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”
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energy fluxes between scatterers and the source. The total energy flow is divided into
”
energy“ and

”
interference“

parts, each of which has its own source function localized on particles, and which are preserved during propagation
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well as their relationship to the Purcell factor. The result is a detailed picture of energy exchange for arbitrarily

chosen clusters of interacting particles.
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Introduction

Interaction of electromagnetic radiation with scattering

and absorbing particles covers a large variety of practical

applications that include both classic problems of optics, ra-

diolocation, atmosphere physics, etc. and modern problems

related to development of nanotechnologies. This sphere of

the problems is described based on the Maxwell equations

in a frequency area [1,2] or their ensuing system of the

integral equation like the Lippmann-Schwinger quantum-

mechanical equation [3]. In addition to scattering on single

particles, these equations can also encompass various effects

of multiple scattering, which correspond to interaction

of particles through the scattered electromagnetic field,

such as formation of photon band gaps in metamaterials,

Anderson localization in systems of random scatters, effects

of backscattering amplification (also known as weak local-

ization), etc. [2].

Unlike a phenomenological theory of radiation transfer,

which uses the transfer equation with an heuristic notion of

an elementary scattering volume [4], the Maxwell equations

provide rigorous description of specific models of the

particles with an arbitrary form and an internal structure

and make it possible to obtain statistics-wave justification

of the transfer theory [5]. However, these rigorous models

as a rule allow an accurate solution only in an extremely

limited number of cases and usually require application of

numerical calculations.

Relationships related to an energy balance are important

for understanding general mechanisms of absorption and

scattering of radiation. They particularly include a so-

called optical theorem and the Purcell factor related to

variation of emitter power due to presence of a scatterer.

These relationships make it possible to simplify finding of

such important integral characteristics of the considered

system as complete sections of extinction, scattering and

absorption. They are used to check the quality of the

used approximate solutions and to obtain a general physical

picture in the scattering problems. In recent years, the

energy relationships have been also used in extensive new

applications related to obtaining fundamental boundaries of

variation of the various physical parameters of the scattering

system. Finding these boundaries makes it possible, in

particular, to judge potential capabilities when creating

new metamaterials and designing engineering devices in

nanophotonics and plasmonics (see the studies [6–8] and

many sources referred to therein). This approach is based

on methods of convex optimization [9], which mean that

extremums of desired physical magnitudes are found by

using various integral limitations like the energy balance

conditions. At the same time, it considers a wider class

of functions than rigorous solutions of the wave equations,

thereby making it possible to find the desired maximums

without solving the exact wave equations. Extension of

the class of the additional conditions results in tightening

of these boundaries, which in certain cases turn out to be

achievable, thereby acquiring a direct physical meaning.

Traditionally, the conditions of the energy balance are

considered as applicable to a single scatterer irradiated by

a flat wave, thereby resulting in a classic formulation of the

optical theorem that relates extinction to an amplitude of

scattering
”
forward“ [10,11]. The description of the energy
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balance was extended in the studies [12–14] for the system

that consists of both the scatterer and the emitter. Unlike a

common approach of considering the balance of total flows

outgoing through a surface of the selected volumes, the

previous studies of the authors [15,16] have also used local

conditions of the energy balance, which express divergence

of the flows through the respective sources in each point of

space. At the same time, it considered a model of the scaler

wave equation and the single scatterer. The present study is

aimed at extending the results [15,16] to the case of multiple

scattering of electromagnetic radiation on the system of

the absorbing scatterers. The obtained results are aimed

at improving understanding of the mechanisms absorption

and scattering of light in the systems of interacting particles,

which are of primary importance in optics, photonics and

plasmonics.

Below is described the case of coherent scattering by

the system of fixed scattering particles, for which a phase

of radiation does not vary in individual acts of scattering.

Situations that are related to noncoherent scattering and

require use of the statistical approach [5] are not considered

below. At this, for the sake of simplicity, we limit ourselves

to the case of one pre-defined (i.e. foreign) current j0(r)
localized outside the scatterer system, although the below-

obtained results can be easily extended to the case of an

assembly of radiating and absorbing particles as well by

introducing a set of particles with external currents pre-

defined thereon instead of one external current.

Section 1 considers a general formulation of the problem

that results in a system of differential equations of multiple

scattering of monochromatic radiation on the system of par-

ticles with pre-defined arbitrary distribution of permittivity

inside each particle. Section 2 provides the main result of

the present study, namely a
”
duality lemma“ (12), which

expresses a local form of the law of conservation of averaged

energy flows from two arbitrary sources that are pre-defined

or induced. As known to the authors, this form of the law of

conservation of energy was not previously written explicitly

in literature on multiple scattering (some references to

similar results, but non-identical to (12) are given in

Conclusion, a simple derivation of this lemma is provided

in Appendix). After that, the same Section describes local

and integral forms of the laws of conservation of the time-

averaged power flows, which are divided into energy flow

and interference flows, which are relation to superposition

of the scattered fields and the incident wave field. The

next sections are used to illustrate applicabilities of the said

lemma. Division of the powers and the flows into partial

components is given in Section 3. Section 4 describes

various variants for selecting auxiliary volumes, which allow

considering, when based on (12), the energy balance for the

arbitrary clusters inside the system of particles that interact

through the scattered fields. A relationship of the partial

powers to an operator of free propagation and field-creating

currents is briefly described in Section 5. Conclusion

formulates the main conclusions.

1. Problem formulation

Let us consider scattering of monochromatic radiation

created by the pre-defined external current j0(r) that is

distribute inside the volume V0. Radiation is scattered by

the system (cluster) of absorbing particles (Fig. 1).
The positions of the particles are described by some

internal points of each of them ri , i = 1, 2, . . . , N, r0 is

the internal point V0, wherein the volumes of the par-

ticles Vi and the sources V0 are considered to be non-

overlapping. The time dependence is proportional to a

multiplier exp(−iωt) that is omitted below, so are the

dependences on the angular frequency ω. Taking for sake of

simplicity that medium permittivity is unity, we will assume

that each of the particles is described by its own distribution

of complex permittivity εi(r) (as known, it also includes the

case of nanoparticles [2]). Then, complete permittivity is

written as

ε(r) =

N
∑

i=1

εi(r)θi (r) +

(

1−

N
∑

i=1

θi(r)

)

≡ 1 +
N

∑

i=1

(

εi(r) − 1
)

θi(r). (1)

Hereinafter, θi = θi(r) is a characteristic function that is

equal to unity inside the volume Vi and zero outside it,

i = 0, 1, 2, . . . , N. At the same time, j0(r) = θ0(r)j0(r),
since the pre-defined current j0(r) is assumingly localized

inside the volume V0.

The electric field strength E(r) is determined by the

equation

[

∇×∇×−k2
0ε(r)

]

E(r) = iωµ0 j0(r), (2)

where k0 = ω/c is a wave number, while µ0 is magnetic

permeability of vacuum. The equation (2) is supplemented

by the Sommerfeld infinity radiation conditions, which can

be fulfilled by introducing an infinitely small imaginary

part to the wave number k0, which is omitted for sake

r
0

Figure 1. Radiation of the pre-defined external current outside

the cluster of scattering and absorbing particles.
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of simplicity hereinafter (see, for example, [1,2]). The

solution (2) makes it possible to find the magnetic field

strength H(r) as well, which is

H(r) = ∇× E(r)/(iωµ0). (3)

By substituting (1) into (2) and omitting spatial argu-

ments for sake of simplicity, we write (2) in an abbreviated

form as

L0Et = qt . (4)

Here, for uniformity, the index E ≡ Et is assigned to the

full field E and the following designations are introduced

L0 = ∇×∇×−k2
0, (5)

qt = q0 + qs ≡

N
∑

i=0

qi , (6)

q0 = iωµ0 j0(r), qs = k2
0

(

ε(r) − 1
)

Et =

N
∑

i=1

UiEt ≡

N
∑

i=1

qi ,

(7)
where

qi = UiEt, Ui = k2
0(εi − 1)θi . (8)

Unlike the external current q0, which is assumed to be

pre-defined, the values of
”
scattering potentials“ Ui (8)

describe the secondary sources qi , i.e. the currents related

to polarization of the i-th scatterer. At the same time, the

source qs corresponds to the full scattered field or, in other

words, to description of all the scattering particles as a single

combined scatterer with permittivity ε(r).

2. Local and integral laws of
conservation

2.1. Differential equations for the partial fields

Let us write the full field Et as a sum of the
”
partial

fields“, namely, the field of the incident wave E0 and the

waves scattered by each of the scatterers Ei :

Et = E0 + Es ≡

N
∑

i=0

Ei , (9)

Es =

N
∑

i=1

Ei . (10)

Here, E0 corresponds to the field created by the pre-

defined (foreign) current q0 without the scatterers, while

the full scattered field Es is created by the source qs and

expressed as a sum of the fields Ei scattered by each of

the scatterers with the sources qi , i = 1, 2, . . . , N. Finding

an explicit form of these sources as well as the scattered

fields requires the full solution of the scattering problem

(Section 5.2).

Due to linearity of the problem, all the strengths Ei ,

i = t, s, 0, 1, 2, . . . , N are described by the equations that

coincide with (4) in a form

L0Ei = qi , (11)

but with different functions of the sources (currents) qi ,

i = t, s, 0, 1, 2, . . . , N.

The equations (11) when i = 0, 1, 2, . . . , N form a

system that is equivalent to the equation (4) and describes

the full field Et (9). Summing both the parts of (11) over

i = 0, 1, 2, . . . , N transforms the system of equations (11)
for the incident wave and the particle-scattered waves into

an initial equation for the full field Et (4). At the same

time, each of the fields Ei is matched with a corresponding

magnetic field Hi of the form (3).
The sources of the incident wave E0 and the scattered

waves Ei , i = 1, 2, . . . , N are
”
local“ in the sense that they

are spatially localized in an area of the pre-defined currents

q0 and each of the scatterers qi , respectively. We will call

these waves the
”
the partial components of the full field

Et“. Unlike it, the sources qt (6) and qs (7) that correspond
to the full field Et and the scattered fields Es are

”
non-

local“, i.e. distributed between the external current q0 and

all the scatterers. Assumingly, all the local sources are not

overlapped.

The only source of energy in the considered problem

is the pre-defined external current q0, while the secondary

induced currents qi , i = 1, 2, . . . , N correspond to the

scatterers that not only scatter the field energy, but absorb

it as well, i.e. function as drains. It will be reflected

in selecting signs related to currents of powers and their

respective flows (see below). Despite these differences,

the general properties of the local currents q0 and qi and

the energy relationships related thereto can be considered

uniformly.

2.2. Local and integral laws of conservation of
the partial flows

It is easy to obtain the following relationship from the

Maxwell equations (11) and (3) (see Appendix)

∇(si j + s ji) = (w i j + w ji), (12)

which relate cross flows

si j = (1/2)Re(Ei ×H∗
j ) (13)

with the respective powers

w i j = (1/2)Re[Eiq
∗
j /(iωµ0)], (14)

where i, j = t, s, 0, 1, 2, . . . , N. Similar to the Lorentz

lemma, we will call the relationship (12) a
”
duality lemma“

for the average values of the local energy flows. Let us de-

scribe simple consequences of the relationships (12)−(14).
We will call the vectors si j + si j , when i 6= j ,

”
interfer-

ence flows“, since they are related to interference of the

Technical Physics, 2025, Vol. 70, No. 8
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fields created by the two different sources qi and q j . In

accordance with (12), each of the sources of the considered

pair gives its own contribution (w ji and w i j) to divergence

of the interference flow si j + si j . When i = j , i.e. for the

field Ei from one source qi , the vectors si j + si j transit to

double common Pointing vectors 2sii , while (12) gives the

law of conservation of energy

∇sii = w ii (15)

for the time-average values of the flow sii and the power w ii .

The traditional derivation of the law of conservation (15)
for the energy flow stt of the full field Et from the

Maxwell equations is provided in many monographs (see,
for example, [1,2]).

Let us note that the really observed flows of the energy

and the power also have, in addition to the average values,

fluctuating parts that oscillate with a double frequency and

omitted below (the condition of conservation of the fluctu-

ating power is discussed in detail in [17]). We also note

that the physical meaning of the continuity condition (15)
is clearer when using a definition of divergence as a local

measure of productivity of the sources in the considered

point of space, i.e. a surface integral of the energy flow

sii for the infinitely small volume dv , which is normalized

to the value of this volume: the positive value of w ii

corresponds to the field energy sources (i.e. a flow outgoing

from dv outwardly), while the negative value corresponds

to drains (the dv-absorbed flow, see, for example, [18]).

Since the scattered fields are assumed to be non-zero,

generally speaking, in the whole space spatial localization of

the powers w i j ≡ w i j(r) (14) coincides with localization of

the sources q j ≡ q j(r). In other words, each of the powers

w i j determined according to (14) can be non-zero only in

the area of the respective sources q j and zero outside this

area. Consequently, the powers w i j(r) are
”
local“ for the

incident wave and the partial scattered waves (i.e. when

j = 0, 1, 2, . . . , N) and
”
non-local“ for the full field and

the scattered fields (i.e. when j = t, s ; here, ”locality” is

understood in the same sense, in which
”
locality“ of the

sources q j was spoken of above).

Let us consider some simple consequences of the con-

ditions (12) for the local sources q j , to which the indices

i, j = 0, 1, 2, . . . , N correspond. According to (12), for

each selection of the pair (i, j) a source of divergence of

the flow si j + si j is the power w i j + w ji . At the same

time, each power w i j is localized in the area of localization

of the respective field source q j . Consequently, the full

flows that correspond to si j + si j are preserved with free

propagation of radiation in the area between the sources

where w i j + w ji = 0.

Integration of the both parts of (12) by the arbitrary

volume v using the Gauss-Ostrogradsky theorem makes it

possible to transit from the local flows si j and the powers

w i j to integral characteristics that are related to selecting v

, which we designate with capital letters Si j and Wi j with

the same indices:

6i j ≡ (Si j + S ji) ≡

∮

Dv

(si j + s ji)d6

=

∫

v

(w i j + w ji)dr ≡ (Wi j + W ji). (16)

If the considered volume v has not at least one of the

sources q j or q j , then w i j = w ji = 0 and the full flow 6i j

vanishes, i.e. a part of this flow, which enters v , is equal to

an exiting one. Thus, for each pair of the local sources

qi and q j , the flow 6i j that corresponds to them does

not depend directly on availability of other local sources in

the considered volume (it certainly does not mean that the

scattered field Ei does not depend on other scatterers: here

we are talking about a balance of the time-average powers).
When i = j , after being divided by 2, the flow (16)

transits to the condition of energy conservation:

Sii ≡

∮

Dv

sii d6 =

∫

v

wiidr ≡ Wii, (17)

where Sii is the full energy flow that outgoes outwardly

through a surface of the considered volume, while Wii is

the full power of the sources included in it. In accordance

with (17), the flow Sii vanishes when there is no respective

source qi inside the volume, which corresponds to conser-

vation of the magnitude Sii in a process of propagation of

the waves outside this source.

If the considered volume v has only one of the currents,

let us say, qi , then Wi j = 0 and according to (16),
6i j = W ji . With increase of the volume v , the interference

flow 6i j does not vary until this volume touches the second

source of the considered pair q j (Fig. 1). After this, with

increase of v , as this volume absorbs the area of the source

q j , the flow 6i j starts changing and goes to a new constant

level after q j is completely enclosed by the considered

volume. At the same time, other sourced do not directly

affect the value of the interference flow that characterizes

this pair qi and q j . Outside the volume that includes

both the sources, the flow 6i j propagates unchanged. This

pattern is preserved for the case of a single source as well,

i.e. at i = j , when the interference flow 6i j transits to the

double energy flow.

3. Partial components of the flows and
their sources

The local relationships (12) associate the values relating

to each point of space of the flows s i j with the respective

powers w i j . The conditions of the energy balance are

given by relationships between various full powers Wi j (or
relationships between the full flows Si j , which are equivalent

to them) at special selections of the volumes, to which these

integral magnitudes belong. For the emitter and the single

18 Technical Physics, 2025, Vol. 70, No. 8
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scatterer, in addition to the law of conservation of energy,

these integral characteristics are directly related to the

optical theorem (scattering
”
forward“, the energy balance

between the scattered field and the incident wave) as well

as description of the Purcell factor (scattering
”
backwards“,

the effect of the scattered wave on the emitter power) [16].
Let us consider the specific features of these effects for our

system of the scatterers.

Let us write the expressions (13) and (14) for the flow stt
and the power w tt of the full field Et by substituting qt (6)
and Et (9) into them:

w tt = 6w i j ≡ 6w ii + 6′w i j, (18)

stt = 6si j ≡ 6sii + 6′si j . (19)

Here, the sums are taken over all the values of the indices

i, j = 0, 1, 2, . . . , N, which correspond to the local sources,

while the sum with a prime corresponds to summation over

i 6= j .
By integrating both the parts of (18) and (19) by the

arbitrary volume v in accordance with (16), we obtain

similar relationships for the integral magnitudes:

Wtt = 6Wi j ≡ 6Wii + 6′Wi j, (20)

Stt = 6Si j ≡ 6Sii + 6′Si j . (21)

Unlike the differential relationships (18) and (19), here, now
all the integral magnitudes Si j and Wi j depend on selection

of the volume v .

The relationships (20) and (21) make it possible to

describe all the integral characteristics of the field, which

are related to the energy balance. In order to obtain

these characteristics, it is sufficient to select the volume

of interest to us and take into account a various energy

character of the foreign source q0 that transfers energy

to the electromagnetic field, and the induced currents qi ,

i = 1, 2, . . . , N that function as drains.

After this, we will consider only the volumes that fully

enclose the respective local sources q j , so that the following

magnitudes used below when i, j = 0, 1, . . . , N

Wi j =

∫

w i j dr (22)

are the full powers that correspond to w i j and are related

to full absorption or radiation of the source q j .

4. Energy balance and the optical
theorem for the system of the
scatterers

4.1. Foreign current and the Purcell factor

First we consider the arbitrary volume V ∗
0 that fully

encloses V0 (i.e. the external current qo), but does not affect
the volumes of the scattering particles (the induced currents

qi , i = 1, 2, . . . , N (Fig. 2)). According to (14), for this

*V
0

*V
1

*V
01

Figure 2. Selection of the volumes that enclose the scatterer q1

and the source q0 .

volume, all the values of the local w i j and, consequently,

full Wi j powers vanish when j 6= 0 Taking it into account,

the expression for the full power (20) transits into

Wem,0 ≡ Wtt = W00 + Wint,0, (23)

where the sum of the interference summands is

Wint,0 =

N
∑

i=1

Wi0. (24)

With this selection of the volume, the magnitude Wem,0

has a meaning of the full source radiation power that is a

sum of a power of radiation in the free volume W00 ≥ 0

and (generally, sign-variable) a power Wint,0 that describes

the effect of all the scatterers on the power of radiation

of the pre-defined current qo, i.e. the Purcell effect. For

the single scatterer (i.e. when N = 1), this relationship was

considered in detail [13]. The magnitude γ = Wint,0/W00 is

called a factor of amplification. In accordance with (24),
each of the scatterers makes its own contribution to this

factor (naturally, these factors are not independent due to

mutual influence of the fields scattered by the particles).
In accordance with (12), each summand in (24) creates

the flow 6i0 = Si0 + S0i , so that the emission flow (21)
takes the following form

Sem,0 ≡ Stt = S00 +

N
∑

i=1

(Si0 + S0i). (25)

This expression determines the energy flow that outgoes

from the source qo outwardly through the surface of the

considered volume and is equal to the emission power (23).
We note that in our formulation we consider the external

current that does not depend on the scatterers, which is a

standard technique in classic electrodynamics [17]. More

complex processes related to a quantum nature of the

emitter can be described in a quasi-classical approximation

Technical Physics, 2025, Vol. 70, No. 8
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when taking into account a possible effect of the scattered

fields on the foreign source q0 (see, for example, the

study [19], which considers a simple model of classic

description of the dependence of fluorescence of an excited

molecule on plasmon resonance of a metal nanoparticle

nearby). This problem formulation can be easily included

into the considered diagram, but it is outside the scope of

the present study.

4.2. Single scatterer and the optical theorem

The similar relationships are obtained when considering

any of the scatterers qi instead of qo and taking into account

their absorbing nature. Selection of the volume V ∗
1 that

has only one of the scatterer q1 (Fig. 3, a) corresponds to

vanishing of all the powers Wi j with j 6= 1, so that instead

of (24) we obtain the relationship

Wtt = W11 + 6′Wi1, (26)

where the sum with the prime is taken when i 6= 1, i.e.

when i = 0, 2, 3, . . . , N.

Since the positive value of the power Wtt by definition

corresponds to predominance of the flow that outgoes

outwardly from the considered volume, here Wtt provides

the full power Wabs1 taken with a minus sign and absorbed

by the scatterer Wtt = Wt1 = −Wabs1. Similarly, the sum

of (26) provides the extinction power Wext,1 that is taken

with the minus sign and corresponds to the interference

flow directed inward the considered flow:

Wext,1 ≡ −
∑

i 6=1

Wi1 ≡ −W01 −

N
∑

i=2

Wi1. (27)

In (26), the magnitude W11 ≥ 0 gives the full power of

scattering, i.e. the full flow outgoing through the surface of

the volume V ∗
1 , which encloses the first scatterer, but does

not affect other scatterers and the source q0. The part of this

power is spent for excitation of currents induced in adjacent

scatterers and contributes to variation of the emitter power

b

Wabs1

W11W21 W22 W12

Wext12
Wabs2

V
2

V
1

a

V
1

W11

Wext12

Wabs1V*
1

*V
12

Figure 3. Diagrams of distribution of radiation from the average

powers for the volumes V∗

1 and V∗

12 that enclose one scatterer (a)
and two scatterers (b).

q0, i.e. the Purcell effect. The rest part corresponds to

radiation losses.

As follows from determination of the powers w i j (14),
the right-hand part of (27) is matched with the local power

wext,1 ≡−

(

w01 +

N
∑

i=2

w i1

)

=

− (1/2)Re

[(

E0 +

N
∑

i=2

Ei

)

q∗1/(iωµ0)

]

. (28)

Whence, it is clear that the extinction power Wext,1

describes a full work of the induced-in-particle current q1,

which is done to the field that is external to the particle, i.e.

the field of the incident wave and the waves scattered by all

other particles (Fig. 3, a):

Eout1 ≡

N
∑

i 6=1

Ei = E0 +

N
∑

i=2

Ei . (29)

As a result, (26) takes the form of the common optical

theorem for the single scatterer, which says that the

extinction power is a sum of the power of scattering

Wsc,1 ≡ W11 and absorption:

Wext,1 = Wsc,1 + Wabs1. (30)

The powers in the right-hand part here are nonnegative,

so that the following inequalities are fulfilled

Wsc,1 ≥ 0, Wabs ,1 ≥ 0, Wext,1 ≥ 0, (31)

while a part of them is used when obtaining the fundamental

boundaries [6–8], which were discussed above in Introduc-

tion. The optical system (30) is matched with the condition

of the flow balance

Sext,1 ≡ −
∑

i 6=1

(Si1 + S1i) = S11 + Sabs1, (32)

where the particle-absorbed flow

Sabs1 = −(St1 + S1t). (33)

4.3. Optical theorem for the group of the
scatterers

Obtaining the optical theorem for the arbitrary volume

V ∗
12 that encloses only the two scattering particles q1 and q2

(Fig. 3, b) is formally equivalent to termwise summation of

the optical theorems (30) written for each of them:

Wext,1 + Wext,2 ≡ −W01 −W02 −

N
∑

i=2

Wi1 −

N
∑

i=1
i 6=2

Wi2

= W11 + W22 + Wabs2 + Wabs1. (34)
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However, in order to transit to the common form of the

optical theorem, which interprets a content of the considered

volume V ∗
12 as one combined scatterer, it is necessary to

regroup the summands included herein, by distinguishing

an action of the scatterers that are external in relation to V ∗
12

. As a result, (34) will be written as

Wext,1,2 = Wsc,1,2 + Wabs ,1,2, (35)

where

Wext,1,2 = −

N
∑

i=0
i 6=1,2

Wi1 −

N
∑

i=0
i 6=1,2

Wi2 (36)

— the extinction power related to the action of all

the sources that are external in relation to q1 and q2

(including q0),

Wsc,1,2 =
∑

i, j=1,2

Wi j (37)

— the scattering power on the two scatterers that interact

through the scattered fields, while

Wabs ,1,2 = Wabs2 + Wabs1 (38)

— the power of absorption by the two particles.

At the same time, the extinction power (36) is not

reduced to the sum of the similar magnitudes (27) for each

of the scatterers separately Wext,1,2 6= Wext,1 + Wext,2, since a

part of this sum now functions as the interference part of

scattering on the two particles. All the powers included in

the optical theorem (35) are nonnegative:

Wsc,1,2 ≥ 0, Wabs ,1,2 ≥ 0, Wext,1,2 ≥ 0. (39)

A pattern of conversion of the source energy for the two

selected scatterers is illustrated in Fig. 3, b.

For the full cluster that encloses all the particles, only

the field of the source u0 is external in relation to it. Here,

now the extinction power transits into a simple sum of the

extinction powers for separate particles:

Wext1,2,...,N ≡ −

N
∑

i=1

W0i, (40)

while the optical theorem takes a conventional form

Wext1,2,...,N = Wsc1,2,...,N + Wabs1,2,...,N , (41)

where

Wsc1,2,...,N =

N
∑

i, j=1

Wi j, Wabs1,2,...,N = −

N
∑

i=1

Wti . (42)

4.4. Scatterer and the source

The obtained relationships can be easily extended to the

volume that encloses an arbitrary group of the scatterers by

including the foreign source qo into it as well. Thus, for

the volume V ∗
01 that encloses only the source qo and the

scatterer qI (Fig. 2), in (20) nonzero are the powers Wi0

and Wi1 that correspond to these sources. As a result, (20)
takes the form of the expression for the emission power that

outgoes from the considered pair

Wem0,1 ≡ Wtt = W00 +

N
∑

i 6=0

Wi0 + W11 +

N
∑

i 6=1

W j1. (43)

Taking into account (23) and the optical theorem (30),
this relationship can be also written as

Wem0,1 = Wem0 −Wabs1. (44)

This relationship expresses the law of conservation of

energy for the pair qo and q1: the power that creates the

emission flow from the considered volume is a difference of

the power Wem0 of the emitter qo (expressed with taking into

account the Purcell effect) and the power Wabs1 absorbed by

the considered scatterer q1. Since the absorbed power can

not exceed the emitted one, the inequality follows from (44)

Wem0,1 ≥ 0. (45)

Similarly, it is possible to consider the flows that

correspond to the arbitrary groups of the scatterers that

interact through the scattered fields. At the same time,

inclusion of the new scattering particles into the considered

volume results in supplementing the right-hand side of (44)
with the powers Wabs i that describe absorption in each of

them. In particular, for the volume that encloses the entire

considered system, the full emission power is

Wem0,1,2,...,N = Wem0 −

N
∑

i=1

Wabs i . (46)

This power describes radiation into external space, i.e.

radiation losses of the entire system as a whole. By taking

into account the above-given relationships, it is easy to write

also an explicit form of the power flow that corresponds

to (44).

5. Partial powers and the operator of
free propagation

Let us consider a relation of the above-obtained functions

of the sources (powers) Wi j with the currents qi that create

the incident fields and the scattered fields. In accordance

with (5), each of the scattered fields Ei , i = 1, 2, . . . , N
will be written as follows

Ei = G0qi , (47)

where

G0 = (L0)
−1 ≡ ∇×∇× (−ky20)

−1

≡ −(1 + ∇∇/k2
0)(1 + k2

0)
−1 (48)
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— the operator of free propagation, whose explicit form is

known [1,2], is not written out here, too. Let us determine

the scalar product for vectors of field strengths E j a

E
†
jEi ≡

∫

E∗
j (r)Ei (r)dr, (49)

where the integral is taken across the entire space. This

unitary scalar product specifies a metric in the space of

the three-component vectors E(r), which can be considered

as the field u = u(α, r) that depends on the complex

argument (α, r). Then, the operator G0 is matched with

the kernel G0 (α, r;α0, r0) that includes tensor arguments

(α, α0), wherein the action G0 includes integration by r0
and summation over the discrete argument α0.

As it is a linear operator in the unitary space, G0 is

expressed as a sum the Hermitian Gh
0 and the anti-Hermitian

i Ga
0 parts1, G0 ≡ Gh

0 + i Ga
0 , where Gh

0 = (G0 + G†
0)/2,

while Ga
0 = (G0 − G†

0)/2i , wherein the symbol
”
†“ desig-

nates the Hermitian conjugation (see, for example, [20]). In
these notation, taking into account (14), the expression for

the energy power Wii (17) provides

Wii =

∫

v

w ii dr = (1/2ωµ0)Im

∫

v

q∗i G0qi dr

= (1/2ωµ0)q
†
i Ga

0qi , (50)

which is, in accuracy of an multiplier, a diagonal matrix

element of the anti-Hermitian part of the operator of free

propagation Ga
0 , which corresponds to the source qi Thus,

the energy powers Wii depend only on the anti-Hermitian

part Ga
0 of the operator of free propagation G0 and do not

depend on its Hermitian part. This property is retained for a

symmetrized sum Wi j + W ji with i 6= j , which occurs when

considering interaction of the pair of the sources qi and q j

using the basic relationship (12). Generally, when using

the off-diagonal magnitudes Wi j with i 6= j , the extinction

sources in them are presented by the full Green’s operator

G0, rather than its anti-Hermitian part, so that

Wi j = (1/2ωµ0)Im q
†
j G0qi . (51)

Unlike the kernel G0, the matrix kernel Ga
0(r, r0) of the

operator Ga
0 has not specific features in zero, i.e. when

r = r0, wherein Ga
0(r0, r0) = 1k0/(6π), where 1 is a unity

matrix [21]. Thus, it is possible to avoid regularization

for calculating the powers in case of point scatterers [21]
in contrast to describing the field that uses the full wave

operator G0.

The operator Ga
0 is nonnegative, i.e. all its diagonal matrix

elements are nonnegative [20], q†Ga
0q ≥ 0. This condition

follows from physical considerations, reflects (nonnegative)

1 The literature has not commonly-accepted designations for selecting

the Hermitian and the anti-Hermitian components of the operator A (see
discussion of the terminology in Appendix F in the paper [23]). In our

notation, the anti-Hermitian part Aa is an Hermitian operator (like the

imaginary part Im z of the complex number z is a real number).

radiation losses in the system and provides non-negativity

of all the energy powers Wii (unlike the sign-variable

interference powers Wi j , i 6= j). Thus, if considering

a single dipole with the dipole moment p as a pre-

defined source, by assuming that q0 = ω2µ0pδ(r), then the

power (50) takes a conventional form of the radiation power

of the point dipole with the pre-defined dipole moment p,

W00 = (ω4µ0|p|
2/12πc) (this expression is usually derived

by integration of the power flow over the infinite-radius

sphere that encloses the scatterer).

Conclusion

The study has considered local and integral conditions of

the energy balance for the arbitrary system of the scatterers

that interact with each other through the scattered fields.

Description of the partial components of the energy flows

that are preserved in the process of propagation between the

scatterers essentially uses the
”
duality lemma“ (12) which

is obtained in the study to determine a relation of the time-

average flows with the sources with taking into account

interference of the scattered fields. It included consideration

of the forms of the optical theorem for the clusters included

in the considered system of the scatterers. It is shown, in

particular, that the flow of extinction and scattering for the

cluster depends on selection of the particles included in it

and unlike the absorbed flow, it is not reduced to a simple

sum of the similar extinction flows for its components.

The obtained clear picture of the energy balance is meant

to improve understanding of the energy exchange processes

during coherent scattering on the system of scattering

particles, thereby making it possible to consider the energy

exchange between the system clusters in contrast to the

traditional approach that describes the energy balance for

the system as a whole. The approach that uses the local

conditions (12) can be also extended to other problems

of the scattering theory, which are related to the more

complex geometries of a problem. It is also applicable

for the widespread model of the point scatterers and

sources [21,23], when instead of continuous distributions of

permittivity and the currents, the respective delta functions

are used.

We note that the problem formulation that describes one

monochromatic component of the field corresponds to a

steady-state and does not use division of the currents into

a
”
cause“ (the field sources q0) and

”
consequences“ (the

induced sources q j), so that the above-described diagram

features the currents q0 and q j quite symmetrically (if only
neglecting signs of the full flows of the energies outgoing

from them). We also note that many studies in the literature

have considered the similar relationships, but non-identical

to (12) (thus, for example, when considering the case of

the single scatterer, a similar conclusion was given in the

study [13] as applicable to a specific choice of the fields of

the incident and scattered waves as E1 and E2 and in the

article [24] when constructing the optical theorem in the
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time domain). However, the authors believe that it is use of

the simple relationship (12) that makes it possible to obtain

the most concise description of the considered problem.
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Appendix

”
Duality lemma“ for the cross flows

When discussing the reciprocity conditions for the Maxwell

equations in electrodynamic as well as in various applica-

tions, widely used is a classic Lorentz lemma that relates

the values of the fields that are created in a fixed medium

by two different external currents j1 and j2 [17]:

∇(E1 ×H2 − E2 ×H1) = (−E1 j2 + E2 j1)/(iωµ0). (A1)

When there is anisotropy, this relationship is fulfilled only

for reciprocal media, for which the tensors of permittivity

and permeability satisfy certain symmetry conditions, and it

is violated, for example, in case of gyrotropy (nonreciprocal
media are described in detail in the recent review [22]).
Let us consider a derivation of the similar condition that is

associated with the time-average values of the energy flows.

As in derivation of the Lorentz lemma, we will consider

the Maxwell equations (2) and (3) for the two fields that are

created by the two different pre-defined external currents j1
and j2. We write these equations as follows

∇× Eα = (iωµ0)Hα, (A2)

∇×Hα = (qα + k2
0Eα)/(iωµ0), (A3)

where α = 1, 2, while the sources q1 and q2 will

be regarded by us as arbitrary ones (for the full Et

field qα = iωµ0 j0(r) + k2
0(ε(r) − 1)Eα , the incident wave

E0 corresponds to the case when ε(r) = 1, while the

partial scattered waves correspond to the case when

qα = (εi (r) − 1)θα(r)Et , where finding of the field Et

requires the full solution of the scattering problem).
Let us consider the expression ∇(E1 ×H∗

2 + E2 ×H∗
1).

Using the vector relationship ∇(A× B) =
B∇× A− A∇× B and taking into account (A2) and (A3),
we have

∇(E1 ×H∗
2 + E2 ×H∗

1) = H∗
2∇× E1

− E1∇×H∗
2 + H∗

1∇× E2 − E2∇×H∗
1 .

(A4)
Let us express rotors included in the right-hand side of

this expression according to (A2) and (A3):

∇(E1 ×H∗
2 + E2 ×H∗

1) = (iωµ0)(H
∗
2H1 + H∗

1H2)

+ (k2
0/(iωµ0))(E1E

∗
2 + E2E

∗
1) − (E1q

∗
2 + E2q

∗
1)/(iωµ0).

By taking now the real part from both the parts of this

equation, we obtain the relationship, which is equivalent
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to (12):

∇Re(E1 ×H∗
2 + E2 ×H∗

1) = Re[(E1q
∗
2 + E2q

∗
1)/(iωµ0)],

(A5)
which we will call the

”
duality lemma“ for the cross flows.

Unlike the Lorentz lemma (A1), instead of the external

currents jα the right-hand side (A5) has the full currents qα
that take into account dissipation inside the medium (when

permittivity has an imaginary part). Another difference from
the Lorentz lemma related to reciprocity of the fields is

that the condition (A5) that generalizes the condition of

preservation of the average flows (15) is fulfilled in the case

of nonreciprocal media, too.
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