Technical Physics, 2025, Vol. 70, No. 8

01

Surface plasma oscillations in a semiconductor nanolayer
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The problem of surface plasma oscillations propagating along a layered ,dielectric-semiconductor-
dielectric“nanostructure is solved within the quantum theory of charge carrier transport phenomena. The case of
symmetrical charge carrier distribution at the boundaries of a semiconductor nanolayer is considered. Expressions
are derived for the wave propagation and attenuation coefficients as a function of the semiconductor layer thickness,
surface wave frequency, chemical potential, permittivity of insulating layers, and roughness parameters of the
»semiconductor-dielectric“interfaces. Oscillations of the frequency dependences of the wave propagation length are
detected, the period and amplitude of which correspondingly depend on the semiconductor nanolayer thickness

and the surface roughness parameters.
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Introduction

Recently, researchers are greatly interested in studying
specific features of propagation of surface plasma oscilla-
tions in various nanostructures [1-5]. Active development
of plasmonics is due to improvement of technologies that
can create nanostructures of any complexity with a typical
size of on the order of nanometers. It can be exemplified
by metal nanolayers with an applied periodic lattice or with
nanoholes used as plasmon waveguides [6-8]. Plasmonics
development is facilitated by improvement of high-sensitivity
optical technologies that make it possible to experimentally
study characteristics of surface waves [9]. The above said
indicates relevance of theoretical research in the field of
plasmonics.

Today, we can highlight a number of theoretical studies
that are dedicated to investigating special features of propa-
gation of the surface plasma wave in conducting nanolayers.
In the papers [2], the authors have taken into account
spatial dispersion of polarizability of the HgTe/CdHgTe
electron gas and shown that within a high-frequency area
the plasmon dispersion law goes from the root one to the
linear one. The studies [10,11] have obtained expressions for
coefficients of propagation and decay of the surface plasmon
taking into account surface charge carrier scattering for a
symmetric and antisymmetric configuration. We note that
studies [10,11] considered a case of a metal without taking
into account quantization of the energy spectrum of the
charge carriers.

The present study has obtained an analytical solution of
the problem about surface plasma oscillations in the semi-
conductor nanolayer with taking into account the quantum
theory of the transfer phenomena. Surface charge carrier
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scattering is taken into account by the Soffer boundary
conditions [12].

1. Problem formulation

Let us review a semiconductor nanolayer of the thickness
a, which is located between two non-magnetic insulating
layers with the same permittivities. We take the Cartesian
system of coordinates with the axis Z that is oriented
inwards the nanolayer and the axis X that is directed parallel
to propagation of the surface wave (Fig. 1). We note
that the surface wave can not propagate in case of TE
polarization [1]. We will review only TM polarization, when
the vectors of strengths of the electric and magnetic fields
are as follows: E = {E,, 0, E;}, H= {0, Hy, 0}.

It is known that plasma oscillations with the symmetric
and antisymmetric charge distribution at boundaries can
propagate along thin layers [1]. The first case corresponds
to a situation when the charge signs at the upper and lower
boundaries of the layer coincide, while the second case
correspond to a situation when they are different. The first
case will be reviewed in the present study, which is related
to the following considerations. The layer, along which
the oscillations propagate, can be conditionally divided
into areas where an excessive positive (negative) charge is
concentrated. Fig. 1 shows that a center of these areas,
where the charge is the greatest, will be dominated by the
electric field component E, (and, therefore, Hy). Between
the areas, i.e. where the charge at the boundaries is the
least, the component E; will be predominant. In case
of symmetrical charge distribution and the thin layer, the
electric field strength will practically be without the z-
component inside the layer. It follows from a superposition
principle, i.e. power lines of the electric field strength vector,



O.V. Savenko, I.A. Kuznetsova

1382
zZ
E
L e S NN
/< \,'/ »\\\ <N ,'/ >0 'I/’(‘ NS ,»\\\‘ 0
COONT N T T
a ——= F+++ ——— +++ ——— +++ ———
1 X
——— 44+ ——— 4+ ——— 4+ ——= S
O®Y [ [ P [T N P ')
‘\\\(/ A \\‘{I Nt/ \\‘~.(’ AN \)—’/ II
NN N NG NP NG
Figure 1. ,Dielectric-semiconductor-dielectric nanostructure,

along which the surface wave propagates: I — the semiconductor,
II — the dielectric. The dashed lines mark power lines of the
electric field strength vector.

which go from the upper and the lower boundaries of the
layer, are oppositely directed to each other. Therefore,
only the component Ex will be inside the layer. In case
of antisymmetric charge distribution, the electric field’s
transverse component E, will be predominant. Under
effects of this field, the charge carriers move perpendicular
to the layer surface and are accumulated at the boundaries,
thereby modifying the field itself. This situation necessitates
solving a self-consistency problem that is reduced to a
system of integral equations of the function of the charge
carrier distribution and the field strength E;. It is a more
complicated task as compared to the case when the charge
sign at the nanolayer boundaries is the same. Therefore,
we stop on reviewing the case of symmetrical charge
distribution.

We note that the surface charges at the boundaries of
the conducting layer affect a nature of distribution of the
charge and the electric field along the thickness, which
requires solution of the system of equation for determining
the function of distribution of charge carriers and the
electric field strength. This issue was reviewed in the
studies [13-15], in which dependences of the charge carrier
concentration and the electric field strength on a coordinate
were found for a lanthanum-strontium cuprate and an
indium oxide nanoparticle. The results showed that a width
of the area of nonuniform charge distribution near the layer
boundaries is estimated to be Snm. The surface charge
generates a quite strong transverse electric field of the
strength of 108 V/m. This field causes motion of the charge
carriers in a direction perpendicular to the layer surfaces. As
noted above, in case of symmetrical charge distribution the
nature of the plasma oscillations is predominantly affected
by a longitudinal electric field. Therefore, nonuniformity of
the charge and heterogeneity of the transverse electric field
will be omitted.

In the present study, permittivity of the insulating layers
is assumed to be constant. This factor limits a material
from which the insulating layers are made of We will
assume that these layers are made of a nonpolar dielectric.
This case involves only electron polarization that does
not noticeably contribute to a frequency dependence of
permittivity up to ultraviolet frequencies [16]. It is possible

to use nonpolar dielectrics or wide-band semiconductors
with an ion type of a bond between atoms (for example,
the solid solutions Al;_xGayAs, Alj_xIn.Sb, etc.). At the
same time, resonance absorption is possible at the IR-range
frequencies, but away from a resonance the permittivity can
be assumed to be constant.

It is assumed that a thickness of the semiconductor
nanolayer can be comparable or less than the de Broglie
wavelength of the charge carriers. In this situation the
charge carrier systems shall be reviewed as a quantum
one. The electron gas shall be reviewed as a quasi-two-
dimensional gas included in a quantum well with infinitely
high walls. The expression for the full energy of the electron
(hole) for the |-th subband will be as follows:

h2
g = %(k§+k§)+ellz, (1)
| = +1, £2, 43 ... £N, (2)

where m — the effective mass of the electron (hole), i —
the Planck constant, £, = (77h)?/(2ma?) — the eigenvalue
of the charge carrier energy at the first energy level, N —
the total number of the subbands.

In accordance with the quantum theory of the transfer
phenomena, the charge carrier system is described by a
density operator [17]:

p(Z. K 1) = > W@ (z k. ) (i (2. k. 1), (3)
[
which complies with the Liouville’s quantum equation:
ih=-=[H,pl, (4)

where 1 — the wave function of the charge carrier system
at the |-th subband, Wi — the statistic weight, k, — the
longitudinal component of the wave vector.

We note that in reality the nanolayer surface is not
perfectly smooth. The mean square height of the surface
relief may vary from tenths to several nanometers. With
the thickness of the nanolayer of about 10nm, surface
irregularity at an atom level can significantly affect the
transfer phenomena in the nanolayer. One of the factors
affecting surface charge carrier scattering is nontrivial
distribution of the field and the charge in dependence on
surface curvature due to its roughness. The study [18]
has investigated a distribution of the electric field and the
charge in a metal tip that imitates an element of surface
irregularity. It was shown that the most significant change
of the field strength is observed near a cone apex within
the area of the width of 0.5nm. The value of the electric
field near the cone apex can exceed the applied field in
four times. Study of distribution of the electric field and the
charge in dependence on the surface curvature is a separate
difficult problem. It is possible to significantly simplify the
calculations when assuming that the height of the surface
relief is small as compared to the nanolayer thickness. In this
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case, the quantum well with an irregular boundary can be
replaced by a quantum well with smooth boundaries, while
the surface irregularity can be interpreted as a disturbance of
the system Hamiltonian. The full Hamiltonian of the carrier
charge system can be presented as a sum of the Hamiltonian
that describes the equilibrium state Ho and a correction that
takes into account volume and surface scattering V [19]:

H=Hy+V. (5)

We note that in the most semiconductors of the n type
the Hamiltonian of the electron system in the conduction
band depends on the wave number as per the quadratic
law. Some semiconductors, whose crystal structure has
no inversion center (for example, GaAs that has a zinc
blende structure) have a deviation from the quadratic
dependence of Hy(k) due to spin-orbit interaction of the
charge carriers [20] by several percent. In most cases, this
deviation can be neglected. In a valence band, spin-orbit
interaction of the charge carriers becomes significant [21].
Specific features of a law of dispersion of the valence band
in the semiconductors have been analyzed to show that
the dependence of the energy on the wave vector is not
described by the quadratic law.

The present study assumes that the conducting nanolayer
is a semiconductor of the n type of conductivity. We will
think that the Hamiltonian of the charge carrier system
depends on the wave number of the charge carrier by the
quadratic law.

h?k?
o (6)

It is shown in the papers [19,22] that in a situation
when the charge carrier system slightly deviates from the
equilibrium state, the equation (4) can be reduced to the
following kinetic equation:

Ho =

(1) (0)
ey 8f| eE afl .
R T =0. (7)

Here, v =7~! —iw — the complex scattering frequency,

T — the relaxation time, & — the Planck constant, v, —
the projection of the vector of the charge carrier velocity on
the axis Z, k| — the component of the charge carrier vector,
which is parallel to the nanolayer plane, € — the charge of
the electron (hole), f; — the function of distribution of the
charge carriers at the |-th subband, which performs as the
I-th diagonal element of the density matrix. The function
fi can be presented in an expansion that is linear by the
external electric field:

fitz. k. t) = £+ £V, k) exp(—iwt),  (8)

©) _ 1
= T ol — ) keT)” ®)

where f,<0) — the equilibrium distribution function, f,m —
the non-equilibrium correction, y — the chemical potential,
kg — the Boltzmann constant, T — the temperature.
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The surface charge carrier scattering is taken into account
by the Soffer boundary conditions [12] applied to the
equation (7):

" =g 0)f"", z=0,
(- _ W+ (10)

f| = Q2(g2, 6)f| , Z=a,
01,2(91,2, 0) = exp(—(4ﬂg1,2 cos 9)2), (11)

Os1.2

=== 12
Q1.2 s (12)
where f,mjE — the functions of distribution of electrons

with a positive and negative projection of the wave vector
to the axis Z, respectively, gs1,2 — the mean square height
of the surface relief of the upper and the lower surface,
respectively, Ap — the de Broglie wavelength of the electron
(hole), & — the incident angle of the charge carrier to the
internal surface of the semiconductor nanolayer.

We note that the Soffer model (10)—(12) is obtained
as a result of solving the problem about interaction of the
quasi-monochromatic wave with the metal boundary with
taking into account a far field approximation. A package
of the flat waves was assumed to be quite big so that the
wave could be considered to be quasi-monochromatic, but
quite small so that the far field approximation is fulfilled for
calculating an amplitude of the de Broglie wave scattered
from the nanolayer surface. We note that the author of the
study [12] expresses doubts about applicability of the model
of boundary conditions for semimetals and semiconductors
(the far field approximation is not fulfilled). We will
show that in case of a semiconductor film the far field
approximation and is applicable and the Soffer model can
be used. In a metal, free charge carriers which ensure flow
of electric current have a fixed energy that corresponds to
the Fermi energy. Therefore, the de Broglie wavelength of
electrons in the metal will be constant. The charge carriers
experience volume and surface scattering, the electron
gas can be presented as a set of spherical waves with
the same wavelength, which are reflected from scattering
sources. The wave package considered in the paper [12] is
a result of interference of the spherical waves and its size
is determined by a distance between the scattering sources
(in case of the metal it is atoms of a crystal lattice). In
the semiconductor, an additional factor that affects the size
of the wave package is a spread of thermal velocities of
the charge carriers. As a result of phonon and impurity
scattering, the wave vector can change its amplitude, i.e.
the de Broglie wavelength is changed. This factor reduces
a size of the wave package, within which the wave can be
assumed to be monochromatic. It makes it possible to apply
the far field approximation in the semiconductors. We will
assume that the mean square height of the surface relief
is assumed to be small as compared to the film thickness,
because the kinetic equation (7) was obtained within the
disturbance theory. Therefore, the parameters gs; and gs
are less than the de Broglie wavelength of the charge carriers
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Ap in case when the nanolayer thickness is comparable with
Ap. It corresponds to the condition, at which the far field
approximation is fulfilled [23]:

921 2
sl,
b < 1, (13)

where b — the typical scale of variation of the amplitude of
the de Broglie wave.

We note that the Soffer model is applicable in case when
there are effects of dimensional quantization of the charge
carriers [12].

The non-equilibrium distribution function makes it pos-
sible to calculate the current density and the integral
conductivity by the formulas [19,22]:

Zek1
(27) Z//”X

M _)dk dky,  (14)

a .
a = / JE dz, (15)
0
where k; — the z-component of the wave vector of the

charge carrier at the first subband.

2. Calculation of characteristics of the
surface wave

By solving the equation (7) with taking into account the
boundary conditions (10), successively substituting f,m+
and fl(l)f into (14) and (15) and carrying out a series
of mathematical calculations, we will obtain the following
expression for the integral conductivity:

0a = 06paX(Xo, X1, Yo, 91, 92, Uy), (16)
nvezrv

pr— —, 17

(o) m ( )

2X0| 1/220 Zln(exp — u1|2) + 1)

><(1 —x(zlef")), (18)

1 (1 N e_p) 2—-ai— G+ (G + 9 — 2qip)e P
2p
(19)

1 —qie—2p
qi2(g1, 2, 6) = exp (— (2ngl,2|/x0)2), (20)

bl

x(p)=

Z*vrfrvi X*a X*A = wT,
0= v =7 Yo, 0_/1B0’ l_;LBO’ Yo = w1y,
(21)
o0 Sd
|S:/&’ (22)
exp(u—uy,) +1

0

mv3 uO:mv‘z)“ ulzmv%:u()U u
2kgT™ " 2kpr’ 2kgT

Up = , U, = —.
4X% " kBT

(23)
Here, the following dimensionless parameters are intro-
duced: zp — the complex scattering frequency, Xo — the
thickness of the semiconductor nanolayer, X, — the mean
free path of the charge carriers, Yo — the surface wave
frequency. The parameters Xo and X; are rated to the de
Broglie wavelength of the charge carrier that moves with
the typical velocity Upy. Zo and Y, are rated to the relaxation
time of the charge carriers 7, without taking into account
quantization of their energy spectrum. u; — the transverse
velocity of the charge carriers for the first subband, ugy
and Upy — the typical velocities of the charge carriers
with and without taking into account quantization of the
energy spectrum of the charge carriers, respectively, which
are introduced as follows:

nv(z) - U13Z// H—l—vl

)dvxdvy, (24)

nvvov —2 /// z'f()d3 (25)
v — the longitudinal Veloc1ty of the charge carrier, n,
and n — the concentration of the charge carriers in the

macroscopic sample and the nanolayer, respectively, which
are determined by the expressions:

i3 | 10 S —an () (2T e
e (26)

nv_2///f0 (h) (2'::13T)3/2|1/2. (27)

Using (24)—(25), we obtain the following expressions for
the parameters Uy and Ug,:

5K 5|3/2
=3p T3y (28)
> 7 udu
K= / s 29
;l exp(u—uy,) +1 (29)
U12
P= Zln exp(U, — wl?) + 1). (30)

In case of a degenerate electron gas, Uy and Up, transform
into the Fermi velocity Ug, and in case of a non-degenerate
Fermi gas they are of the order of the average thermal
velocity of the charge carriers.

2 1
VoU e (31)
10kBT ZU1|26Xp(—U1|2)
2~ . 2
vo 3m ( > exp(—uyl?) (32)
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The meaning of introduction of the magnitudes 7, and Uy
is as follows. The change of the thickness of the nanolayer
results in variation of a position of the energy level and,
therefore, in the change of the mean square velocity of
motion of the charge carriers Uy (there is a dependence
Up(a)). The present study assumes that without surface
scattering the mean free path of the charge carriers does
not depend on the thickness and is determined as a product
of the average velocity of motion of the charge carriers by
the mean free time:

A =UyT = UpyTy. (33)

Therefore, the availability of the dependence up(a) results
in that the parameter 7 depends on the nanolayer thickness.
The parameters 7, and U, do not depend on the thickness,
therefore, they have been used for rating the magnitudes v,
a, A, w.

Using the expression (33), we will express the ratio 7,/7
included in the parameter z( via the typical velocities:

T o YW
zo_T |yo_m iYo. (34)

In order to find the characteristics of the surface wave,
we will find surface impedances inside the semiconductor
nanolayer and from the side of the insulating layers to be
determined as a ratio of the X-component of the electric
field strengthEx and the y-component of the magnetic field
strength Hy.

The electric and magnetic components of the surface
wave are described by the system of wave equations:

{iﬁi—AEzo

c2 at2

¢ 20 AH = 0.

cZ B2

(35)

Outside the conducting layer, the dependence of E and H on
the time and the coordinates X and z can be obtained as a
solution of the system of equations (35), which is presented
as the wave that is running along the axis X and evanescent
when z — +o0:

E = Egexp(—iwt + az + ikx), z<0, (36)
E =Ejexp(—iowt +a(a—z)+ikx), z> a,
H = Hp exp(—iwt + az + ikx), z <0, (37)
H = Hpexp(—iwt + a(a —z) +ikx), z> a.

Here, @ — the transverse coefficient of decay that is

determined via the parameters K, @ and ¢ by the relationship

w2
a=4/k?— ok (38)

From the side of the insulating layers the components Eyx
and Hy are related to each other by the Maxwell equation:

oHy .
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Here, @ — the wave frequency, K — the wave number,
Cc — the speed of light, ¢ — the permittivity.

Using (39) and taking into account (36) and (37), we
obtain the surface impedance outside the conducting layer:

z, = B _ _lec (40)
Hy z=0 tw

Inside the conducting layer, the dependences E and H on
the time and the coordinates X and z will be written so that
amplitudes of the components Egx and Hoy be functions of
the coordinate z:

Ex = Eox(z) exp(—iwt + ikx),
E, = By, (2) exp(—iwt + ikx), (41)
Hy = Hoy(z) exp(—iwt + ikx).

By replacing & in the expression (39) with complex
permittivity em = 1 + i470/w, where ¢ is conductivity,
we will obtain a relation between Ex and Hy inside the
conducting layer:

dHy

0z

Symmetrical distribution of the charge carriers (Fig. 1)
corresponds to a situation, when the components of the

vectors Ey and Hy at the nanolayer boundaries are related
to each other by the relationship:

{Hy<o> = —Hy(a). 43)

) dm
— Ex = — oK. 42
+igBo= ok (42)

Ex(0) = Ey(a).

It follows from the condition (43) that the component of
the electric field strength Ey is virtually independent of the
coordinate z. From the equation (42) we will obtain an
expression for the surface impedance from the side of the
conducting layer:
Ex 2ic
LH=—| =/ 44

2 Hyl,_. (wa+4miocs) (44)
By equating the surface impedances, we will obtain expres-
sions for the transverse coefficient of decay of the surface

wave:
2ew

=—-. 45
(wa + 4mio,) (43)
By using the relationship (38), we will obtain an
expression for the wave vector of the surface wave:

w? 4e2?
k= \/? et (wa +4mio,)? (46)

The expression (46) describes the dispersion law of the
surface plasmon.

We rate the parameters k and « to the thickness of the
semiconductor nanolayer and write the expressions (45) and
(46) via dimensionless parameters:

2eyo

PO 47
O7 T vo +1y2%) “7)
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X2 4y282
ko=4/y2 2ple + —— . 48
0 \/yo X% 1Y (yO ¥ |y%2)2 ( )

where the following notation is introduced: p = vg,/C,
yp - (l)pTU.

We note that generally the parameters oy and ko are
complex magnitudes and can be presented as

= Re(ap) + iIm(ap) = ao1 + iz, (49)

ko = Re(ko) + iIm(ko) = Ko1 + i Kop. (50)

We will call a real part of the wave number ko; that
is equal to a number of the wavelengths fitting into a
segment of the length of 27, a coefficient of propagation.
We will call an imaginary part of the wave number Ko, that
describes decay of the surface wave along the propagation
direction, a longitudinal coefficient of decay. The coefficient
of transverse decay will be understood by us as the real part
of the parameter «y.

We introduce a notion of the length of propagation of
the surface wave L that is a distance transmitted by the
wave, which results in reduction of amplitudes of the vectors
of the strengths of the electric and magnetic fields in e
times. It follows from the expressions (36) and (37) that
the propagation length is determined as a magnitude that
is inverse to the imaginary part of the wave number k. By
rating to the thickness of the semiconductor nanolayer, we

obtain

L 1
bo=3= Im(Ko)

(s1)

Let us review the case of the degenerate electron gas
(exp(ukgT) > 1) that corresponds to a high concentration,
a low effective mass of the charge carriers and a low
temperature. The equilibrium function of distribution takes
the form of a stepped approximation:

0< ¢ < €, (52)
& > EF,

where e — the Fermi energy.

The expressions for ko and @y take the form (47) and
(48), respectively, in which the dimensionless conductivity
X is determined as follows:

N
3 12 2x3z
o 4X()Z() IZI:<1 B 4_)((2)) (1 _X( Xll ))’ (53)

N = [k—F} — [2xo], (54)
ki

where N — the number of the subbands, the square brackets
in the formula (54) denote an integral part, K — the wave

vector of the charge carrier with the Fermin energy.
Let us review the case of the non-degenerate electron
gas (exp(u(kpT) < 1) that corresponds to the relatively
low concentration, the large effective mass and the high

temperature. The equilibrium function of distribution of the
charge carriers will be as follows

1 (&) = exp((u — &1)/ks T). (55)

The expressions for ko and «p take the form (47) and
(48), respectively, in which the parameter X is determined
as follows:

2o () (1-1(38)). s

3. Analysis of results

Fig. 2 shows the dependences of the coefficient of
propagation on the dimensionless frequency of the sur-
face with the various permittivity of the insulating layers.
The figure shows that the frequency dependence of the
coefficient of propagation is practically monotonic. The
figure exhibits a deviation from the linear dependence
towards higher Ko; with increase of the dimensionless
frequency, which is typical for the law of dispersion of
plasma oscillations [1]. With increase of the permittivity,
the coefficient of propagation increases.

Fig. 3 shows the frequency dependences of the propaga-
tion length Ly. It follows from the figure that increase of
the permittivity of the insulating layers results in reduction
of the propagation length. There are observed oscillations
of the frequency dependences of the parameter Lo, which
have a more pronounced nature with increase of . A
cause of origination of the oscillations is probably similar to
appearance of the oscillations at the absorption spectra [24].
Oscillatory maximums of the parameter Lo are observed
at the frequencies which are multiples of a frequency

Figure 2. Dependences of the dimensionless coefficient of
propagation Ko; on the dimensionless frequency yo when xo = 0.8;
X, =10; p =0.005; yp=200; g1 =0; g, =0.2. The solid
curves /—3 and the dashed curves are constructed for the cases of
the degenerate and the non-degenerate electron gas, respectively:
1,4 —e=1,2,5—¢e=8;3,6— =20
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of surface collisions of the charge carriers: the surface
wave will decay more weakly, thereby contributing to
more effective transfer of the wave energy along the
nanolayer. The sharpest change of the dependence Ly(yo)
is observed near the first maximum within the range of the
dimensionless frequencies 25 — 30: the maximum value of
the dimensionless length Ly exceeds the minimum value
thereof practically in five times. The effect related to the
oscillations of the length of propagation of the wave can
be used for designing plasmon waveguides designed to
filter frequencies that correspond to minimum decay of the
wave (plasmon filters). Fig. 3 shows that at the minimum
decay in the nanolayers of the thickness of about tens of
nanometers the surface wave can propagate for a typical
distance of about several micrometers (Lo ~ 250). For the
most semiconductors, at the room temperature the mean
free time of the charge carriers 7 is within the range
10712 — 10735, The oscillation effects originate in the
semiconductor nanolayers of the thickness of about 10 nm
at the frequencies of about tens of terahertz. We note
that in the case of the non-degenerate electron gas the
oscillations of the frequency dependences of the propagation
length are less pronounced as compared to the case of the
degenerate gas due to the spread of thermal velocities of
the charge carriers. The strongest difference between the
solid and dashed curves is observed near the maximums of
Lo, thereby making it possible to use the surface plasma
oscillations for determining a nature of degeneracy and the
concentration of the charge carriers in the semiconductor
nanolayer.

It follows from Fig. 3 that with decrease of the frequency
the propagation length infinitely increases, ie. there is
no wave decay in a low-frequency limit. In fact, the
theoretical model has limitations and it is necessary to

250
200
5150
100

50

0 20 40 60 80 100
Yo

Figure 3. Dependences of the dimensionless propagation length
Lo on the dimensionless frequency Yo when Xo = 0.8; X; = 10;
p = 0.005; y, = 200; g1 = 0; g2 = 0.2. The solid curves /—3 and
the dashed curves are constructed for the cases of the degenerate
and the non-degenerate electron gas, respectively: I, 4 — ¢ = 1;
2,5—¢e=3;3,6—¢=10.
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Figure 4. Dependences of the dimensionless propagation length
Lo on the dimensionless frequency Yo when x; = 10; p = 0.005;
Yp = 200; € = 3; g1 = g2 = 0.2. The solid and dashed curves are
constructed for the cases of the degenerate and the non-degenerate
electron gas, respectively: 1, 4 — X9 =0.9; 2, 5 — X0 = 1.5; 3,
6 — Xo = 3.

specify an area of its applicability. At the low frequencies,
the coefficient of propagation of the surface wave is small
(Fig. 2), which corresponds to large sizes of areas of the
nanolayer surface, where the positive (negative) charge is
concentrated. In real conditions, there are limitations on the
size of these areas and the propagation lengths as a result
of thermal oscillations of the charge carriers. In the typical
semiconductors, a diffusion length of the charge carriers,
which defines a typical distance, within which the excessive
concentration of the charge carriers decreases in e times,
is within the range from tens to thousands of micrometers.
The theoretical model constructed in the present study is
applicable when the length of propagation of the surface
wave does not exceed several micrometers (is much less
than the diffusion length).

Fig. 4 has spectra of the length of propagation of the
surface wave constructed at the various thicknesses of the
semiconductor nanolayer. It follows from the figure that
the period of oscillations quite strongly depends on the
nanolayer thickness. With decrease of the thickness by
0.61p (which corresponds to 6nm), the period increases
practically in 1.5 times. It indicates that the characteristics
of the surface wave that propagates with minimum decay
(the frequency, the amplitude, etc.) can be easily tuned to
create the nanolayer of a certain thickness. With increase
of the thickness, the oscillations become less pronounced
and their amplitude decreases. The oscillations of the
dependences Lg(yo) are observed in quite thin nanolayers,
whose thickness does not exceed 34g.

Fig. 5 shows the frequency dependences of the propa-
gation length with the various parameters of the surface
roughness. The curves of Fig. 5 are constructed in a
situation when the parameters of roughness of the upper
and lower boundaries of the nanolayer are the same. In
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Figure 5. Dependences of the dimensionless propagation length
Lo on the dimensionless frequency Yo when x; = 10; p = 0.005;
Yp = 200; € = 3; Xo = 1, g2 = 0. The solid and dashed curves are
constructed for the cases of the degenerate and the non-degenerate
electron gas, respectively: 1, 4 — 91 =0; 2, 5 — g1 = 0.07; 3,
6—g =0.2.

case of smooth surfaces, the oscillations of the spectra of
the propagation length are not observed. It confirms a
hypothesis that the oscillations occur not only as a result of
the effects of dimensionless quantization, but with presence
of surface scattering as well (the non-zero parameters g,
and ¢). Variation of a surface irregularity degree results
in the change of the amplitude of the oscillations of the
dependences Lo(yp). This effect makes it possible to
apply surface plasma oscillations for determining the surface
roughness by measuring a typical distance that is transmitted
by the wave at the minimum decay.

Fig. 6 compares spectra of the propagation length, which
are constructed in case of two rough surfaces and in a
situation when one nanolayer boundary is mirror-polished
and the other is rough. The figures show that when one
surface is rough and the other is smooth the period of the
oscillations is in two times less than in the case of the same
roughnesses (see the curves I, 4 and 3, 6). It is related
to the fact that in case of one mirror-polished surface the
frequency of surface charge carrier scattering is in two times
less than in the situation when both the surfaces are rough.

Fig. 7 shows the frequency dependences of the coefficient
of propagation k; of the plasma oscillations which propagate
along the GaAs layer of the thickness of 33nm at the
temperature of 1.85K. Fig. 7 compares results obtained
within the framework of the model with experimental data
of the study [25]. A layer of the narrow-band GaAs semi-
conductor is placed between two wide-band AlyGa;_xAs
semiconductors (0.01 < X < 0.03) that function as barrier
layers.According to results of measurements by means of
the quantum Hall effect [25], the surface concentration
of the charge carriers and mobility are 4-10°cm~2 and
9 - 10° cm?/(V-s), respectively.

In order to compare the obtained results with the
theoretical calculations, the following parameters were
determined: the concentration of the charge carriers without
taking into account the effects of dimensional quantization
310 cm™3, the mean free path of the charge carriers
5.5um. The best compliance is observed at the values
of the parameters of the surface roughness g; = 0.02 and
g2 = 0.09, which corresponds to a mean square height of
the surface 1.3 and 6 nm, respectively.

The theoretical calculations were carried out for sym-
metrical distribution of the charges at the layer boundaries.
Another case, when the charges at the nanolayer boundaries
are opposite in sign, requires additional consideration,

120

100

0 20 40 60 80 100
Yo

Figure 6. Dependences of the dimensionless propagation length
Lo on the dimensionless frequency Yo when x; = 10; p = 0.005;
Yp = 200; € = 3; Xo = 1, g2 = 0.2. The solid and dashed curves
are constructed for the cases of the degenerate and the non-
degenerate electron gas, respectively: I, 3 — 91 =0; 2, 4 —
g1 =0.2.
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o, THz

Figure 7. Dependences of the propagation parameter k; on the
frequency w of the GaAs layer of the thickness of 33nm. The
dots are experimental data of the study [21]. The solid curve is a
theoretical calculation at the following parameters: Ag0 = 67 nm;
A =5um; e =12; g; = 0.02; g, = 0.09.
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although, it can be assumed that the coefficients of
propagation and decay of the surface wave will significantly
depend on the surface effects. It is related to the fact that
with such distribution of the charge carriers at the layer
boundaries the oscillations of the charge carriers will be
affected by the transverse component of the electric field
strength, whose value is determined by the charge at the
layer boundaries. A size of near-surface areas, where the
charge is concentrated, depends on the surface roughness.
Therefore, surface charge carrier scattering will affect not
only on their response from the side of the electric field,
but on the field itself as well. It can be noted that in
a limit case of a very thin layer there will be generated
plasma oscillations that predominantly have symmetrical
distribution of the charge at the nanolayer boundaries. This
can be explained as follows. With a small thickness of
the nanolayer, the areas at which the surface charge is
concentrated will contact each other, i.e. the surface charges
will be exchanged as a result of thermal fluctuations. If
the signs of the charge at the opposite boundaries of the
nanolayers are different (antisymmetric distribution), the
absolute value of the charge at the boundaries will decrease
with reduction of the thickness.

Conclusion

The analytical expressions are obtained for the coefficients
of decay and propagation of the surface wave as a function
of the dimensionless parameters: the thickness of the nanon-
layer, the frequency, the permittivity of the environment and
the parameters of the surface roughness. It is shown that the
dispersion curves have typical maximums. With decrease
of the thickness, the maximum of the dispersion curve is
shifted towards the low frequencies. This effect becomes
significant at the thicknesses that are less than the de
Broglie wavelength of the charge carriers. Oscillations of the
spectra of a longitudinal decay parameter are detected and
their period varies with the change of the thickness, while
their amplitude varies with the change of the parameters
of the surface roughness. The obtained expressions make
it possible to calculate the thickness of the conducting
nanolayer and the parameters of the surface roughness by
the period, the amplitude and the form of oscillations of the
decay spectra.

The results of the study can be applied in practice for
designing the plasmon waveguides that effectively transfer
the energy and have minimum decay.
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