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Introduction

Research of the electronic spectra of the periodic struc-

tures is of undoubted interest, since various types of

superlattices (SL) are widely applied in modern micro-

, nano- and opto-electronics [1–15]. The classic article

by R. de Kronig and W. Penney [16] was the first to

solve a quantum-mechanical problem of finding an electron

spectrum in the field of a periodic potential of the

crystal lattice and to obtain an analytical expression for

the dispersion equation, whose solutions determine the

spectrum of electrons. The solution of this equation shows

that the energy electron spectrum originates band gaps, i.e.

intervals of the energy values, which can not belong to free

electrons. In other words, the electron spectrum of the

superlattice is characterized by a band structure [16], while

a corresponding model that is used in theoretical study

of such problems in the solid state physics is called the

Kronig−Penney model (KPM) [17,18]. In spite the fact

that the article [16] was published in the early 30s of the

twentieth century, the model proposed therein has been

successfully used for calculating various one-dimensional

periodic structures up to now [19–22].

Almost all the publications dedicated to KPM application

investigate two-component superlattices, whose elementary

cell (EC) is formed by one potential barrier (PB) and one

potential well (PW).

But, it has been already noted in the paper [23] that it was
promising to study complex multi-component structures that

are called polytype superlattices, which are characterized

by more diverse physical properties. An example of these

structures is, for instance, biperiodic superlattices [24–
27]. One should mention papers, which have obtained

general formulas for finding the superlattice spectra, whose

elementary cell contain N layers [28–30] (see also the review

article [31]). The articles [28,31] investigate, as an example,

the superlattices with four elements in the elementary

cell, namely, with two potential wells and two potential

barriers. They have numerically analyzed dependences of

the electron energy on widths of the wells and the barriers

in the studied structures. However, these publications failed

to take into account influence of the barrier height on the

electron spectra in the superlattice. It should be expected

that the difference in the potential barriers heights, along

with the widths of the wells and the barriers will also be

essentially important for forming the electron spectra of the

superlattices. For example, in the paper [32] the transfer

matrix method was used to obtain a dispersion equation for

the biperiodic superlattice that is obtained by introducing

an additional barrier of another height into the potential

well. As shown in this article [32], this complication of

the superlattice elementary cell makes it possible to control

characteristics of minibands.

These studies are necessary for searching new structures

that can be applied as an elementary base of next-generation

nanoelectronics devices. Recent years’ achievements in

obtaining new functional media with pre-programmable

properties allow creating complex heterostructures that

consists of alternating layers of different materials. These

structures can be modelled by generalizing the KPM that is

developed for the binary superlattices [16] to the superlat-

tices with a large number of elements in the elementary

cell, which, for example, contain several potential wells

and potential barriers. It will allow increasing a number of

independent parameters for predicting new specific features
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Figure 1. Potential profile of the superlattice with a elementary cell that consists of the two potential wells and the two potential barriers,

where j is a number of the elementary cell.

in the electron properties of these heterostructures with pre-

defined widths of minibands and minislots.

The goal of the present study is to investigate the

dependence of the electron spectra in the superlattice with

the four elements (the two potential wells and the two

potential barriers) within the elementary cell on variation

of not only the widths of the wells and the barriers, but on

the heights of the barriers as well. As far as we know, no

such investigations have been carried out before.

The paper is organized as follows. In the first section,

we analitically obtained the dispersion equation for the

one-dimensional superlattice with the four-component EC

which in the limiting case coincides with the corresponding

dispersion equation for the standard KPM for binary SL. In

the second section, we presented the results of numerical

simulations and graphical interpretation of dispersion equa-

tion obtained in section one for the complex SL with four-

component EC GaAs/Al0.5Ga0.5As/GaAs/AlxGa1−xAs for

different concentration x of Al. In Conclusion, we

summarized the obtained results.

1. Dispersion equation: analytical
solution

The most common approach for determining the elec-

tronic states in lamellar semiconductor structures is an

envelope wave function approximation (an effective mass

approximation) [33,34]. The main advantage of this method

is relative simpleness of computing both volume and surface

electron states when using experimental data for structure

component parameters. Besides, for the periodic structures

with multi-component elementary cells a scope of the

numerical calculations is quite small and results in adequate

results.

Let us consider the one-dimensional endless superlattice

shown in Fig. 1. It consists of elementary cells, wherein each

of them contains four layers with respective thicknesses,

potential barriers and effective masses. In the layers A
and A1 of the thicknesses s1 and s2, the potentials

VA = VA1
= 0, and the effective electron mass is m∗

A. In the

layers B and C of the thicknesses t1 and t2, the potentials

VB and VC = VB + 1, and the effective electron masses are

equal to m∗
B and m∗

C , respectively. We will assume for the

sake of certainty that VB < VC . A period of each elementary

cell is 3 = s1 + s2 + t1 + t2.
The stationary states of electrons in the superlattice

are determined from solutions of the one-dimensional

Schrödinger equation [17] for each element in the elemen-

tary cell.

−
~
2

2m∗
i

d2ψi(x)

dx2
+ Vi(x)ψi(x) = Eψi(x), (1)

where E , ψi(x) — the energy and the wave function in

each i-th layer of the elementary cell (i = A, B, A1,C),
respectively [17]. The potential V (x) is as follows

V (x) =
∑

i

Vi(x), (2)

wherein one sums across all the elementary cells of the

superlattice, while the potential V j(x) in each elementary

cell can be presented as

Vi(x) =



























0, 3 j < x < 3 j + s1,

VB, 3 j + s1 < x < 3 j + s1 + t1,

0, 3 j + s1 + t1 < x < 3 j + s1 + t1 + s2,

VC, 3( j + 1) − t2 < x < 3( j + 1).

(3)
The solution of the Schrödinger equation (1) at the

section x ∈ [3 j, 3( j + 1)] is described by the Bloch func-

tion [17,18]:

ψ(x + 3) = exp(iK3)ψ(x), (4)

where K — the Bloch wave number in the superlattice.

The dispersion equation for finding the spectrum of the

electronic states in the considered structure is obtained

in a standard way from solving the equation (1) with
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the potential (2), (3)by generalizing the KPM for the

four-component elementary cell using Bastard boundary

conditions [12] (see Appendix).

For the superlattice with the four layers in the period,

with the energies from the interval E ∈ (0,VB), the disper-

sion equation has the following form:

cosK3 = ch γB t1 ch γCt2 cos γA(s1 + s2)

+

(

γ∗2B − γ∗2A

2γ∗Aγ
∗
B

sh γB t1 ch γCt2 +
γ∗2C − γ∗2A

2γ∗Aγ
∗
C

ch γBt1 sh γC t2

)

× sin γA(s1+s2)+
sh γBt1 sh γC t2
4γ∗2A γ∗Bγ

∗
C

{

−(γ∗2B −γ∗2A )(γ∗2C −γ∗2A )

× cos γA(s1+s2) + (γ∗2A +γ∗2B )(γ∗2A +γ∗2C ) cos γA(s1−s2)
}

,

(5)
where

γA = ~
−1

√

2m∗
AE, γl = ~

−1
√

2m∗
l (Vl − E)

(l = B,C) — the wave numbers in the elementary cells and

the barriers, respectively, whereas γ∗i = γi/m∗
i , i = A, B,C .

If the electron energy is within the interval E ∈ (VB ,VC),
then γB is an imaginary quantity:

γB = i~−1
√

2m∗
B(E −VB) = iβB ,

and the equation (5) takes the following form

cosK3 = cos βBt1 ch γC t2 cos γA(s1 + s2)

−
(

β∗2B +γ∗2A

2γ∗Aβ
∗
B

sin βB t1 ch γC t2−
γ∗2C −γ∗2A

2γ∗Aγ
∗
C

cos βBt1 sh γC t2

)

× sin γA(s1+s2)−
sin βBt1 sh γCt2

4γ∗2A β∗Bγ
∗
C

{

(γ∗2A +β∗2B )(γ∗2A −γ∗2C )

× cos γA(s1+s2) − (γ∗2A −β∗2B )(γ∗2A +γ∗2C ) cos γA(s1−s2)
}

,

(6)
For the energies from the interval E ∈ (VC,∞) the

parameter γC also becomes imaginary

γC = i~−1
√

2m∗
C(E −VC) = iβC ,

and the dispersion law is pre-defined by the equation:

cosK3 = cos βBt1 cos βCt2 cos γA(s1 + s2)

+
sin βBt1 sin βC t2

4γ∗2A β∗Bβ
∗
C

(Ŵ− − Ŵ+) −
1

2γ∗A

×
(

γ∗2A +β∗2B

β∗B
sin βBt1 cos βCt2+

γ∗2A +β∗2C

β∗C
cos βB t1 sin βCt2

)

× sin γA(s1+s2),
(7)

where

Ŵ± = (γ∗2A ± β∗2B )(γ∗2A ± β∗2C ) cos γA(s1 ± s2).

We note that the equations (5)−(7) are symmetrical in

relation to simultaneous replacement of all the parameter

pairs V, t and s , namely VB ↔ VC , t1 ↔ t2, s1 ↔ s2 . It

means that selection of the elementary cell has no effect on

the form of the dispersion equations.

If the heights of the potential barriers are the same —
VB = VC = V , then the effective masses in them are equal:

m∗
B = m∗

C = m∗ and γB = γC = γ = ~
−1

√

2m∗(V−E).
Then the equation (5) is written as

cosK3 = ch γ(t1 + t2) cos γA(s1 + s2)

+
(γ∗2A + γ∗2)2

2γ∗2A γ∗2
sin γAs1 sin γAs2 sh γt1 sh γt2

+
γ∗2 − γ∗2A

2γ∗Aγ
∗

sh γ(t1 + t2) sin γA(s1 + s2).

(8)
When E > V , for (8) we have

cosK3 = cos β(t1 + t2) cos γA(s1 + s2)

+
(γ∗2A − β∗2)2

2γ∗2A β∗2
sin γAs1 sin γAs2 sin βt1 sin βt2

−
β∗2 + γ∗2A

2γ∗Aβ
∗

sin β(t1 + t2) sin γA(s1 + s2).

(9)
When the thicknesses of the layers with the potential

wells are the same and the thicknesses of the layers with

the potential barriers are the same, then the elementary

cell period is 3 = 2(s + t). Then, the considered model

is similar to the classic KPM [16], but with a double period,

and the respective dispersion equation takes the following

form

cosK3 = ch 2γt cos 2γAs +
γ∗2 − γ∗2A

2γ∗Aγ
∗

sh 2γt sin 2γ∗A s

+
(γ∗2A + γ∗2)2

8γ∗2A γ∗2
(ch 2γt − 1)(1− cos 2γAs).

(10)
The third summand has appeared in (10) due to the

fact that the elementary cell in the above-considered model

has the two potential barriers and the two potential wells.

It is a principal difference of the considered model from

the classic KPM. However, it is possible to transfer from

the equation (5) to the KPM equation in a limiting case:

VB = VC = V , t1 = t, t2 → 0, s1 = s2 = s/2. As a result of

this procedure we obtain

cosK3 = ch γt cos γAs +
γ∗2 − γ∗2A

2γ∗Aγ
∗

sh γt sin γAs, (11)

which corresponds to the KPM dispersion equation for the

simple superlattice with the two elements in the elementary

cell with the period 3 = s + t .
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Figure 2. Dependence of the electronic band structure on a relative difference of the heights of the potential barriers δ (11) and

on the wave number K for the following parameters of the superlattice: a, b — s∗

1 = s∗

2 = t∗1 = t∗2 = 9; c, d — s∗

1 = 4.5, s∗

2 = 13.5

and t∗1 = t∗2 = 9; e, f — t∗1 = 4.5, t∗2 = 13.5 and s∗

1 = s∗

2 = 9; g, h — s∗

1 = t∗1 = 4.5 and s∗

2 = t∗2 = 13.5.

It should be noted that in the case of the structure

with two-well and two-barrier bases the dispersion equa-

tions (5)−(7) coincide with a limit case that is obtained

in the paper [29]. The next section provides results

of numerical analysis of the dispersion equations for the

superlattice with the four-component elementary cell that is

formed by the two potential wells of a different width and

the two potential barriers of a different width and height.

2. Dispersion equations: numerical
solutions

As an example, we consider the four-component super-

lattice with the period of 100 Å, which is formed by the

binary compound GaAs (the layers A and A1) and the

ternary alloys — Al0.5Ga0.5As (the layer B , in which the

Al concentration is fixed), and AlxGa1−xAs (the layer C),
where x determines the Al concentration. As noted in

the paper [35], the values of the potential barriers and

the effective electron masses in the layers AlxGa1−xAs are

determined by the empirical relationships V (x) = 944x meV

and m(x) = (0.067 + 0.083x)m0 , where m0 — the mass

of a free electron. For numerical calculations, we use

parameters of the respective materials from the review [31]
and the article [35].

We investigate the dependence of the band structure of

this superlattice when varying the widths of the potential

wells and the barriers as well as the heights of the potential

barriers for various Al concentrations in the layer C .

In order to simplify a procedure finding the numerical so-

lutions it is advisable to proceed to dimensionless variables

in the equations (5)−(7)

s∗1,2 = ~
−1

√

2m0VBs1,2, t∗1,2 = ~
−1

√

2m0VBt1,2

(see details in Appendix). In these units, the period of the

considered superlattice is 36.

The results of solving the dispersion

equations (A6)−(A8) are given in Fig. 2, a, c, e, g,

which show the dependence of the electron energy (in
dimensionless units) on the wave number K at various

values of the relative heights of the potential barriers

δ = (VC−VB)V−1
B (0 < δ < 0.8) for the following cases:

a — the widths of the wells and the barriers are equal to

each other (s∗1 = s∗2 = t∗1 = t∗2 = 9);
c — the widths of the barriers are equal to each

other, while the widths of the wells are different (s∗1 = 4.5

and s∗2 = 13.5);
c — the widths of the wells are equal to each other,

while the widths of the barriers are different (t∗1 = 4.5

and t∗2 = 13.5);
g — the widths of the wells and the barriers are different

(s∗1 = 4.5, s∗2 = 13.5 and t∗1 = 4.5, t∗2 = 13.5).
(Compliance of the dimensionless lattice parameters with

real dimensions: 4.5 → 12.5 Å, 9 → 25 Å, 13.5 → 37.5 Å).
It is clear from Fig. 2, a, c, e, g that at certain values of K

the energy electron spectrum exhibits slots, i.e. band gaps.

It follows from the results of numerical analysis that when

the widths of the wells and the barriers are equal (Fig. 2, a),
the energy interval originates six minibands. When the wells

and the barriers have a different width (Fig. 2, c, e, g), then
the number of the allowed bands is reduced to five.

The dependence of the band structure on the relative

difference of the heights of the potential barriers δ for

Technical Physics, 2025, Vol. 70, No. 8
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the various widths of the potential wells and the barriers

is shown in Fig. 2, b, d, f, h. It is clear that with increase

of δ there is narrowing of the allowed bands in the energy

electron spectrum. This corresponds to the fact that electron

tunneling in this structure will be observed in a narrower

energy interval. We also note that the increase of the

difference of the heights of the potential barriers results in

origination of new allowed minibands with higher energies.

It contributes to additional tunneling through the potential

barrier in the structure under study.

When the widths of the wells and the barriers are equal

to each other, there is observed merging of the adjacent

minibands (1 and 2, 3 and 4, 5 and 6) at the equal heights

of the barriers (δ = 0) and of the fifth and the sixth bands at

the relative difference of the heights of the barriers δ = 0.8

(Fig. 2, b). Besides, merging of the fourth and fifth bands

when δ = 0 is observed for the same widths of either the

wells or the barriers. We note that the similar result was

obtained in the papers [31,35] for the two-well and two-

barrier bases (with the potential barriers of the equal height)
in the four-component superlattice. When the widths of the

potential wells and the barriers are different (Fig. 2, h), at
any δ there are observed wide band gaps that do not merge.

Conclusion

In this paper, we theoretically investigated the elec-

tronic spectra of the four-component SLs. The dispersion

equations for this structure are obtained in general form.

These equations were solved numerically and graphically

analyzed for the SL with complex EC composed of

binary and ternary semiconductor compounds, namely,

GaAs/Al0.5Ga0.5As/GaAs/AlxGa1−xAs. The principal re-

sults of this paper are presented below:

• The greatest number of the minibands will appear when

the widths of the potential wells and the potential barriers

are equal (Fig. 2, a, b).

• When the potential wells and the barriers are different,

the widths of the band gaps increase, whereas the widths of

the minibands decrease (Fig. 2, h).

• With increase of the difference of the heights of the

potential barriers, the widths of the minibands decreases,

while the widths of the band gaps increase.

• At certain values of the relative widths of the potential

barriers the adjacent minibands can adjoin (Fig. 2, b, d, f ).

It should be noted that the above-listed results were

obtained for the relative widths of the potential wells and

the barriers and the relative heights of the potential barriers.

It allowed present the calculation results in the general form.

Using data for specific compounds [36], it would be possible

to predict and model the electronic properties of the pre-

defined heterostructures based on semiconductor materials

with the various values of the potential barriers.
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Appendix

We consider an energy range from the interval

E ∈ (0,VB). For each layer in the elementary cell, within

the section x ∈ [3 j, 3( j + 1)] the general solution of the

equation (1) is written as

ψA(x) = a1 j cos γA(x − 3 j) + a2 j sin γA(x − 3 j),

x ∈ [3 j, 3 j + s1],

ψB(x) = b1 j ch γB(x − 3 j) + b2 j sh γB(x − 3 j),

x ∈ [3 j + s1, 3 j + s + t1],

ψA1
(x) = a11 j cos γA(x − 3 j) + a12 j sin γA(x − 3 j),

x ∈ [3 j + s1 + t1, 3 j + s1 + s2 + t1],

ψC(x) = c1 j ch γC
(

x−3( j + 1)
)

+c2 j sh γC
(

x−3( j + 1)
)

,

x ∈ [3( j + 1) − t2, 3( j + 1)]. (A1)

The arbitrary constants a1 j , a2 j , b1 j , b2 j , a11 j , a12 j , c1 j ,

c2 j can be found from boundary conditions at respective

interfaces. We will use the Bastard conditions as these

boundary conditions [12]:

ψC
(

3( j + 1)
)

= exp(iK3)ψA(3 j),

m∗−1
C ψ′

C

(

3( j + 1)
)

= exp(iK3)m∗−1
A ψ′

A(3 j),

ψA(3 j + s1) = ψB(3 j + s1),

m∗−1
A ψ′

A(3 j + s1) = m∗−1
B ψ′

B(3 j + s1),

ψB(3 j + s1 + t1) = ψA1
(3 j + s1 + t1),

m∗−1
B ψ′

B(3 j + s1 + t1) = m∗−1
A ψ′

A1
(3 j + s1 + t1),

ψA1
(3 j + s1 + s2 + t1) = ψC

(

3( j + 1) − t2
)

,

m∗−1
A ψ′

A1
(3 j + s1 + s2 + t1) = m∗−1

C ψ′

C

(

3( j + 1) − t2
)

.

(A2)
By substituting the functions from (A1) into the boundary

conditions (A2), we obtain a system of linear algebraic

equations for determining the constants a j , b j , c j , d j , f j ,

g j , m j , r j . In particular, it follows from (A2) that

c1 j = exp(iK3)a1 j, c2 j = (γ∗A/γ
∗

C) exp(iK3)a2 j . (A3)

and these relationships make it possible to decrease the

number of the equations for determining the constants

a j , b j , c j , d j , f j , g j , m j , r j . As a result of simple

transformations we obtain a homogeneous system of six

linear algebraic equations:











































































































a1 j cos γAs1+a2 j sin γAs1−b1 j ch γBs1−b2 j sh γB s1 = 0,

− a1 jγ
∗

A sin γAs1 + a2 jγ
∗

A cos γAs1
− b1 jγ

∗

B sh γBs1 − b2 jγ
∗

B ch γBs1 = 0,

− a1 j exp(iK3) ch γCt2 + a2 j exp(iK3)(γ∗A/γ
∗

C) sh γC t2
+ a11 j cos γA(s1+s2+t1) + a12 j sin γA(s1+s2+t1) = 0,

a1 jγ
∗

C sh γCt2 − a2 jγ
∗

A ch γCt2 − a11 jγ
∗

A exp(iK3) sin γA

×(s1+s2+t1)+a12 jγ
∗

A exp(−iK3) cos γA(s1+s2+t1)=0,

b1 j ch γB(s1 + t1) + b2 j sh γB(s1 + t1)

+ a11 j cos γA(s1 + t1) − a12 j sin γA(s1 + t1) = 0,

b1 jγ
∗

B sh γB(s1 + t1) + b2 jγ
∗

B ch γB(s1 + t1)

+ a11 jγ
∗

A sin γA(s1 + t1) − a12 jγ
∗

A cos γA(s1 + t1) = 0,

(A4)
wherein this system of equations has nontrivial solutions, if

a determinant of a matrix of its coefficients is zero. This

determinant can be presented as a sum

1 =
5

∑

i=1

1i,
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where each of the summands 1i is determined by the

following expressions:

11 = −(γ∗4A /γ∗C) sh γB t1 sh γCt2 sin γAs1 sin γAs2,

12 = (γ∗3A /γ∗C)(γ∗C sh γBt1 ch γC t2 + γ∗B ch γBt1 sh γCt2)

× (sin γAs1 cos γAs2 + cos γAs1 sin γAs2),

13 = 2γ∗2A γ∗B cosK3− (γ∗2A /γ∗C)
(

(γ∗2B + γ∗2C ) sh γB t1 sh γCt2

× cos γAs1 cos γAs2 + 2γ∗Bγ
∗

C ch γB t1 ch γCt2

× (cos γAs1 cos γAs2 − sin γAs1 sin γAs2)
)

,

14 = −γ∗Aγ∗B(γ∗B sh γB t1 ch γC t2 + γ∗C ch γBt1 sh γC t2)

× (sin γAs1 cos γAs2 + cos γAs1 + cos γAs1 sin γAs2),

15 = −γ∗2B γ∗C sh γB t1 sh γCt2 sin γAs1 sin γAs2. (A5)

The solution of the equation 1 = 0 determines the

electronic spectrum for the energies from the interval

E ∈ (0,VB).
It is convenient to proceed to dimensionless variables

in the equations (5)−(7) for numerical solutions. Let

VC = VB + 1, E/VB = ε, δ = 1/VB , m∗
l = αlm0, m0 the

mass of the free electron, then for the parameters included

in (5)−(7) we obtain:

γ j =~
−1

√

2m0VB
√
α jε j , γ∗j =(~m0)

−1
√

2m0VB

√

ε j/α j ,

s∗1,2 = ~
−1

√

2m0VBs1,2, t∗1,2 = ~
−1

√

2m0VBt1,2,

where

ε j =











ε, j = A,

(1− ε), j = B,

(1 + δ − ε), j = C.

After simple transformations the equations (5)−(7) in

these variables will take the following form:

I. For ε ∈ (0, 1):

cosK3 = ch
√
αBεBt∗1 ch

√
αCεC t∗2 cos

√
αAε(s

∗

1 + s∗2)

+
1

2
√
αAε

(

αA − (αA + αB)ε
√
αBεB

sh
√
αBεBt∗1 ch

√
αCεC t∗2

+
αA(1 + δ) − (αA + αB)ε

√
αCεC

ch
√
αBεBt∗1 sh

√
αCεC t∗2

)

× sin
√
αAε(s

∗

1 + s∗2) −
sh

√
αBεBt∗1 sh

√
αCεC t∗2

4αAε
√
αBαCεBεC

×
{

(

αA − (αA + αB)ε
)(

αA(1 + δ) − (αA + αC)ε
)

× cos
√
αAε(s

∗

1 + s∗2) −
(

αA − (αA − αB)ε
)

×
(

αA(1 + δ) − (αA − αC)ε
)

cos
√
αAε(s

∗

1 − s∗2)
}

.

(A6)

II. For ε ∈ (1, 1 + δ):

cosK3 = cos
√
−αBεBt∗1 ch

√
αCεC t∗2 cos

√
αAε(s

∗

1 + s∗2)

+
1

2
√
αAε

(

αA − (αA + αB)ε√
−αBεB

sin
√
−αBεB t∗1 ch

√
αCεCt∗2

+
αA(1 + δ) − (αA + αC)ε

√
αCεC

cos
√
−αBεB t∗1 sh

√
αCεC t∗2

)

× sin
√
αAε(s

∗

1 + s∗2) +
sin

√
−αBεB t∗1 sh

√
αCεC t∗2

4αAε
√
−αBαCεBεC

×
{

(

(αA + αB)ε − αA
)(

αA(1 + δ) − (αA + αC)ε
)

× cos
√
αAε(s

∗

1 + s∗2) +
(

αA + (αB − αA)ε
)

×
(

αA + (αB − αA)ε
)(

αA(1 + δ) − (αA − αC)ε
)

× cos
√
αAε(s

∗

1 − s∗2)
}

.

(A7)

III. For ε ∈ (1 + δ,∞):

cosK3=cos
√
−αBεB t∗1 cos

√
−αCεCt∗2 cos

√
αAε(s

∗

1+s∗2)

−
1

2
√
αAε

(

(αA+αB)ε−αA√
−αBεB

sin
√
−αBεB t∗1 cos

√
−αCεCt∗2

+
(αA + αC)ε − αA(1 + δ)√

−αCεC
cos

√
−αBεBt∗1 sin

√
αCεCt∗2

)

× sin
√
αAε(s

∗

1 + s∗2) +
sin

√
−αBεBt∗1 sin

√
−αCεC t∗2

4αAε
√
αBαCεBεC

×
{

(

αA − (αA + αB)ε
)(

(αA + αC)ε − αA(1 + δ)
)

× cos
√
αAε(s

∗

1 + s∗2) +
(

αA + (αB − αA)ε
)

×
(

αA(1 + δ) + (αC − αA)ε
)

cos
√
αAε(s

∗

1 − s∗2)
}

.

(A8)

Similarly, for the superlattices with the equally-high

barriers, by taking into account the relationships ε = E/V ,

m∗ = αm0, m∗
A = αAm0, for the energies ε ∈ (0, 1) the

equations (8), (9) will take the following form:

cosK3 = ch
√

α(1− ε)(t∗1 + t∗2 ) cos
√
αAε(s

∗

1 + s∗2)

+

(

αA + (α − αA)ε
)2

2αAαε(1 − ε)
sh t∗1

√

α(1 − ε) sh t∗2
√

α(1− ε)

× sin s∗1
√
αAε sin s∗2

√
αAε +

(

αA − (α + αA)ε
)

2
√

αAαε(1 − ε)

× sh
(

(t∗1 + t∗2 )
√

α(1 − ε)
)

sin
√
αAε(s

∗

1 + s∗2).
(A9)
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for the energies ε ∈ (1,∞):

cosK3 = cos
√

α(ε − 1)(t∗1 + t∗2 ) cos
√
αAε(s

∗

1 + s∗2)

+

(

αA + (α − αA)ε
)2

2αAαε(ε − 1)
sin t∗1

√

α(ε − 1) sin t∗2
√

α(ε − 1)

× sin s∗1
√
αAε sin s∗2

√
αAε +

(

αA − (α + αA)ε
)

2
√

αAαε(ε − 1)

× sin
(

(t∗1 + t∗2 )
√

α(ε − 1)
)

sin
√
αAε(s

∗

1 + s∗2).
(A10)
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