Technical Physics, 2025, Vol. 70, No. 8

01

Energy balance in the coherent scattering of radiation by a system of

many particles

© L.A. Apresyan, V.I. Krasovsky, S.I. Rasmagin

Prokhorov Institute of General Physics, Russian Academy of Sciences,

119991 Moscow, Russia
e-mail: leon_apresyan@mail.ru

Received November 8, 2024
Revised February 21, 2025
Accepted February 24, 2025

Using a unified description of the fields of incident and scattered waves, the energy balance conditions for time-
averaged energy fluxes during the scattering of a monochromatic wave created by an arbitrary radiation source on
a system of particles interacting through scattered fields are considered. A ,,duality lemma“ is obtained for local
values of energy fluxes, similar to Lorentz lemma for fields from two sources and determining the redistribution of
energy fluxes between scatterers and the source. The total energy flow is divided into ,.energy* and ,,interference*
parts, each of which has its own source function localized on particles, and which are preserved during propagation
in free space. The variants of the optical theorem corresponding to various subsystems (clusters) are described, as
well as their relationship to the Purcell factor. The result is a detailed picture of energy exchange for arbitrarily

chosen clusters of interacting particles.

Keywords: multiple scattering, coherent radiation source, energy conservation, optical theorem, Purcell effect,

radiation losses.

DOI: 10.61011/TP.2025.08.61728.412-24

Introduction

Interaction of electromagnetic radiation with scattering
and absorbing particles covers a large variety of practical
applications that include both classic problems of optics, ra-
diolocation, atmosphere physics, etc. and modern problems
related to development of nanotechnologies. This sphere of
the problems is described based on the Maxwell equations
in a frequency area [1,2] or their ensuing system of the
integral equation like the Lippmann-Schwinger quantum-
mechanical equation [3]. In addition to scattering on single
particles, these equations can also encompass various effects
of multiple scattering, which correspond to interaction
of particles through the scattered electromagnetic field,
such as formation of photon band gaps in metamaterials,
Anderson localization in systems of random scatters, effects
of backscattering amplification (also known as weak local-
ization), etc. [2].

Unlike a phenomenological theory of radiation transfer,
which uses the transfer equation with an heuristic notion of
an elementary scattering volume [4], the Maxwell equations
provide rigorous description of specific models of the
particles with an arbitrary form and an internal structure
and make it possible to obtain statistics-wave justification
of the transfer theory [5]. However, these rigorous models
as a rule allow an accurate solution only in an extremely
limited number of cases and usually require application of
numerical calculations.

Relationships related to an energy balance are important
for understanding general mechanisms of absorption and
scattering of radiation. They particularly include a so-

called optical theorem and the Purcell factor related to
variation of emitter power due to presence of a scatterer.
These relationships make it possible to simplify finding of
such important integral characteristics of the considered
system as complete sections of extinction, scattering and
absorption. They are used to check the quality of the
used approximate solutions and to obtain a general physical
picture in the scattering problems. In recent years, the
energy relationships have been also used in extensive new
applications related to obtaining fundamental boundaries of
variation of the various physical parameters of the scattering
system. Finding these boundaries makes it possible, in
particular, to judge potential capabilities when creating
new metamaterials and designing engineering devices in
nanophotonics and plasmonics (see the studies [6-8] and
many sources referred to therein). This approach is based
on methods of convex optimization [9], which mean that
extremums of desired physical magnitudes are found by
using various integral limitations like the energy balance
conditions. At the same time, it considers a wider class
of functions than rigorous solutions of the wave equations,
thereby making it possible to find the desired maximums
without solving the exact wave equations. Extension of
the class of the additional conditions results in tightening
of these boundaries, which in certain cases turn out to be
achievable, thereby acquiring a direct physical meaning.
Traditionally, the conditions of the energy balance are
considered as applicable to a single scatterer irradiated by
a flat wave, thereby resulting in a classic formulation of the
optical theorem that relates extinction to an amplitude of
scattering ,forward” [10,11]. The description of the energy
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balance was extended in the studies [12-14] for the system
that consists of both the scatterer and the emitter. Unlike a
common approach of considering the balance of total flows
outgoing through a surface of the selected volumes, the
previous studies of the authors [15,16] have also used local
conditions of the energy balance, which express divergence
of the flows through the respective sources in each point of
space. At the same time, it considered a model of the scaler
wave equation and the single scatterer. The present study is
aimed at extending the results [15,16] to the case of multiple
scattering of electromagnetic radiation on the system of
the absorbing scatterers. The obtained results are aimed
at improving understanding of the mechanisms absorption
and scattering of light in the systems of interacting particles,
which are of primary importance in optics, photonics and
plasmonics.

Below is described the case of coherent scattering by
the system of fixed scattering particles, for which a phase
of radiation does not vary in individual acts of scattering.
Situations that are related to noncoherent scattering and
require use of the statistical approach [5] are not considered
below. At this, for the sake of simplicity, we limit ourselves
to the case of one pre-defined (i.e. foreign) current jo(r)
localized outside the scatterer system, although the below-
obtained results can be easily extended to the case of an
assembly of radiating and absorbing particles as well by
introducing a set of particles with external currents pre-
defined thereon instead of one external current.

Section 1 considers a general formulation of the problem
that results in a system of differential equations of multiple
scattering of monochromatic radiation on the system of par-
ticles with pre-defined arbitrary distribution of permittivity
inside each particle. Section 2 provides the main result of
the present study, namely a ,duality lemma“ (12), which
expresses a local form of the law of conservation of averaged
energy flows from two arbitrary sources that are pre-defined
or induced. As known to the authors, this form of the law of
conservation of energy was not previously written explicitly
in literature on multiple scattering (some references to
similar results, but non-identical to (12) are given in
Conclusion, a simple derivation of this lemma is provided
in Appendix). After that, the same Section describes local
and integral forms of the laws of conservation of the time-
averaged power flows, which are divided into energy flow
and interference flows, which are relation to superposition
of the scattered fields and the incident wave field. The
next sections are used to illustrate applicabilities of the said
lemma. Division of the powers and the flows into partial
components is given in Section 3. Section 4 describes
various variants for selecting auxiliary volumes, which allow
considering, when based on (12), the energy balance for the
arbitrary clusters inside the system of particles that interact
through the scattered fields. A relationship of the partial
powers to an operator of free propagation and field-creating
currents is briefly described in Section 5. Conclusion
formulates the main conclusions.
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1. Problem formulation

Let us consider scattering of monochromatic radiation
created by the pre-defined external current jo(r) that is
distribute inside the volume V,. Radiation is scattered by
the system (cluster) of absorbing particles (Fig. 1).

The positions of the particles are described by some
internal points of each of them ri, i =1,2,...,N, ry is
the internal point Vp, wherein the volumes of the par-
ticles Vi and the sources V, are considered to be non-
overlapping. The time dependence is proportional to a
multiplier exp(—iwt) that is omitted below, so are the
dependences on the angular frequency w. Taking for sake of
simplicity that medium permittivity is unity, we will assume
that each of the particles is described by its own distribution
of complex permittivity & (r) (as known, it also includes the
case of nanoparticles [2]). Then, complete permittivity is
written as
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Hereinafter, 6; = 6;(r) is a characteristic function that is
equal to unity inside the volume V; and zero outside it,
i=0,1,2,...,N. At the same time, jo(r) = 0o(r)jo(r),
since the pre-defined current jo(r) is assumingly localized
inside the volume V.

The electric field strength E(r) is determined by the
equation

[V x V x —kGe(r)|E(r) = iougjo(r), (2)

where Ko = w/C is a wave number, while yy is magnetic
permeability of vacuum. The equation (2) is supplemented
by the Sommerfeld infinity radiation conditions, which can
be fulfilled by introducing an infinitely small imaginary
part to the wave number Ky, which is omitted for sake

&

Figure 1. Radiation of the pre-defined external current outside
the cluster of scattering and absorbing particles.
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of simplicity hereinafter (see, for example, [1,2]). The
solution (2) makes it possible to find the magnetic field
strength H(r) as well, which is

H(r) = V x E(r)/ (iou). (3)

By substituting (1) into (2) and omitting spatial argu-
ments for sake of simplicity, we write (2) in an abbreviated
form as

LoE: = qt. 4)

Here, for uniformity, the index E = E; is assigned to the
full field E and the following designations are introduced

Lo =V x V x —k3, (5)
N

G=q+g =) q, (6)
i=0

N N

qo = iopojo(r), qs =Kj(e(r) — NE => UE=> q.
i-1 i-1

(7)

qi = UiEt, Ui = k%(ei — 1)9i. (8)

where

Unlike the external current qp, which is assumed to be
pre-defined, the values of ,scattering potentials® U; (8)
describe the secondary sources ¢, i.e. the currents related
to polarization of the i-th scatterer. At the same time, the
source qs corresponds to the full scattered field or, in other
words, to description of all the scattering particles as a single
combined scatterer with permittivity e(r).

2. Local and integral laws of
conservation

2.1. Differential equations for the partial fields

Let us write the full field E; as a sum of the ,partial
fields™, namely, the field of the incident wave E¢ and the
waves scattered by each of the scatterers E;:

N
E=E+E=) E, )
i=0
N
Es=> E. (10)

Here, E¢ corresponds to the field created by the pre-
defined (foreign) current qo without the scatterers, while
the full scattered field Es is created by the source qs and
expressed as a sum of the fields E; scattered by each of
the scatterers with the sources qi, i = 1, 2, ..., N. Finding
an explicit form of these sources as well as the scattered
fields requires the full solution of the scattering problem
(Section 5.2).

Due to linearity of the problem, all the strengths E;,
i=t,5,0,1,2,...,N are described by the equations that
coincide with (4) in a form

L()Ei =qi, (11)

but with different functions of the sources (currents) g,
i=t,50,1,2,...,N.

The equations (11) when i =0,1,2,...,N form a
system that is equivalent to the equation (4) and describes
the full field E; (9). Summing both the parts of (11) over
i =0,1,2,..., N transforms the system of equations (11)
for the incident wave and the particle-scattered waves into
an initial equation for the full field E; (4). At the same
time, each of the fields E; is matched with a corresponding
magnetic field H; of the form (3).

The sources of the incident wave Ey and the scattered
waves Ei, i =1,2,..., N are ,local” in the sense that they
are spatially localized in an area of the pre-defined currents
qo and each of the scatterers q;, respectively. We will call
these waves the ,the partial components of the full field
E:“. Unlike it, the sources q; (6) and qs (7) that correspond
to the full field E; and the scattered fields Eg are ,non-
local”, i.e. distributed between the external current qo and
all the scatterers. Assumingly, all the local sources are not
overlapped.

The only source of energy in the considered problem
is the pre-defined external current qo, while the secondary
induced currents qij, i =1,2,...,N correspond to the
scatterers that not only scatter the field energy, but absorb
it as well, ie. function as drains. It will be reflected
in selecting signs related to currents of powers and their
respective flows (see below). Despite these differences,
the general properties of the local currents qop and q; and
the energy relationships related thereto can be considered
uniformly.

2.2. Local and integral laws of conservation of
the partial flows

It is easy to obtain the following relationship from the
Maxwell equations (11) and (3) (see Appendix)

V(sij +sji) = (wij + wji), (12)
which relate cross flows
sij = (1/2)Re(Ei x HJ) (13)
with the respective powers
wij = (1/2)Re[Eiqj/(iwpo)], (14)

where i, j =1,5,0,1,2,...,N. Similar to the Lorentz
lemma, we will call the relationship (12) a ,,duality lemma*“
for the average values of the local energy flows. Let us de-
scribe simple consequences of the relationships (12)—(14).

We will call the vectors sij; + sij, when i # j, ,interfer-
ence flows“, since they are related to interference of the
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fields created by the two different sources q; and qj. In
accordance with (12), each of the sources of the considered
pair gives its own contribution (wj; and wjj) to divergence
of the interference flow s;j +sj;. When i = j, ie. for the
field E; from one source q;, the vectors s;j + sjj transit to
double common Pointing vectors 2s;;, while (12) gives the
law of conservation of energy

Vsii = Wijj (15)

for the time-average values of the flow s;; and the power wj;.
The traditional derivation of the law of conservation (15)
for the energy flow sy of the full field E; from the
Maxwell equations is provided in many monographs (see,
for example, [1,2)).

Let us note that the really observed flows of the energy
and the power also have, in addition to the average values,
fluctuating parts that oscillate with a double frequency and
omitted below (the condition of conservation of the fluctu-
ating power is discussed in detail in [17]). We also note
that the physical meaning of the continuity condition (15)
is clearer when using a definition of divergence as a local
measure of productivity of the sources in the considered
point of space, i.e. a surface integral of the energy flow
sii for the infinitely small volume dv, which is normalized
to the value of this volume: the positive value of wj;
corresponds to the field energy sources (i.e. a flow outgoing
from dv outwardly), while the negative value corresponds
to drains (the dv-absorbed flow, see, for example, [18]).

Since the scattered fields are assumed to be non-zero,
generally speaking, in the whole space spatial localization of
the powers w;j = wij(r) (14) coincides with localization of
the sources q; = q;(r). In other words, each of the powers
wij determined according to (14) can be non-zero only in
the area of the respective sources q; and zero outside this
area. Consequently, the powers wijj(r) are ,local“ for the
incident wave and the partial scattered waves (i.e. when
j=0,1,2,...,N) and ,non-local“ for the full field and
the scattered fields (i.e. when j =t,s; here, “locality” is
understood in the same sense, in which ,locality of the
sources q; was spoken of above).

Let us consider some simple consequences of the con-
ditions (12) for the local sources q;, to which the indices
i,j=0,1,2,...,N correspond. According to (12), for
each selection of the pair (i, j) a source of divergence of
the flow sij +sjj is the power wij + wji. At the same
time, each power w;; is localized in the area of localization
of the respective field source qj. Consequently, the full
flows that correspond to sij + sij are preserved with free
propagation of radiation in the area between the sources
where wij + wji = 0.

Integration of the both parts of (12) by the arbitrary
volume v using the Gauss-Ostrogradsky theorem makes it
possible to transit from the local flows s;; and the powers
wjj to integral characteristics that are related to selecting v
, which we designate with capital letters §; and W,; with

18 Technical Physics, 2025, Vol. 70, No. 8

the same indices:

i = (S” +Sji)5%(sij —|—Sji)d2

Dv

:/(wij+Wji)drE(\Mj+Wji). (16)

v

If the considered volume v has not at least one of the
sources q; or qj, then wij = wj; = 0 and the full flow %
vanishes, i.e. a part of this flow, which enters v, is equal to
an exiting one. Thus, for each pair of the local sources
qi and qj, the flow X that corresponds to them does
not depend directly on availability of other local sources in
the considered volume (it certainly does not mean that the
scattered field E; does not depend on other scatterers: here
we are talking about a balance of the time-average powers).

When i = j, after being divided by 2, the flow (16)
transits to the condition of energy conservation:

S E%SiidE:/WiidrE\Nﬂ’ (17)

Dv v

where §; is the full energy flow that outgoes outwardly
through a surface of the considered volume, while W; is
the full power of the sources included in it. In accordance
with (17), the flow S;; vanishes when there is no respective
source q; inside the volume, which corresponds to conser-
vation of the magnitude Sjj in a process of propagation of
the waves outside this source.

If the considered volume v has only one of the currents,
let us say, qi, then Wi; =0 and according to (16),
Yij = W;i. With increase of the volume v, the interference
flow Zij does not vary until this volume touches the second
source of the considered pair q; (Fig. 1). After this, with
increase of v, as this volume absorbs the area of the source
q;j, the flow Xj; starts changing and goes to a new constant
level after q; is completely enclosed by the considered
volume. At the same time, other sourced do not directly
affect the value of the interference flow that characterizes
this pair q; and qj. Outside the volume that includes
both the sources, the flow Xj; propagates unchanged. This
pattern is preserved for the case of a single source as well,
ie. at i = j, when the interference flow Xj; transits to the
double energy flow.

3. Partial components of the flows and
their sources

The local relationships (12) associate the values relating
to each point of space of the flows s;; with the respective
powers wijj. The conditions of the energy balance are
given by relationships between various full powers W (or
relationships between the full flows S j, which are equivalent
to them) at special selections of the volumes, to which these
integral magnitudes belong. For the emitter and the single



1394

L.A. Apresyan, V.I. Krasovsky, S.I. Rasmagin

scatterer, in addition to the law of conservation of energy,
these integral characteristics are directly related to the
optical theorem (scattering ,forward”, the energy balance
between the scattered field and the incident wave) as well
as description of the Purcell factor (scattering ,,backwards®,
the effect of the scattered wave on the emitter power) [16].
Let us consider the specific features of these effects for our
system of the scatterers.

Let us write the expressions (13) and (14) for the flow sy
and the power wy of the full field E; by substituting q; (6)
and E; (9) into them:

wy = Zwjj = Xwjj + Z’wij, (18)

st = Z8ij = Zsij + 2sij. (19)

Here, the sums are taken over all the values of the indices
i,j=0,1,2,..., N, which correspond to the local sources,
while the sum with a prime corresponds to summation over
i #J.

By integrating both the parts of (18) and (19) by the
arbitrary volume v in accordance with (16), we obtain
similar relationships for the integral magnitudes:

Wi = W = SWi + /W, (20)

St =ZXSj =XSi +¥'S;. (21)

Unlike the differential relationships (18) and (19), here, now
all the integral magnitudes Sj and W{; depend on selection
of the volume v.

The relationships (20) and (21) make it possible to
describe all the integral characteristics of the field, which
are related to the energy balance. In order to obtain
these characteristics, it is sufficient to select the volume
of interest to us and take into account a various energy
character of the foreign source qo that transfers energy
to the electromagnetic field, and the induced currents q;,
i =1,2,...,N that function as drains.

After this, we will consider only the volumes that fully
enclose the respective local sources qj, so that the following
magnitudes used below wheni, j =0,1,...,N

W.j:/wijdr (22)

are the full powers that correspond to wjj and are related
to full absorption or radiation of the source q;.

4. Energy balance and the optical
theorem for the system of the
scatterers

4.1. Foreign current and the Purcell factor

First we consider the arbitrary volume Vy that fully
encloses Vy (i.e. the external current qg), but does not affect
the volumes of the scattering particles (the induced currents
qi, i =1,2,...,N (Fig. 2)). According to (14), for this

Figure 2. Seclection of the volumes that enclose the scatterer q;
and the source Qp.

volume, all the values of the local wij and, consequently,
full Wi; powers vanish when j # 0 Taking it into account,
the expression for the full power (20) transits into

Wemo = Wi = Woo + Wint 0, (23)

where the sum of the interference summands is
N
Wiyt0 = ZWuo- (24)
i=1

With this selection of the volume, the magnitude Wemo
has a meaning of the full source radiation power that is a
sum of a power of radiation in the free volume Wy > 0
and (generally, sign-variable) a power Wiy o that describes
the effect of all the scatterers on the power of radiation
of the pre-defined current qo, ie. the Purcell effect. For
the single scatterer (ie. when N = 1), this relationship was
considered in detail [13]. The magnitude p = Wiy 0/Woo is
called a factor of amplification. In accordance with (24),
each of the scatterers makes its own contribution to this
factor (naturally, these factors are not independent due to
mutual influence of the fields scattered by the particles).

In accordance with (12), each summand in (24) creates
the flow Xjp = Sjo + Si, so that the emission flow (21)
takes the following form

N
Semo = St = S0 + Y _ (S0 + Soi). (25)

i=1

This expression determines the energy flow that outgoes
from the source q, outwardly through the surface of the
considered volume and is equal to the emission power (23).

We note that in our formulation we consider the external
current that does not depend on the scatterers, which is a
standard technique in classic electrodynamics [17]. More
complex processes related to a quantum nature of the
emitter can be described in a quasi-classical approximation
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when taking into account a possible effect of the scattered
fields on the foreign source Qo (see, for example, the
study [19], which considers a simple model of classic
description of the dependence of fluorescence of an excited
molecule on plasmon resonance of a metal nanoparticle
nearby). This problem formulation can be easily included
into the considered diagram, but it is outside the scope of
the present study.

4.2. Single scatterer and the optical theorem

The similar relationships are obtained when considering
any of the scatterers q; instead of qo and taking into account
their absorbing nature. Selection of the volume V" that
has only one of the scatterer q; (Fig. 3,a) corresponds to
vanishing of all the powers W,j with j # 1, so that instead
of (24) we obtain the relationship

W = Wiy + Z'Wi, (26)

where the sum with the prime is taken when i # 1, ie.
wheni =0,2,3,...,N.

Since the positive value of the power W; by definition
corresponds to predominance of the flow that outgoes
outwardly from the considered volume, here W provides
the full power Wyps; taken with a minus sign and absorbed
by the scatterer Wit = Wi = —Whaps1.  Similarly, the sum
of (26) provides the extinction power W,y 1 that is taken
with the minus sign and corresponds to the interference
flow directed inward the considered flow:

N
Wxt,1 = — ZWH = W1 — ZWH- (27)
i#1 i—2

In (26), the magnitude W;; > 0 gives the full power of
scattering, ie. the full flow outgoing through the surface of
the volume V/*, which encloses the first scatterer, but does
not affect other scatterers and the source y. The part of this
power is spent for excitation of currents induced in adjacent
scatterers and contributes to variation of the emitter power

Wi War Wao Wi

Figure 3. Diagrams of distribution of radiation from the average
powers for the volumes V;* and V5 that enclose one scatterer (a)
and two scatterers (b).

18* Technical Physics, 2025, Vol. 70, No. 8

Oo, i.e. the Purcell effect.
radiation losses.

As follows from determination of the powers wij (14),
the right-hand part of (27) is matched with the local power

N
Wext,1 = — (wm + an) =
i=2

The rest part corresponds to

- (1/2)RGKEO n zN:Ei)qi‘/(iwuo)] s)

i=2

Whence, it is clear that the extinction power W |
describes a full work of the induced-in-particle current q,
which is done to the field that is external to the particle, i.e.
the field of the incident wave and the waves scattered by all
other particles (Fig. 3, a):

N N
Ewi=» E=E+)» E. (29)
i1 i=2

As a result, (26) takes the form of the common optical
theorem for the single scatterer, which says that the

extinction power is a sum of the power of scattering
Wsc,1 = W1 and absorption:

Wext,l = Wsc,l + Wabsl- (30)

The powers in the right-hand part here are nonnegative,
so that the following inequalities are fulfilled

Wsc,l Z 0, Wabs,l Z 0, Wext,l Z 0, (31)

while a part of them is used when obtaining the fundamental
boundaries [6-8], which were discussed above in Introduc-
tion. The optical system (30) is matched with the condition
of the flow balance

Sext1 = — Y (St + Si) = Si1 + Sabst- (32)
i1

where the particle-absorbed flow

Sabst = — (S + Sur). (33)

4.3. Optical theorem for the group of the
scatterers

Obtaining the optical theorem for the arbitrary volume
V; that encloses only the two scattering particles ¢; and 0
(Fig. 3,b) is formally equivalent to termwise summation of
the optical theorems (30) written for each of them:

N N
Were,1 +Wex,2 = —Wor —Wop — > Wi — > W
A 2
= Wiy + Wap + Wapsy + Wapsi- (34)
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However, in order to transit to the common form of the
optical theorem, which interprets a content of the considered
volume Vy, as one combined scatterer, it is necessary to
regroup the summands included herein, by distinguishing
an action of the scatterers that are external in relation to V,
. As a result, (34) will be written as

Wext, 1,2 = Wac, 1,2 + Whabs, 1,2, (35)
where
N N
Wext,1,2 = — Z W — Z Wiz (36)
% %

— the extinction power related to the action of all
the sources that are external in relation to ¢; and Qp
(including qp),
Wsc,1,2: Z Vvlj (37)
i,j=1.2

— the scattering power on the two scatterers that interact
through the scattered fields, while

Wabs,l,z - Wabsz + Wabsl (38)

— the power of absorption by the two particles.

At the same time, the extinction power (36) is not
reduced to the sum of the similar magnitudes (27) for each
of the scatterers separately Wexe 1.2 7 Wext.1 + Wext.2, since a
part of this sum now functions as the interference part of
scattering on the two particles. All the powers included in
the optical theorem (35) are nonnegative:

Wse,1,2 > 0, Waps 1,2 > 0, Wexe1,2 > 0. (39)

A pattern of conversion of the source energy for the two
selected scatterers is illustrated in Fig. 3, b.

For the full cluster that encloses all the particles, only
the field of the source Uy is external in relation to it. Here,
now the extinction power transits into a simple sum of the
extinction powers for separate particles:

N
Wext1,2,...N = — ZWOi, (40)
i1

while the optical theorem takes a conventional form

Wext1,2,...N = Wse1,2,....N + Wabs1,2,...N» (41)

Il
—_
Il
—_

4.4. Scatterer and the source

The obtained relationships can be easily extended to the
volume that encloses an arbitrary group of the scatterers by
including the foreign source qo into it as well. Thus, for

the volume Vj; that encloses only the source qo and the
scatterer q; (Fig. 2), in (20) nonzero are the powers W
and W that correspond to these sources. As a result, (20)
takes the form of the expression for the emission power that
outgoes from the considered pair

N N
Wemo, 1 EWt:Woo+ZWo +W11+ZW11- (43)
i£0 i1

Taking into account (23) and the optical theorem (30),
this relationship can be also written as

Wem(),l = Wem() - Wabsl- (44)

This relationship expresses the law of conservation of
energy for the pair q, and q;: the power that creates the
emission flow from the considered volume is a difference of
the power Wemp of the emitter qo (expressed with taking into
account the Purcell effect) and the power Waps; absorbed by
the considered scatterer q;. Since the absorbed power can
not exceed the emitted one, the inequality follows from (44)

Worng.1 > 0. (45)

Similarly, it is possible to consider the flows that
correspond to the arbitrary groups of the scatterers that
interact through the scattered fields. At the same time,
inclusion of the new scattering particles into the considered
volume results in supplementing the right-hand side of (44)
with the powers W,psi that describe absorption in each of
them. In particular, for the volume that encloses the entire
considered system, the full emission power is

N

Wermo,1,2,...N = Wemo — Zwabsi- (46)
i-1

This power describes radiation into external space, i.e.
radiation losses of the entire system as a whole. By taking
into account the above-given relationships, it is easy to write
also an explicit form of the power flow that corresponds
to (44).

5. Partial powers and the operator of
free propagation

Let us consider a relation of the above-obtained functions
of the sources (powers) W with the currents q; that create
the incident fields and the scattered fields. In accordance
with (5), each of the scattered fields Ei, i =1,2,...,N
will be written as follows

Ei = Goq;, (47)
where
Go = (Lo) ' =V x V x (—k¥29)!

=—-(1+VV/k)A+K)! (48)
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— the operator of free propagation, whose explicit form is
known [1,2], is not written out here, too. Let us determine
the scalar product for vectors of field strengths E; a

EE = /E}‘(r)Ei (r)dr, (49)

where the integral is taken across the entire space. This
unitary scalar product specifies a metric in the space of
the three-component vectors E(r ), which can be considered
as the field u=u(a,r) that depends on the complex
argument (@, r). Then, the operator Gy is matched with
the kernel Gy (a, r; @, rp) that includes tensor arguments
(a, ap), wherein the action Gy includes integration by r
and summation over the discrete argument ay.

As it is a linear operator in the unitary space, Go is
expressed as a sum the Hermitian Gl and the anti-Hermitian
i G2 parts!, Gy =Gl +iGg, where G} = (Gy+ G(];)/2,
while G§ = (Go — Gg) /21, wherein the symbol ,,i* desig-
nates the Hermitian conjugation (see, for example, [20]). In
these notation, taking into account (14), the expression for
the energy power Wi; (17) provides

Wi = /wiidr: (I/Za),uo)lm/qi*Goqidr

= (1/2wu0)q{ Gigi, (50)

which is, in accuracy of an multiplier, a diagonal matrix
element of the anti-Hermitian part of the operator of free
propagation G§, which corresponds to the source q; Thus,
the energy powers W depend only on the anti-Hermitian
part G of the operator of free propagation Gy and do not
depend on its Hermitian part. This property is retained for a
symmetrized sum W ; +W;; with i # j, which occurs when
considering interaction of the pair of the sources q; and q;
using the basic relationship (12). Generally, when using
the off-diagonal magnitudes W,; with i # j , the extinction
sources in them are presented by the full Green’s operator
Go, rather than its anti-Hermitian part, so that

W = (1/20u0)Im q] Goq;. (51)

Unlike the kernel Gy, the matrix kernel G§(r, ro) of the
operator G§ has not specific features in zero, ie. when
r =1y, wherein G§(ro, ro) = 1ko/(6sr), where 1 is a unity
matrix [21]. Thus, it is possible to avoid regularization
for calculating the powers in case of point scatterers [21]
in contrast to describing the field that uses the full wave
operator G.

The operator G§ is nonnegative, i.e. all its diagonal matrix
elements are nonnegative [20], qTGSq > 0. This condition
follows from physical considerations, reflects (nonnegative)

1 The literature has not commonly-accepted designations for selecting
the Hermitian and the anti-Hermitian components of the operator A (see
discussion of the terminology in Appendix F in the paper [23]). In our
notation, the anti-Hermitian part A® is an Hermitian operator (like the
imaginary part Imz of the complex number z is a real number).
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radiation losses in the system and provides non-negativity
of all the energy powers Wi (unlike the sign-variable
interference powers Wij, i # j). Thus, if considering
a single dipole with the dipole moment p as a pre-
defined source, by assuming that qyp = w?uops(r), then the
power (50) takes a conventional form of the radiation power
of the point dipole with the pre-defined dipole moment p,
Woo = (w*uo|p|?/127C) (this expression is usually derived
by integration of the power flow over the infinite-radius
sphere that encloses the scatterer).

Conclusion

The study has considered local and integral conditions of
the energy balance for the arbitrary system of the scatterers
that interact with each other through the scattered fields.
Description of the partial components of the energy flows
that are preserved in the process of propagation between the
scatterers essentially uses the ,,duality lemma“ (12) which
is obtained in the study to determine a relation of the time-
average flows with the sources with taking into account
interference of the scattered fields. It included consideration
of the forms of the optical theorem for the clusters included
in the considered system of the scatterers. It is shown, in
particular, that the flow of extinction and scattering for the
cluster depends on selection of the particles included in it
and unlike the absorbed flow, it is not reduced to a simple
sum of the similar extinction flows for its components.

The obtained clear picture of the energy balance is meant
to improve understanding of the energy exchange processes
during coherent scattering on the system of scattering
particles, thereby making it possible to consider the energy
exchange between the system clusters in contrast to the
traditional approach that describes the energy balance for
the system as a whole. The approach that uses the local
conditions (12) can be also extended to other problems
of the scattering theory, which are related to the more
complex geometries of a problem. It is also applicable
for the widespread model of the point scatterers and
sources [21,23], when instead of continuous distributions of
permittivity and the currents, the respective delta functions
are used.

We note that the problem formulation that describes one
monochromatic component of the field corresponds to a
steady-state and does not use division of the currents into
a ,cause“ (the field sources qp) and ,consequences” (the
induced sources q;), so that the above-described diagram
features the currents qo and q; quite symmetrically (if only
neglecting signs of the full flows of the energies outgoing
from them). We also note that many studies in the literature
have considered the similar relationships, but non-identical
to (12) (thus, for example, when considering the case of
the single scatterer, a similar conclusion was given in the
study [13] as applicable to a specific choice of the fields of
the incident and scattered waves as E; and E,; and in the
article [24] when constructing the optical theorem in the
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time domain). However, the authors believe that it is use of
the simple relationship (12) that makes it possible to obtain
the most concise description of the considered problem.
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Appendix
,sDuality lemma“ for the cross flows

When discussing the reciprocity conditions for the Maxwell
equations in electrodynamic as well as in various applica-
tions, widely used is a classic Lorentz lemma that relates
the values of the fields that are created in a fixed medium
by two different external currents j; and j, [17]:

V(El x Hy — Ey x Hl) = (—E1j2 +E2j1)/(ia)y0). (Al)

When there is anisotropy, this relationship is fulfilled only
for reciprocal media, for which the tensors of permittivity
and permeability satisfy certain symmetry conditions, and it
is violated, for example, in case of gyrotropy (nonreciprocal
media are described in detail in the recent review [22]).
Let us consider a derivation of the similar condition that is
associated with the time-average values of the energy flows.

As in derivation of the Lorentz lemma, we will consider
the Maxwell equations (2) and (3) for the two fields that are
created by the two different pre-defined external currents j;
and j,. We write these equations as follows

V x Eq = (iopg)Hy, (A2)

V x Hy = (da + K5Eq)/ (i0po), (A3)

where a =1,2, while the sources q; and q will
be regarded by us as arbitrary ones (for the full E;
field qq = iouojo(r) + K3(e(r) — 1)E,, the incident wave
Ey corresponds to the case when e(r) =1, while the
partial scattered waves correspond to the case when
Oo = (& (r) — 1)04(r)E;, where finding of the field E;
requires the full solution of the scattering problem).

Let us consider the expression V(E; x H5 + E; x HY).
Using the vector relationship V(A xB)=
BV x A — AV x B and taking into account (A2) and (A3),
we have

V(El X H; + E, X HT) :H;V x Eq

—E/V x H; +HTV X Ey —EV x HT
(A4)
Let us express rotors included in the right-hand side of
this expression according to (A2) and (A3):

V(El X H; + E; x HT) = (iwyo)(H§H1 —i—HTHz)
+ (K5/ (iwuo)) (E1E3 + E2E}) — (Eiq3 + Eaq})/ (ioopo).

By taking now the real part from both the parts of this
equation, we obtain the relationship, which is equivalent

Technical Physics, 2025, Vol. 70, No. 8



Energy balance in the coherent scattering of radiation by a system of many particles 1399

to (12):

VRe(E; x H; + E; x HY) = Re[(E1q; + Eaq))/(iwpo)],
(AS)
which we will call the ,,duality lemma* for the cross flows.
Unlike the Lorentz lemma (Al), instead of the external
currents j, the right-hand side (A5) has the full currents q,
that take into account dissipation inside the medium (when
permittivity has an imaginary part). Another difference from
the Lorentz lemma related to reciprocity of the fields is
that the condition (A5) that generalizes the condition of
preservation of the average flows (15) is fulfilled in the case
of nonreciprocal media, too.
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