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Introduction

Research of the electronic spectra of the periodic struc-
tures is of undoubted interest, since various types of
superlattices (SL) are widely applied in modern micro-
, nano- and opto-electronics [1-15]. The classic article
by R. de Kronig and W. Penney [16] was the first to
solve a quantum-mechanical problem of finding an electron
spectrum in the field of a periodic potential of the
crystal lattice and to obtain an analytical expression for
the dispersion equation, whose solutions determine the
spectrum of electrons. The solution of this equation shows
that the energy electron spectrum originates band gaps, i.e.
intervals of the energy values, which can not belong to free
electrons. In other words, the electron spectrum of the
superlattice is characterized by a band structure [16], while
a corresponding model that is used in theoretical study
of such problems in the solid state physics is called the
Kronig—Penney model (KPM) [17,18]. In spite the fact
that the article [16] was published in the early 30s of the
twentieth century, the model proposed therein has been
successfully used for calculating various one-dimensional
periodic structures up to now [19-22].

Almost all the publications dedicated to KPM application
investigate two-component superlattices, whose elementary
cell (EC) is formed by one potential barrier (PB) and one
potential well (PW).

But, it has been already noted in the paper [23] that it was
promising to study complex multi-component structures that
are called polytype superlattices, which are characterized
by more diverse physical properties. An example of these
structures is, for instance, biperiodic superlattices [24—
27]. One should mention papers, which have obtained

general formulas for finding the superlattice spectra, whose
elementary cell contain N layers [28-30] (see also the review
article [31]). The articles [28,31] investigate, as an example,
the superlattices with four elements in the elementary
cell, namely, with two potential wells and two potential
barriers. They have numerically analyzed dependences of
the electron energy on widths of the wells and the barriers
in the studied structures. However, these publications failed
to take into account influence of the barrier height on the
electron spectra in the superlattice. It should be expected
that the difference in the potential barriers heights, along
with the widths of the wells and the barriers will also be
essentially important for forming the electron spectra of the
superlattices. For example, in the paper [32] the transfer
matrix method was used to obtain a dispersion equation for
the biperiodic superlattice that is obtained by introducing
an additional barrier of another height into the potential
well. As shown in this article [32], this complication of
the superlattice elementary cell makes it possible to control
characteristics of minibands.

These studies are necessary for searching new structures
that can be applied as an elementary base of next-generation
nanoelectronics devices. Recent years’ achievements in
obtaining new functional media with pre-programmable
properties allow creating complex heterostructures that
consists of alternating layers of different materials. These
structures can be modelled by generalizing the KPM that is
developed for the binary superlattices [16] to the superlat-
tices with a large number of elements in the elementary
cell, which, for example, contain several potential wells
and potential barriers. It will allow increasing a number of
independent parameters for predicting new specific features
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Figure 1. Potential profile of the superlattice with a elementary cell that consists of the two potential wells and the two potential barriers,

where j is a number of the elementary cell.

in the electron properties of these heterostructures with pre-
defined widths of minibands and minislots.

The goal of the present study is to investigate the
dependence of the electron spectra in the superlattice with
the four elements (the two potential wells and the two
potential barriers) within the elementary cell on variation
of not only the widths of the wells and the barriers, but on
the heights of the barriers as well. As far as we know, no
such investigations have been carried out before.

The paper is organized as follows. In the first section,
we analitically obtained the dispersion equation for the
one-dimensional superlattice with the four-component EC
which in the limiting case coincides with the corresponding
dispersion equation for the standard KPM for binary SL. In
the second section, we presented the results of numerical
simulations and graphical interpretation of dispersion equa-
tion obtained in section one for the complex SL with four-
component EC GaAs/Aly.5Gay.5As/GaAs/AlyGa;_xAs for
different concentration x of Al In Conclusion, we
summarized the obtained results.

1. Dispersion equation: analytical
solution

The most common approach for determining the elec-
tronic states in lamellar semiconductor structures is an
envelope wave function approximation (an effective mass
approximation) [33,34]. The main advantage of this method
is relative simpleness of computing both volume and surface
electron states when using experimental data for structure
component parameters. Besides, for the periodic structures
with multi-component elementary cells a scope of the
numerical calculations is quite small and results in adequate
results.

Let us consider the one-dimensional endless superlattice
shown in Fig. 1. It consists of elementary cells, wherein each
of them contains four layers with respective thicknesses,
potential barriers and effective masses. In the layers A
and A; of the thicknesses S; and S;, the potentials

Va =V, =0, and the effective electron mass is m;. In the
layers B and C of the thicknesses t; and t,, the potentials
Vg and Ve = Vg + A, and the effective electron masses are
equal to mg and Mg, respectively. We will assume for the
sake of certainty that Vg < Vc. A period of each elementary
cellis A =51 +5S; +1; + 15

The stationary states of electrons in the superlattice
are determined from solutions of the one-dimensional
Schrodinger equation [17] for each element in the elemen-
tary cell.

K2 dzlﬁi (X)
2my dx?
where E, 1i(X) — the energy and the wave function in

each i-th layer of the elementary cell (i = A, B, A;,C),
respectively [17]. The potential V (x) is as follows

V(x) = Z\A(x),

+Vi(x)¥i (x) = Ei(x), (1)

(2)

wherein one sums across all the elementary cells of the
superlattice, while the potential Vj(X) in each elementary
cell can be presented as
0, Aj<x<Aj+si,
Vs,
0, Aj+s1+t <X<Aj+s;+t+ 9,
Ve, A(j+1) -t <x<A(j+1).

Aj+s; <X <Aj+s;+1y,
Vi(x) =

(3)

The solution of the Schrodinger equation (1) at the

section X € [Aj, A(j + 1)] is described by the Bloch func-
tion [17,18]:

(X +A) = exp(iKA)p(x), (4)

where K — the Bloch wave number in the superlattice.
The dispersion equation for finding the spectrum of the

electronic states in the considered structure is obtained

in a standard way from solving the equation (1) with
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the potential (2), (3)by generalizing the KPM for the
four-component elementary cell using Bastard boundary
conditions [12] (see Appendix).

For the superlattice with the four layers in the period,
with the energies from the interval E € (0, V), the disper-
sion equation has the following form:

cos KA = chygty chycty cos pa(s) + S2)

V8S — VA v& — vk
+ | =—=shygt; chycty + —=—=chypt; sh Vctz)
( 2yxve 2yve

sh VBtl sh Vctz

X sin pa(S1+S2)+
4VA Yere

{~082r0E-2)

x cosya(s1+2) + (AT +78D) (2478 cos palsi—s2) |
(5)
where
ya=h"'"\/2mE, y =h'\/2m (Vi — E)
(I = B, C) — the wave numbers in the elementary cells and
the barriers, respectively, whereas y;" = yi/my, i = A, B, C.
If the electron energy is within the interval E € (Va, V),
then pg is an imaginary quantity:

ye =ih~'\/2mg(E —Vg) = ifs,

and the equation (5) takes the following form
cos KA = cos gt chycts cos pa(s) + S2)

( —H/A sin Bty chyctz—ygy ;/A
AYc

cos Bgt; sh yct2>
2yABg

Vc)

. i ty shyct

Aya7Bave

x cos ya(S1+82) — (vA?—B5") (7A>+7¢?) cos ya(s: —s2>},
(6)
For the energies from the interval E € (Vc, co0) the

parameter )¢ also becomes imaginary

ye =ih~ ' /2mE(E — Vo) =ifc,
and the dispersion law is pre-defined by the equation:

cos KA = cos Bgt; cos Bcty cosya(s) + S2)

sinﬂBtl Sinﬂctz (F r ) 1
* * Q% - t+) *
4yR*BeBe 2VA

y *2 y *2
X < A smﬂBtl COSﬁctz—FAi cos gt Slnﬂctz)
ﬁB ﬂC

X sin VA(SI +Sz),

(7)
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where

T = (A £B8%) (va° £ BE’) cos pa(si £ 52).

We note that the equations (5)—(7) are symmetrical in
relation to simultaneous replacement of all the parameter
pairs V,t and S, namely Vg < V¢, t] <1, S < Sy, It
means that selection of the elementary cell has no effect on
the form of the dispersion equations.

If the heights of the potential barriers are the same —
Vg = Vc =V, then the effective masses in them are equal:
my=mg=m" and yg=y)c=yp=h"1y2m(V-E).

Then the equation (5) is written as
cos KA = chy(t; +12) cosya(s) + S2)
(P& +v*)

_|_
2y

sin yaS; sin YaS; sh pty shyty

p*2 =y

+ " shy(t; +tp) sinya(S) + S2).
T Sh(t FR)singA(s: +5)

(8)
When E >V, for (8) we have

cos KA = cosB(t; +t2) cosya(si + S2)
(rz> —B")°
Zy;2ﬂ*2

B2 +va’ :
— ———sinf(t; +1ty)sinpa(S; +S2).
2ypB*

+ sin YaS1 sin YaS2 sinﬂtl Sinﬁtz

©)
When the thicknesses of the layers with the potential
wells are the same and the thicknesses of the layers with
the potential barriers are the same, then the elementary
cell period is A =2(s+t). Then, the considered model
is similar to the classic KPM [16], but with a double period,
and the respective dispersion equation takes the following
form

v —VA

cos KA = ch 2yt cos 2yas +
27AV"

sh2ytsin 2y, s

*2 *2\2
+ M (Ctht — 1)(1 — COSZVAS).
Y

(10)

The third summand has appeared in (10) due to the
fact that the elementary cell in the above-considered model
has the two potential barriers and the two potential wells.
It is a principal difference of the considered model from
the classic KPM. However, it is possible to transfer from
the equation (5) to the KPM equation in a limiting case:
Ve=Vc=V,t1j =t, 1, - 0,51 =3, =5/2. As a result of
this procedure we obtain

P2 = pi2
2yav”
which corresponds to the KPM dispersion equation for the

simple superlattice with the two elements in the elementary
cell with the period A = s +t.

cos KA = chytcosyas + shytsinyas, (11)
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Figure 2. Dependence of the electronic band structure on a relative difference of the heights of the potential barriers § (11) and
on the wave number K for the following parameters of the superlattice: ¢, b — sf =S5 =t =t; =9, ¢d — s] =4.5, s; =13.5
andtf =t; =9, ¢f—tf =45, t; =135ands{ =s; =9, gh—s{ =tf =4.5and s; =t; = 13.5.

It should be noted that in the case of the structure
with two-well and two-barrier bases the dispersion equa-
tions (5)—(7) coincide with a limit case that is obtained
in the paper [29]. The next section provides results
of numerical analysis of the dispersion equations for the
superlattice with the four-component elementary cell that is
formed by the two potential wells of a different width and
the two potential barriers of a different width and height.

2. Dispersion equations: numerical
solutions

As an example, we consider the four-component super-
lattice with the period of 100 A, which is formed by the
binary compound GaAs (the layers A and A;) and the
ternary alloys — Al sGagsAs (the layer B, in which the
Al concentration is fixed), and AlyGa;_xAs (the layer C),
where X determines the Al concentration. As noted in
the paper [35], the values of the potential barriers and
the effective electron masses in the layers AlxGa;_yxAs are
determined by the empirical relationships V (x) = 944x meV
and m(x) = (0.067 + 0.083x)my, where my — the mass
of a free electron. For numerical calculations, we use
parameters of the respective materials from the review [31]
and the article [35].

We investigate the dependence of the band structure of
this superlattice when varying the widths of the potential
wells and the barriers as well as the heights of the potential
barriers for various Al concentrations in the layer C.

In order to simplify a procedure finding the numerical so-
lutions it is advisable to proceed to dimensionless variables

in the equations (5)—(7)

Sf,=h"'2m\Vesio, ti, =k '\/2mVeti,

(see details in Appendix). In these units, the period of the
considered superlattice is 36.

The results of solving the dispersion
equations (A6)—(A8) are given in Fig. 2,aceg,
which show the dependence of the electron energy (in
dimensionless units) on the wave number K at various
values of the relative heights of the potential barriers
§=(Vc—Ve)Vg ' (0 <8 < 0.8) for the following cases:

a — the widths of the wells and the barriers are equal to
each other (sf =s; =t =t =9);

¢ — the widths of the barriers are equal to each
other, while the widths of the wells are different (s} = 4.5
and s; = 13.5);

¢ — the widths of the wells are equal to each other,
while the widths of the barriers are different (tf =4.5
and t; = 13.5);

g — the widths of the wells and the barriers are different
(sf =4.5,85 =13.5and tf =4.5,t; = 13.5).

(Compliance of the dimensionless lattice parameters with
real dimensions: 4.5 — 12.5A, 9 — 25A, 13.5 — 37.5A).

It is clear from Fig. 2,4, c, e, g that at certain values of K
the energy electron spectrum exhibits slots, ie. band gaps.
It follows from the results of numerical analysis that when
the widths of the wells and the barriers are equal (Fig. 2,a),
the energy interval originates six minibands. When the wells
and the barriers have a different width (Fig. 2,¢, ¢, g), then
the number of the allowed bands is reduced to five.

The dependence of the band structure on the relative
difference of the heights of the potential barriers & for

Technical Physics, 2025, Vol. 70, No. 8
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the various widths of the potential wells and the barriers
is shown in Fig. 2,b,d f h. It is clear that with increase
of § there is narrowing of the allowed bands in the energy
electron spectrum. This corresponds to the fact that electron
tunneling in this structure will be observed in a narrower
energy interval. We also note that the increase of the
difference of the heights of the potential barriers results in
origination of new allowed minibands with higher energies.
It contributes to additional tunneling through the potential
barrier in the structure under study.

When the widths of the wells and the barriers are equal
to each other, there is observed merging of the adjacent
minibands (1 and 2, 3 and 4, 5 and 6) at the equal heights
of the barriers (6 = 0) and of the fifth and the sixth bands at
the relative difference of the heights of the barriers § = 0.8
(Fig. 2,b). Besides, merging of the fourth and fifth bands
when § =0 is observed for the same widths of either the
wells or the barriers. We note that the similar result was
obtained in the papers [31,35] for the two-well and two-
barrier bases (with the potential barriers of the equal height)
in the four-component superlattice. When the widths of the
potential wells and the barriers are different (Fig. 2,4), at
any ¢ there are observed wide band gaps that do not merge.

Conclusion

In this paper, we theoretically investigated the elec-
tronic spectra of the four-component SLs. The dispersion
equations for this structure are obtained in general form.
These equations were solved numerically and graphically
analyzed for the SL with complex EC composed of
binary and ternary semiconductor compounds, namely,
GaAs/Aly sGag sAs/GaAs/AlyGa;_xAs. The principal re-
sults of this paper are presented below:

o The greatest number of the minibands will appear when
the widths of the potential wells and the potential barriers
are equal (Fig. 2, a,b).

e When the potential wells and the barriers are different,
the widths of the band gaps increase, whereas the widths of
the minibands decrease (Fig. 2,%).

e With increase of the difference of the heights of the
potential barriers, the widths of the minibands decreases,
while the widths of the band gaps increase.

e At certain values of the relative widths of the potential
barriers the adjacent minibands can adjoin (Fig. 2,5, d, f).

It should be noted that the above-listed results were
obtained for the relative widths of the potential wells and
the barriers and the relative heights of the potential barriers.
It allowed present the calculation results in the general form.
Using data for specific compounds [36], it would be possible
to predict and model the electronic properties of the pre-
defined heterostructures based on semiconductor materials
with the various values of the potential barriers.
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Appendix

We consider an energy range from the interval
E € (0,Vs). For each layer in the elementary cell, within
the section X € [Aj, A(j + 1)] the general solution of the
equation (1) is written as

Ya(X) = arjcosya(X — Aj) + agjsinpa(x — Aj),
X € [Aj, Aj +si1],
¥(X) = byjchyg(X — Aj) + byj shys(x — Aj),
X € [A] +s1,Aj +s+1],

¥a, (X) = anrjcosya(x — Aj) + ap;jsinya(X — Aj),
X e [Aj+s1+t, Aj 51+ +11],
c(x) = cijchyc (X—=A(j + 1)) +c2jshyc (x=A(j + 1)),
x € [A(J+1) —t, A(J + )] (A1)

The arbitrary constants aij, a»j, bij, baj, ai1j, anj, Cij,
Czj can be found from boundary conditions at respective
interfaces. We will use the Bastard conditions as these
boundary conditions [12]:

e (A(j +1)) = exp(iKA)pa(A]),
j+1

e e (A + 1)) = exp(iKA)M™ YA(A]),
Ya(A] +s1) = Ps(A] + 1),
M~ WA(A] +s1) = Mg Yg(A] +s1),
YB(A] +51+t) =¥a(A] +51+1),
My ' WE(A] +S1+t) =My 'Ya (A] + 51 +1),
Ya (A] +514+52+t) =vc(A(j + 1) —ta),
My ' Pa (A] +s1+S+t) =g WL (A + 1) —t).
(A2)
By substituting the functions from (A1) into the boundary
conditions (A2), we obtain a system of linear algebraic
equations for determining the constants a;, bj, cj, dj, f,
gj, m;, rj. In particular, it follows from (A2) that

Ca2j = (va/vc) exp(iKA)azj. (A3)

and these relationships make it possible to decrease the
number of the equations for determining the constants
aj, bj, Cj, dj, fj, gj, mj, rj. As a result of simple
transformations we obtain a homogeneous system of six
linear algebraic equations:

cij = exp(iKA)ayj,

a1j oS YaS; +ayj sin yaS; —byj chygs; —byj shygs; = 0,

— aljy,f{ sin YaS1 + azjy; COS YAS1
—byjyg shyss) — byjyg chyss; =0,

—ayjexp(iKA) chycty + azj exp(iKA) (ya/vE) shycts
+ai1j cos Pa(S1+S2+11) + argj sinya(si+S2+t1) =0,

aijye shycty — azjya chycty —ajijya exp(iKA) sinya
X (sl+52+t1)+a12,-y,§ exp(—i KA) coS VA(SI +32+t1)=0,

bij chyg(si +t1) + byj shyg(si +t1)
+ aij COS]/A(Sl + tl) — apj sinyA(51 —|—t1) =0,

bijyg shys(si +t1) + byjyg chys(si + 1)
+ aujyX sinyA(Sl + tl) — alzjy;_{ COSyA(Sl + tl) =0,
(A4)
wherein this system of equations has nontrivial solutions, if
a determinant of a matrix of its coefficients is zero. This
determinant can be presented as a sum

5
A:ZAi,
i=1
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where each of the summands A; is determined by the
following expressions:

Ay = —(p*/vE) shygty shycty sin pas) sin yass,

Ay = (&7 /78)(vE shysti chycty + 5 chysty shycts)
X (sinyaS| COS YaSy + COS PaS] Sin yaS2),

Ay = 2p37pg cosKA — (ya%/v8) ((va® + »&) shystishycty

X €COS YaS1 €Os YaSy + 2p5vE chygt chycts

X (COS PaS] COS YaSy — Sin paS) sin yAsz)),

A4 = —yavs(ys shysti chycty + ¢ chysti shyctz)

X (sin paS1 €OS PaS2 + COS YaS1 + COS PaS1 Sin YPaS)),
As = —pg’pé shypty shycts sin yas; sin yass. (AS)

The solution of the equation A =0 determines the
electronic spectrum for the energies from the interval
E € (0, V).

It is convenient to proceed to dimensionless variables
in the equations (5)—(7) for numerical solutions. Let
Ve =V +A, E/Vg=¢, §=A/Vg, M} =amy, My the
mass of the free electron, then for the parameters included
in (5)—(7) we obtain:

yi=h"'V2mVeyaje,  yi=(hmo)”'\/2meVe /) /),
ST,Z = ﬁilx/ 2ITbVBSL2, tik,2 = hilx/ ZHbVBtl,z,

where
€, j=A
gg=4(l—¢), j =B,
(1+46—¢), j=C.

After simple transformations the equations (5)—(7) in
these variables will take the following form:
I. For € € (0, 1):

cos KA = ch \/agegt] ch\/acect; cos v/aae(s] +S5)

1 ap — (aA + aB)s
sh \/agegt] ch /acects
+ 2\/aAe< N 8B cech
aA(1+8) — (aA—i—aB)e " "
+ ch \/agegt] sh\/acect
dcte 1 2
. N . sh /agegty sh /acects
x sin \/aag(S +S5) — hane ClIBOZCSBc‘?c 2

X {(aA — (aa+a)e) (aa(l +68) — (aa + ac)e)
x €08 \/aae (S} +85) — (aa — (aa — ag)e)

x (@a(1 + 8) — (aa — ac)e) cos \/ane(s) — s}‘)}
(A6)
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IL For e € (1, 1+ 6):

cos KA = cos v/ —apegt] ch/acect; cos /aae(s] +S3)

N 1 ap — (ap + ag)e
2 /apne \/—aBep
N aa(l+68) — (ap +ac)e

\/acéc

sin \V —aBeBtf ch \/acsct;

cos y/—agept] sh ,/acect§‘>

sin y/—agéegt] shy/acect;

4aAs\/ —AaBacéBEC

X {(((XA + ag)e — aa) (@a(l +8) — (aa + ac)e)

X sin\/aag(S] +S3) +

X €08 \/aaE (S +83) + (aa + (a8 — aa)e)
x (aa+ (a — an)e) (aa(l +8) — (aa — ac)e)
X c0S \/AAE (ST — s;)}.

(A7)
IIL For € € (1 4+ 6, 00):

cos KA=cos \/—agept] cos /—acect; cos /ane(S]+S5)

1 (aA—i—aB)s—aA .
- sin /—agept] cos v/ —acects
2\/ane ( \/—agep BB cech

(a/.\ + ac)s — aA(l + 5)

v/ —Qacéc

cos v/ —apept] sin /acscts‘)

sin \/—agept] sin\/—acect;
4aA£, /ABOCEBEC

x siny/aae(St +S5) +

X {(aA — (aa + ap)e) ((aa + ac)e — aa(1+6))
X €08 /aaE(S] +85) + (aa + (a8 — aa)e)

x (aa(1+8) + (ac — aa)e) cos \/ane(S] —S3) ¢-
(A8)
Similarly, for the superlattices with the equally-high
barriers, by taking into account the relationships € = E/V,
m* = amy, mi = aamy, for the energies ¢ € (0, 1) the
equations (8), (9) will take the following form:

cos KA = chv/a(l — &)(t] +13) cos/aae(s] +S3)

(aa+ (@ — an)e)
2apae(l —¢)

2
shtf/a(1 —¢)sht;\/a(l —e)

(O!A — (Ol + O!A)é‘)
2/apae(l —¢)

X sin S7\/aa€ sin S;\/aae +

x sh((t] +t3)v/a(l — ¢)) sin \/ane(S] + S3).
(A9)
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for the energies ¢ € (1, co):
cos KA = cos \/a(e — 1)(t] +15) cos \/aae(s] +S3)

(aa+ (a — an)e)
2apae(e — 1)

2
sint] /a(e — 1) sintj/a(e — 1)

(aa — (a + an)e)
2+/anae(e — 1)

X sin S}+/aa€ sin S5 +/aae +

x sin((tf +t3)v/a(e — 1)) sin /aag(S} + S3).
(A10)
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