

∞
∑

l=1

∫ ∫

(v2‖ + v21l2) f (0)
l dvxdvy , (24)

nvv0v
2 = 2

(m
h

)3 5

3

∫ ∫ ∫

v2 f 0d3v, (25)

v‖ — the longitudinal velocity of the charge carrier, nv
and n — the concentration of the charge carriers in the

macroscopic sample and the nanolayer, respectively, which

are determined by the expressions:

n=4

∞
∑

l=1

∞
∫

−∞

∞
∫

−∞

f (0)
l k1

dkxdky

(2π)3
= 4π

(m
h

)3(2kBT
m

)3/2√
u1P,

(26)

nv = 2

∫ ∫ ∫

f 0

d3k
(2π)3

= 4π
(m

h

)3(2kBT

m

)3/2

I1/2. (27)

Using (24)−(25), we obtain the following expressions for

the parameters u0 and u0v :

u0 =
5

3

K
P
, u0v =

5

3

I3/2
I1/2

, (28)

K =

∞
∑

l=1

∞
∫

u1l2

udu
exp(u − uµ) + 1

, (29)

P =

∞
∑

l=1

ln(exp(uµ − u1l
2) + 1). (30)

In case of a degenerate electron gas, u0 and u0u transform

into the Fermi velocity uF , and in case of a non-degenerate

Fermi gas they are of the order of the average thermal

velocity of the charge carriers.

v0v
2 ≈ 5kBT

m
, (31)

v20 ≈
10kBT
3m

(

1 +
6u1l2 exp(−u1l2)
6 exp(−u1l2)

)

. (32)
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The meaning of introduction of the magnitudes τv and u0u

is as follows. The change of the thickness of the nanolayer

results in variation of a position of the energy level and,

therefore, in the change of the mean square velocity of

motion of the charge carriers u0 (there is a dependence

u0(a)). The present study assumes that without surface

scattering the mean free path of the charge carriers does

not depend on the thickness and is determined as a product

of the average velocity of motion of the charge carriers by

the mean free time:

3 = u0τ = u0vτv . (33)

Therefore, the availability of the dependence u0(a) results

in that the parameter τ depends on the nanolayer thickness.

The parameters τv and u0v do not depend on the thickness,

therefore, they have been used for rating the magnitudes ν ,

a , 3, ω.
Using the expression (33), we will express the ratio τv/τ

included in the parameter z 0 via the typical velocities:

z 0 =
τv

τ
− iy0 =

√
u0√
u0v

− iy0. (34)

In order to find the characteristics of the surface wave,

we will find surface impedances inside the semiconductor

nanolayer and from the side of the insulating layers to be

determined as a ratio of the x -component of the electric

field strengthEx and the y -component of the magnetic field

strength Hy .

The electric and magnetic components of the surface

wave are described by the system of wave equations:

{

ε
c2

∂2E
∂t2 − 1E = 0,

ε
c2

∂2H
∂t2 − 1H = 0.

(35)

Outside the conducting layer, the dependence of E and H on

the time and the coordinates x and z can be obtained as a

solution of the system of equations (35), which is presented

as the wave that is running along the axis X and evanescent

when z → ±∞:

{

E = E0 exp(−iωt + αz + ikx), z < 0,

E = E0 exp(−iωt + α(a − z ) + ikx), z > a,
(36)

{

H = H0 exp(−iωt + αz + ikx), z < 0,

H = H0 exp(−iωt + α(a − z ) + ikx), z > a .
(37)

Here, α — the transverse coefficient of decay that is

determined via the parameters k , ω and ε by the relationship

α =

√

k2 − ω2

c2
ε. (38)

From the side of the insulating layers the components Ex

and Hy are related to each other by the Maxwell equation:

−∂Hy

∂z
+ iε

ω

c
Ex = 0. (39)

Here, ω — the wave frequency, k — the wave number,

c — the speed of light, ε — the permittivity.

Using (39) and taking into account (36) and (37), we

obtain the surface impedance outside the conducting layer:

Z1 =
Ex

Hy

∣

∣

∣

∣

z=0

= − iαc
εω

. (40)

Inside the conducting layer, the dependences E and H on

the time and the coordinates x and z will be written so that

amplitudes of the components E0x and H0y be functions of

the coordinate z :










Ex = E0x(z ) exp(−iωt + ikx),

Ez = E0z (z ) exp(−iωt + ikx),

Hy = H0y(z ) exp(−iωt + ikx).

(41)

By replacing ε in the expression (39) with complex

permittivity εm = 1 + i4πσ/ω, where σ is conductivity,

we will obtain a relation between Ex and Hy inside the

conducting layer:

−∂Hy

∂z
+ i

ω

c
Ex =

4π

c
σEx . (42)

Symmetrical distribution of the charge carriers (Fig. 1)
corresponds to a situation, when the components of the

vectors Ex and Hy at the nanolayer boundaries are related

to each other by the relationship:
{

Hy (0) = −Hy(a),

Ex (0) = Ex (a).
(43)

It follows from the condition (43) that the component of

the electric field strength Ex is virtually independent of the

coordinate z . From the equation (42) we will obtain an

expression for the surface impedance from the side of the

conducting layer:

Z2 =
Ex

Hy

∣

∣

∣

∣

z=a

=
2ic

(ωa + 4πiσa)
. (44)

By equating the surface impedances, we will obtain expres-

sions for the transverse coefficient of decay of the surface

wave:

α = − 2εω

(ωa + 4πiσa )
. (45)

By using the relationship (38), we will obtain an

expression for the wave vector of the surface wave:

k =

√

ω2

c2
ε +

4ε2ω2

(ωa + 4πiσa)2
. (46)

The expression (46) describes the dispersion law of the

surface plasmon.

We rate the parameters k and α to the thickness of the

semiconductor nanolayer and write the expressions (45) and
(46) via dimensionless parameters:

α0 = − 2εy0

(y0 + iy2
p6)

, (47)
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k0 =

√

y2
0

x2
0

x2
λ

ρ2ε +
4y2

0ε
2

(y0 + iy2
p6)2

, (48)

where the following notation is introduced: ρ = v0v/c ,
y p = ωpτv .

We note that generally the parameters α0 and k0 are

complex magnitudes and can be presented as

α0 = Re(α0) + iIm(α0) = α01 + iα02, (49)

k0 = Re(k0) + iIm(k0) = k01 + ik02. (50)

We will call a real part of the wave number k01 that

is equal to a number of the wavelengths fitting into a

segment of the length of 2π, a coefficient of propagation.

We will call an imaginary part of the wave number k02 that

describes decay of the surface wave along the propagation

direction, a longitudinal coefficient of decay. The coefficient

of transverse decay will be understood by us as the real part

of the parameter α0.

We introduce a notion of the length of propagation of

the surface wave L that is a distance transmitted by the

wave, which results in reduction of amplitudes of the vectors

of the strengths of the electric and magnetic fields in e
times. It follows from the expressions (36) and (37) that

the propagation length is determined as a magnitude that

is inverse to the imaginary part of the wave number k. By

rating to the thickness of the semiconductor nanolayer, we

obtain

L0 =
L
a

=
1

Im(k0)
. (51)

Let us review the case of the degenerate electron gas

(exp(µkBT ) ≫ 1) that corresponds to a high concentration,

a low effective mass of the charge carriers and a low

temperature. The equilibrium function of distribution takes

the form of a stepped approximation:

f (0)
l (εl) =

{

1, 0 < εl < εF ,

0, εl > εF ,
(52)

where εF — the Fermi energy.

The expressions for k0 and α0 take the form (47) and

(48), respectively, in which the dimensionless conductivity

6 is determined as follows:

6 =
3

4x0z 0

N
∑

l=1

(

1− l2

4x2
0

)(

1− χ
(2x2

0z 0

xλ l

)

)

, (53)

N =
[kF

k1

]

= [2x0], (54)

where N — the number of the subbands, the square brackets

in the formula (54) denote an integral part, kF — the wave

vector of the charge carrier with the Fermin energy.

Let us review the case of the non-degenerate electron

gas (exp(µ(kBT ) ≪ 1) that corresponds to the relatively

low concentration, the large effective mass and the high

temperature. The equilibrium function of distribution of the

charge carriers will be as follows

f (0)
l (εl) = exp((µ − εl)/kBT ). (55)

The expressions for k0 and α0 take the form (47) and

(48), respectively, in which the parameter 6 is determined

as follows:

6 =
1

x0z 0

√

5

2π

∞
∑

l=1

exp
(

− 5l2

8x2
0

)

(

1− χ
(2x2

0z 0

xλl

)

)

. (56)

3. Analysis of results

Fig. 2 shows the dependences of the coefficient of

propagation on the dimensionless frequency of the sur-

face with the various permittivity of the insulating layers.

The figure shows that the frequency dependence of the

coefficient of propagation is practically monotonic. The

figure exhibits a deviation from the linear dependence

towards higher k01 with increase of the dimensionless

frequency, which is typical for the law of dispersion of

plasma oscillations [1]. With increase of the permittivity,

the coefficient of propagation increases.

Fig. 3 shows the frequency dependences of the propaga-

tion length L0. It follows from the figure that increase of

the permittivity of the insulating layers results in reduction

of the propagation length. There are observed oscillations

of the frequency dependences of the parameter L0, which

have a more pronounced nature with increase of ε. A

cause of origination of the oscillations is probably similar to

appearance of the oscillations at the absorption spectra [24].
Oscillatory maximums of the parameter L0 are observed

at the frequencies which are multiples of a frequency
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Figure 2. Dependences of the dimensionless coefficient of

propagation k01 on the dimensionless frequency y0 when x0 = 0.8;

xλ = 10; ρ = 0.005; y p = 200; g1 = 0; g2 = 0.2. The solid

curves 1−3 and the dashed curves are constructed for the cases of

the degenerate and the non-degenerate electron gas, respectively:

1, 4 — ε = 1; 2, 5 — ε = 8; 3, 6 — ε = 20.
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of surface collisions of the charge carriers: the surface

wave will decay more weakly, thereby contributing to

more effective transfer of the wave energy along the

nanolayer. The sharpest change of the dependence L0(y0)
is observed near the first maximum within the range of the

dimensionless frequencies 25 − 30: the maximum value of

the dimensionless length L0 exceeds the minimum value

thereof practically in five times. The effect related to the

oscillations of the length of propagation of the wave can

be used for designing plasmon waveguides designed to

filter frequencies that correspond to minimum decay of the

wave (plasmon filters). Fig. 3 shows that at the minimum

decay in the nanolayers of the thickness of about tens of

nanometers the surface wave can propagate for a typical

distance of about several micrometers (L0 ≈ 250). For the

most semiconductors, at the room temperature the mean

free time of the charge carriers τ is within the range

10−12 − 10−13 s. The oscillation effects originate in the

semiconductor nanolayers of the thickness of about 10 nm

at the frequencies of about tens of terahertz. We note

that in the case of the non-degenerate electron gas the

oscillations of the frequency dependences of the propagation

length are less pronounced as compared to the case of the

degenerate gas due to the spread of thermal velocities of

the charge carriers. The strongest difference between the

solid and dashed curves is observed near the maximums of

L0, thereby making it possible to use the surface plasma

oscillations for determining a nature of degeneracy and the

concentration of the charge carriers in the semiconductor

nanolayer.

It follows from Fig. 3 that with decrease of the frequency

the propagation length infinitely increases, i.e. there is

no wave decay in a low-frequency limit. In fact, the

theoretical model has limitations and it is necessary to
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Figure 3. Dependences of the dimensionless propagation length

L0 on the dimensionless frequency y0 when x0 = 0.8; xλ = 10;

ρ = 0.005; y p = 200; g1 = 0; g2 = 0.2. The solid curves 1−3 and

the dashed curves are constructed for the cases of the degenerate

and the non-degenerate electron gas, respectively: 1, 4 — ε = 1;

2, 5 — ε = 3; 3, 6 — ε = 10.

0 10020 8040 60

L
0

0

20

60

80

100

140

y
0

4

2

5

3, 6

1

40

120

Figure 4. Dependences of the dimensionless propagation length

L0 on the dimensionless frequency y0 when xλ = 10; ρ = 0.005;

y p = 200; ε = 3; g1 = g2 = 0.2. The solid and dashed curves are

constructed for the cases of the degenerate and the non-degenerate

electron gas, respectively: 1, 4 — x0 = 0.9; 2, 5 — x0 = 1.5; 3,

6 — x0 = 3.

specify an area of its applicability. At the low frequencies,

the coefficient of propagation of the surface wave is small

(Fig. 2), which corresponds to large sizes of areas of the

nanolayer surface, where the positive (negative) charge is

concentrated. In real conditions, there are limitations on the

size of these areas and the propagation lengths as a result

of thermal oscillations of the charge carriers. In the typical

semiconductors, a diffusion length of the charge carriers,

which defines a typical distance, within which the excessive

concentration of the charge carriers decreases in e times,

is within the range from tens to thousands of micrometers.

The theoretical model constructed in the present study is

applicable when the length of propagation of the surface

wave does not exceed several micrometers (is much less

than the diffusion length).
Fig. 4 has spectra of the length of propagation of the

surface wave constructed at the various thicknesses of the

semiconductor nanolayer. It follows from the figure that

the period of oscillations quite strongly depends on the

nanolayer thickness. With decrease of the thickness by

0.6λB (which corresponds to 6 nm), the period increases

practically in 1.5 times. It indicates that the characteristics

of the surface wave that propagates with minimum decay

(the frequency, the amplitude, etc.) can be easily tuned to

create the nanolayer of a certain thickness. With increase

of the thickness, the oscillations become less pronounced

and their amplitude decreases. The oscillations of the

dependences L0(y0) are observed in quite thin nanolayers,

whose thickness does not exceed 3λB.

Fig. 5 shows the frequency dependences of the propa-

gation length with the various parameters of the surface

roughness. The curves of Fig. 5 are constructed in a

situation when the parameters of roughness of the upper

and lower boundaries of the nanolayer are the same. In
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Figure 5. Dependences of the dimensionless propagation length

L0 on the dimensionless frequency y0 when xλ = 10; ρ = 0.005;

y p = 200; ε = 3; x0 = 1, g2 = 0. The solid and dashed curves are

constructed for the cases of the degenerate and the non-degenerate

electron gas, respectively: 1, 4 — g1 = 0; 2, 5 — g1 = 0.07; 3,

6 — g1 = 0.2.

case of smooth surfaces, the oscillations of the spectra of

the propagation length are not observed. It confirms a

hypothesis that the oscillations occur not only as a result of

the effects of dimensionless quantization, but with presence

of surface scattering as well (the non-zero parameters g1

and g2). Variation of a surface irregularity degree results

in the change of the amplitude of the oscillations of the

dependences L0(y0). This effect makes it possible to

apply surface plasma oscillations for determining the surface

roughness by measuring a typical distance that is transmitted

by the wave at the minimum decay.

Fig. 6 compares spectra of the propagation length, which

are constructed in case of two rough surfaces and in a

situation when one nanolayer boundary is mirror-polished

and the other is rough. The figures show that when one

surface is rough and the other is smooth the period of the

oscillations is in two times less than in the case of the same

roughnesses (see the curves 1, 4 and 3, 6). It is related

to the fact that in case of one mirror-polished surface the

frequency of surface charge carrier scattering is in two times

less than in the situation when both the surfaces are rough.

Fig. 7 shows the frequency dependences of the coefficient

of propagation k1 of the plasma oscillations which propagate

along the GaAs layer of the thickness of 33 nm at the

temperature of 1.85K. Fig. 7 compares results obtained

within the framework of the model with experimental data

of the study [25]. A layer of the narrow-band GaAs semi-

conductor is placed between two wide-band AlxGa1−xAs

semiconductors (0.01 < x < 0.03) that function as barrier

layers.According to results of measurements by means of

the quantum Hall effect [25], the surface concentration

of the charge carriers and mobility are 4 · 109 cm−2 and

9 · 105 cm2/(V·s), respectively.

In order to compare the obtained results with the

theoretical calculations, the following parameters were

determined: the concentration of the charge carriers without

taking into account the effects of dimensional quantization

3 · 1016 cm−3, the mean free path of the charge carriers

5.5 µm. The best compliance is observed at the values

of the parameters of the surface roughness g1 = 0.02 and

g2 = 0.09, which corresponds to a mean square height of

the surface 1.3 and 6 nm, respectively.

The theoretical calculations were carried out for sym-

metrical distribution of the charges at the layer boundaries.

Another case, when the charges at the nanolayer boundaries

are opposite in sign, requires additional consideration,
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Figure 6. Dependences of the dimensionless propagation length

L0 on the dimensionless frequency y0 when xλ = 10; ρ = 0.005;

y p = 200; ε = 3; x0 = 1, g2 = 0.2. The solid and dashed curves

are constructed for the cases of the degenerate and the non-

degenerate electron gas, respectively: 1, 3 — g1 = 0; 2, 4 —
g1 = 0.2.
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Figure 7. Dependences of the propagation parameter k1 on the

frequency ω of the GaAs layer of the thickness of 33 nm. The

dots are experimental data of the study [21]. The solid curve is a

theoretical calculation at the following parameters: λB0 = 67 nm;

3 = 5 µm; ε = 12; g1 = 0.02; g2 = 0.09.
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although, it can be assumed that the coefficients of

propagation and decay of the surface wave will significantly

depend on the surface effects. It is related to the fact that

with such distribution of the charge carriers at the layer

boundaries the oscillations of the charge carriers will be

affected by the transverse component of the electric field

strength, whose value is determined by the charge at the

layer boundaries. A size of near-surface areas, where the

charge is concentrated, depends on the surface roughness.

Therefore, surface charge carrier scattering will affect not

only on their response from the side of the electric field,

but on the field itself as well. It can be noted that in

a limit case of a very thin layer there will be generated

plasma oscillations that predominantly have symmetrical

distribution of the charge at the nanolayer boundaries. This

can be explained as follows. With a small thickness of

the nanolayer, the areas at which the surface charge is

concentrated will contact each other, i.e. the surface charges

will be exchanged as a result of thermal fluctuations. If

the signs of the charge at the opposite boundaries of the

nanolayers are different (antisymmetric distribution), the

absolute value of the charge at the boundaries will decrease

with reduction of the thickness.

Conclusion

The analytical expressions are obtained for the coefficients

of decay and propagation of the surface wave as a function

of the dimensionless parameters: the thickness of the nanon-

layer, the frequency, the permittivity of the environment and

the parameters of the surface roughness. It is shown that the

dispersion curves have typical maximums. With decrease

of the thickness, the maximum of the dispersion curve is

shifted towards the low frequencies. This effect becomes

significant at the thicknesses that are less than the de

Broglie wavelength of the charge carriers. Oscillations of the

spectra of a longitudinal decay parameter are detected and

their period varies with the change of the thickness, while

their amplitude varies with the change of the parameters

of the surface roughness. The obtained expressions make

it possible to calculate the thickness of the conducting

nanolayer and the parameters of the surface roughness by

the period, the amplitude and the form of oscillations of the

decay spectra.

The results of the study can be applied in practice for

designing the plasmon waveguides that effectively transfer

the energy and have minimum decay.
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