Эволюция волн в пористой среде при прохождении границы между пузырьковой и "чистой" жидкостями, насыщающими пористую среду

© И.К. Гималтдинов¹, И.Г. Хусаинов^{1,2}

1 Уфимский государственный нефтяной технический университет, Уфа, Россия

Поступило в Редакцию 5 мая 2025 г. В окончательной редакции 15 июля 2025 г. Принято к публикации 4 августа 2025 г.

Изучено отражение и прохождение акустических волн в пористой среде через границу между пузырьковой и "чистой" жидкостями. Получены дисперсионные соотношения для коэффициентов отражения и прохождения, которые учитывают инициирование вторичных ("быстрых" и "медленных" волн). Методом быстрого преобразования Фурье исследована динамика импульсов конечной длительности.

Ключевые слова: пористая среда, пузырьковая жидкость, гармонические волны, отражение и прохождение, импульс давления, преобразование Фурье.

DOI: 10.61011/PJTF.2025.24.61751.8001

Интерес к изучению распространения акустических волн в пористой среде, насыщенной жидкостью с пузырьками газа, связан с акустическим мониторингом эффективности водогазового воздействия [1] или кислотной обработкой пластов [2] для увеличения нефтеотдачи, с вопросами образования и разложения газовых гидратов в пористых средах [3] и т.д. В работе [4] описаны экспериментальные исследования воздействия ударной волны на плотный слой гранулированной среды. Показано, что после воздействия второго и последующих импульсов давления на засыпку может наблюдаться усиление сигнала на датчике давления, расположенном внутри засыпки. Экспериментальные исследования распространения волн давления в пористой среде, насыщенной газожидкостной смесью, выполнены в работе [5]. Изучена зависимость скорости распространения волны от состава газа. Установлено меньшее затухание "медленной" волны в пористой среде, насыщенной жидкостью с пузырьками углекислого газа, по сравнению со случаем, когда жидкость содержит пузырьки воздуха. Теоретическому и экспериментальному изучению эволюции волны давления в пористой среде, насыщенной газом и жидкостью, в зависимости от объемного содержания газа посвящена работа [6]. Показано, что даже сравнительно небольшое количество газа сильно влияет на эволюцию волны давления. Учет влияния межфазного теплообмена на распространение акустических волн в пористой среде, насыщенной пузырьковой жидкостью, исследован для разной дисперсности пузырьков в работе [7]. Установлено, что межфазный теплообмен сильно зависит от радиуса пузырька и слабо зависит от объемной доли газовой фазы в жидкости. Численное исследование волновых процессов в пористой среде, насыщенной пузырьковой жидкостью, с учетом нелинейности колебаний пузырьков выполнено в работе [8].

В настоящей работе впервые исследована динамика волны, распространяющейся по пористой среде, при прохождении границы между пузырьковой и "чистой" жидкостями, которыми насыщена пористая среда.

Пусть пористая среда состоит из двух слоев: первый насыщен пузырьковой жидкостью $(0 \leqslant x \leqslant x_b)$, второй — "чистой" жидкостью $(x_b < x \leqslant x_w)$. На границе x=0 первого слоя создается импульс давления $p_{in}(t)$. Цель исследования — изучение особенностей прохождения импульса границы между слоями. Для исследования используем систему, состоящую из линеаризованных уравнений баланса масс, числа пузырьков, импульса для пористой среды, насыщенной газожидкостной смесью [9]:

$$\frac{\partial \rho_{sk}}{\partial t} + \rho_{sk0} \frac{\partial v_{sk}}{\partial x} = 0, \quad \frac{\partial \rho_{l+g}}{\partial t} + \rho_{l+g0} \frac{\partial v_{l}}{\partial x} = 0,
\frac{\partial n_{b}}{\partial t} + n_{b0} \frac{\partial v_{l}}{\partial x} = 0, \quad \alpha_{g} = \frac{4}{3}\pi b^{3} n_{b},
\rho_{l+g0} \frac{\partial v_{l}}{\partial t} = -\alpha_{l0} \frac{\partial p_{l}}{\partial x} - F,
\rho_{l+g0} \frac{\partial v_{l}}{\partial t} + \rho_{sk0} \frac{\partial v_{sk}}{\partial t} = \frac{\partial \sigma_{sk}^{*}}{\partial x} - \frac{\partial p_{l}}{\partial x},
\rho_{sk} = \alpha_{sk} \rho_{sk}^{0}, \quad \rho_{l+g} = \alpha_{l} \rho_{l}^{0} + \alpha_{g} \rho_{g}^{0}, \quad \rho_{g} = \alpha_{g} \rho_{g}^{0},
\rho_{l+g0} = \alpha_{l0} \rho_{l0}^{0} + \alpha_{g0} \rho_{g0}^{0}, \quad \alpha_{g} + \alpha_{l} + \alpha_{sk} = 1, \quad (1)$$

где ρ_j v_j , α_j — приведенная плотность, скорость, объемное содержание j-й фазы соответственно, нижние индексы $(j=sk,\,l,\,g,\,l+g)$ относятся к скелету пористой среды, жидкости, газу и смеси жидкости и пузырьков соответственно. Дополнительным нижним индексом 0 обозначены параметры, соответствующие невозмущенному начальному состоянию системы, F — межфазная сила, σ_{sk}^* , p_l — приведенное напряжение в скелете и давление в жидкости соответственно, n и b — число пузырьков в

² Стерлитамакский филиал Уфимского университета науки и технологии, Стерлитамак, Россия E-mail: ilias g@mail.ru

единице объема и их радиус. Скелет пористой среды полагаем вязкоупругим

$$\alpha_{sk0}\frac{\partial \varepsilon}{\partial t} = \frac{1}{E_{sk}}\frac{\partial \sigma_{sk}^*}{\partial t} + \frac{\sigma_{sk}^*}{\mu_{sk}}, \quad \frac{\partial \varepsilon}{\partial t} = \frac{\partial v_{sk}}{\partial x}, \quad (2)$$

где E_{sk} , μ_{sk} — эффективные модуль упругости и коэффициент вязкости пористого скелета. Для твердой и жидкой фаз приняты уравнения состояния в акустическом приближении, газ в пузырьках будем считать калорически совершенным:

$$\rho_{sk0}^{0}/\rho_{sk0} = 1 + \beta_{sk}(p_{sk} - p_{sk0}), \qquad p_{sk} = p_l - \sigma_{sk}^*/\alpha_{sk0},$$

$$\rho_{l0}^0/\rho_{l0} = 1 + \beta_l(p_l - p_{l0}), \qquad p_g = \rho_g^0 R T_g.$$
 (3)

Здесь β_j — сжимаемость фаз, T_g и p_g — температура и давление газа, R — газовая постоянная. При описании скорости изменения радиуса пузырька w [9,10] будем полагать, что

$$db/dt = w = w_A + w_R, (4)$$

где w_R определяется исходя из уравнения Рэлея—Ламба, записанного для пористой среды, w_A — исходя из решения задачи о сферической разгрузке на сфере радиуса b в несущей жидкости в акустическом приближении

$$\rho_{l0}^{0}b_{0}\frac{\partial w_{R}}{\partial t} = p_{g} - p_{l} - 4\mu_{l}\frac{w_{R}}{b_{0}}, \quad w_{a} = \frac{p_{g} - p_{l}}{\rho_{l0}^{0}C_{l}\rho_{a0}^{1/3}}.$$
 (5)

где C_l — скорость звука в "чистой" жидкости, ϕ_{g0} — объемная доля газовой фазы в пузырьковой жидкости. Для давления в газовой фазе запишем уравнение в виде [10]:

$$\frac{\partial p_g}{\partial t} = -\frac{3\gamma p_g}{b_0} w - \frac{3(\gamma - 1)}{b_0} q,\tag{6}$$

где q — интенсивность теплообмена между газом и жидкостью, γ — показатель политропы.

Для определения интенсивности теплообмена q между газом и жидкостью запишем уравнение теплопроводности и граничные условия в линейном приближении [10]:

$$\rho_{g0}^{0}c_{g}\frac{\partial T_{g}}{\partial t} = r^{-2}\left(\lambda_{g}r^{2}\frac{\partial T_{g}}{\partial r}\right) + \frac{\partial p_{g}}{\partial t}, \quad r < b_{0}, \tag{7}$$

$$T_g = T_l, \ q = -\lambda_g \left(\frac{\partial T_g}{\partial r}\right), \ r = b_0, \ \frac{\partial T_g}{\partial r} = 0, \ r = 0.$$
 (8)

Решение системы (1)-(8) ищется в виде гармонических волн

$$\alpha_j, \rho_j^0, v_j, p_j, \sigma_s^* \cong \exp[i(Kx - \omega t)],$$

$$T_g = T_o^*(r) \exp[i(Kx - \omega t)],$$

где ω — круговая частота, K — комплексное волновое число $(K=k+i\delta),\,\delta$ — линейный декремент затухания, r — микроордината, отсчитываемая от центра пузырька.

В пористой среде распространяются продольные волны двух типов: "быстрая" (fast) и "медленная" (slow) [11]. В результате решения системы (1)-(8) получены волновые числа для первого и второго слоев: $K_f^{(1)}$, $K_s^{(1)}$ и $K_f^{(2)}$, $K_s^{(2)}$. Верхние индексы i=1,2 отвечают параметрам волны первого и второго слоя соответственно. Нижние индексы f и s соответствуют параметрам "быстрой" и "медленной" волн. После преобразований получим следующее дисперсионное уравнение для слоя пористой среды, насыщенной пузырьковой жидкостью:

$$-\alpha_{l+g0}\chi_{\mu}(\xi/\phi)\left(\frac{K^{(1)}}{\omega}\right)^{4} + \left\{\xi\left(1 - \alpha_{s0}\frac{\rho_{l+g0}}{\phi}\right) + \varepsilon\chi_{\mu}\left(1 - \frac{\rho_{l+g0}}{\phi}\right)\right\}\left(\frac{K^{(1)}}{\omega}\right)^{2} + c = 0, \tag{9}$$

где

$$\phi = \chi_V/i\omega, \quad \chi_\mu = -lpha_{s0}E_s/(1+iE_s/\omega\mu_s),$$
 $c = \varepsilon \left[
ho_{l+g0} +
ho_{s0}(1-
ho_{l+g0}/\phi)
ight],$ $\xi = 1 - (1-1/\gamma)i\omega b_0
ho_{l0}^0 Q/P_{g0},$ $Q = \lambda_g T_{g0}(1-1/\gamma) rac{\chi_\mu}{P_{g0}b_0} \left[\mathrm{cth}(y_g) - 1
ight], \ y_g = \sqrt{-rac{i\omega b_0^2}{\kappa_g}},$

В результате падения "быстрой" или "медленной" волны на границу раздела между слоями в первом слое образуются отраженные "быстрая" и "медленная" волны, а во втором — прошедшие "быстрая" и "медленная" волны. Для этих волн результирующие возмущения эффективного напряжения в скелете и давления в жидкости определяются по формулам

$$\sigma_{sk}^{*(i)} = \left[A_{\sigma,f}^{(i)} \exp(iK_f^{(i)}x) + A_{\sigma,s}^{(i)} \exp(iK_s^{(i)}x) \right] \exp(-i\omega t),$$

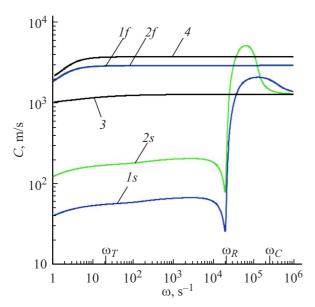
$$p_l^{(i)} = \left[A_{p,f}^{(i)} \exp(iK_f^{(i)}x) + A_{p,s}^{(i)} \exp(iK_s^{(i)}x) \right] \exp(-i\omega t).$$
(10)

Здесь $A_{\sigma,f}^{(i)}$, $A_{p,f}^{(i)}$ и $A_{\sigma,s}^{(i)}$, $A_{p,s}^{(i)}$ — соответственно амплитуды эффективного напряжения и давления "быстрой" и "медленной" волн. Аналогично (10) можно записать выражения для скоростей скелета пористой среды и флюида с амплитудами $A_{vsk,f}^{(i)}$, $A_{vl,f}^{(i)}$ и $A_{vsk,s}^{(i)}$, $A_{vl,s}^{(i)}$. Для получения коэффициентов отражения и прохож-

Для получения коэффициентов отражения и прохождения гармонических волн используем следующие граничные условия при $x=x_b$: равенства скоростей частиц скелета и флюида, равенства давлений во флюиде и непрерывности полных напряжений

$$\begin{aligned} v_{sk}^{(1)} &= v_{sk}^{(2)}, \quad v_l^{(1)} &= v_l^{(2)}, \quad p_l^{(1)} &= p_l^{(2)}, \\ &- \alpha_{sk0} \sigma_{sk}^{*(1)} + (\alpha_{l0} + \alpha_{g0}) p_l^{(1)} &= -\alpha_{sk0} \sigma_{sk}^{*(2)} + \alpha_{l0} p_l^{(2)}. \end{aligned}$$

$$\tag{11}$$



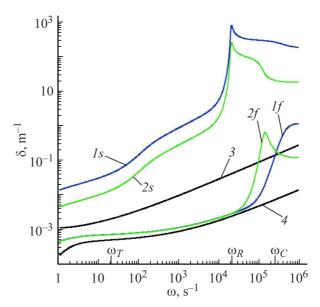


Рис. 1. Фазовые скорости и линейный декремент затухания "быстрой" $(\mathit{If}, \mathit{2f})$ и "медленной" $(\mathit{Is}, \mathit{2s})$ волн в насыщенной пузырьковой жидкостью пористой среде. Линии If, Is соответствуют $\alpha_{g0} = 0.01$, линии $\mathit{2f}, \mathit{2s} - \alpha_{g0} = 0.001$. Линии $\mathit{3}$ и $\mathit{4}$ соответствуют "медленной" и "быстрой" волнам, когда пористая среда насыщена "чистой" жидкостью.

Формулы для эффективного напряжения в скелете и давления в жидкости (10) и аналогичные формулы для скорости скелета пористой среды и флюида с амплитудами $A_{j,f}^{(i)}, A_{j,s}^{(i)}$ ($j=\sigma,p,vsk,vl$) подставляем в систему уравнений (1)-(6) и находим связи между амплитудами. Затем, используя эти выражения, из граничных условий (11) получаем коэффициенты отражения и прохождения. Коэффициенты получены с использованием отношения амплитуд давлений в жидкости. Обозначим коэффициенты отражения как N_{yz} (y соответствует типу падающей волны, z — типу отраженной волны). Например, при отражении от границы $x=x_b$ падающей "быстрой" волны получаются коэффициенты отражения N_{ff} и N_{fs} соответственно для "быстрой" и "медленной" волн. Коэффициент прохождения обозначается как M_{yz} .

$$M_{ys} = 2\delta_1, M_{yf} = \frac{2}{a_{4y}} (1 - \delta_1 a_{5y}), N_{yf} = \frac{2b_{4y}}{a_{4y}} - 2\delta_1 \delta_2,$$

$$N_{ys} = 2\frac{1 - b_{4y}}{a_{4y}} - 2\frac{a_{5y} - a_{4y}}{a_{4y}} \delta_1 + 2\delta_1 \delta_2 - 1, \tag{12}$$

гле

$$\begin{split} \delta_1 &= \frac{a_{6y} - a_{4y}}{a_{5y}a_{6y} - a_{4y}a_{7y}}, \qquad \delta_2 = \frac{b_{4y}a_{5y} - b_{5y}a_{4y}}{a_{4y}}, \\ A_y^{(i)} &= \chi_\mu C_y^{(i)} K_y^{(i)}/\omega, \quad \psi = 1 - \phi/\rho^{(i)}, \quad \rho^{(1)} = \rho_{l+g0}, \\ \rho^{(2)} &= \rho_{l0}, \quad B_y^{(i)} = K_y^{(i)}/\omega \rho^{(i)} - \phi_y^{(i)} C_y^{(i)}/\rho^{(i)}, \\ \phi_y^{(i)} &= \rho_{s0} + \phi (K_y^{(i)}/\omega)^2, \quad C_y^{(i)} = \frac{\alpha^{(i)} K_y^{(i)}/\omega}{\phi - \psi \phi_y^{(i)}}, \\ \alpha^{(1)} &= \alpha_{l+g0}, \ \alpha^{(2)} = \alpha_{l0}, \ C_y^{(i)r} = -C_y^{(i)}, \ B_y^{(i)r} = -B_y^{(i)}, \end{split}$$

$$\begin{split} A_y^{(i)r} &= A_y^{(i)}, \quad a_{1s} = A_f^{(1)r}/A_s^{(1)}, \quad a_{1f} = A_s^{(1)r}/A_f^{(1)}, \\ a_{2y} &= A_f^{(2)}/A_y^{(1)}, \quad a_{3y} = A_s^{(2)}/A_y^{(1)}, \quad c_{1s} = C_f^{(1)r}/C_s^{(1)}, \\ c_{1f} &= C_s^{(1)r}/C_f^{(1)}, \quad c_{2y} = C_f^{(2)}/C_y^{(1)}, \quad c_{3y} = C_s^{(2)}/C_y^{(1)}, \\ b_{1s} &= B_f^{(1)r}/B_s^{(1)}, \quad b_{1f} = B_s^{(1)r}/B_f^{(1)}, \\ b_{2y} &= B_f^{(2)}/B_y^{(1)}, \quad b_{3y} = B_s^{(2)}/B_y^{(1)}, \\ b_{4y} &= \frac{b_{2y} - c_{2y}}{b_{1y} - c_{1y}}, \quad b_{5y} = \frac{b_{3y} - c_{3y}}{b_{1y} - c_{1y}}, \\ a_{4y} &= 1 + c_{2y} - b_{4y}(1 + c_{1y}), \\ a_{5y} &= 1 + c_{3y} - b_{5y}(1 + c_{1y}), \\ a_{6y} &= a_{2y} + c_{2y} - b_{4y}(a_{1y} + c_{1y}), \\ a_{7y} &= a_{3y} + c_{3y} - b_{5y}(a_{1y} + c_{1y}). \end{split}$$

В расчетах в качестве газа использовался воздух, в качестве жидкости — вода, в качестве пористой среды — песчаник с параметрами

$$ho_{g0}^0 = 1.29 \,\mathrm{kg/m^3}, \quad c_g = 1027 \,\mathrm{J/(kg \cdot K)},$$
 $\lambda_g = 0.027 \,\mathrm{J/(m \cdot s \cdot K)}, \quad \gamma = 1.4, \quad \rho_{s0}^0 = 2560 \,\mathrm{kg/m^3},$
 $\mu_s = 10^9 \,\mathrm{Pa \cdot s}, \quad E_s = 3.7 \cdot 10^{10} \,\mathrm{Pa}, \quad C_l = 1500 \,\mathrm{m/s},$
 $\rho_{l0}^0 = 1000 \,\mathrm{kg/m^3}, \quad \alpha_{g0} = 0.01, \quad \mu_l = 10^{-3} \,\mathrm{Pa \cdot s},$
 $\alpha_{l0} = 0.4, \quad b_0 = 1 \,\mathrm{mm}.$

Фазовые скорости и линейные декременты затухания в насыщенной пузырьковой жидкостью пористой среде для различных значений объемного содержания газа приведены на рис. 1. На графиках отмечены характерные

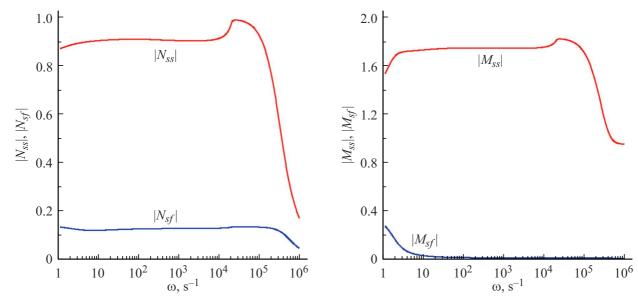


Рис. 2. Зависимости модулей коэффициентов отражения, инициированных в первом слое "медленной" и "быстрой" волн, и коэффициентов прохождения, инициированных во втором слое "медленной" и "быстрой" волн, от круговой частоты, когда на границу между слоями падает "медленная" волна ($b_0 = 0.001$, $\alpha_{g0} = 0.01$).

частоты: ω_T — частота, разделяющая изотермический ($\omega < \omega_T$) и адиабатический ($\omega > \omega_T$) режимы поведения пузырьков, ω_R — собственная частота радиального колебания пузырьков, ω_C — частота, определяющая правую границу полосы непрозрачности (на рис. 1 $\omega_R = 20\,500\,\mathrm{s}^{-1},\ \omega_C = 85\,000\,\mathrm{s}^{-1},\ \omega_T = 20\,\mathrm{s}^{-1},\$ частоты приведены для $\alpha_{g0} = 0.001$). Эти частоты определяются выражениями [10]:

$$\omega_R = \sqrt{3\gamma p_0/
ho_{l0}^0} \Big/ b_0, \quad \omega_C = \omega_R \sqrt{1 +
ho_{l0}^0 lpha_{g0} C_l^2/\gamma p_0},$$
 $\omega_T = \kappa_g/b_0^2, \quad \kappa_g = \lambda_g/
ho_{g0}^0 c_g.$

Минимум фазовой скорости и максимальное значение декремента затухания "медленной" волны соответствуют собственной частоте колебаний пузырьков ω_R . В диапазоне частот $0<\omega<\omega_R$ скорость "медленной" волны в насыщенной пузырьковой жидкостью пористой среде ниже (кривые 1s, 2s), а затухание выше, чем в пористой среде, насыщенной "чистой" жидкостью (кривая 3). С ростом частоты скорость достигает тех же значений, что и в пористой среде с "чистой" жидкостью. Влияние объемного содержания на скорость "медленной" волны также сильно проявляется в этом диапазоне $(0 < \omega < \omega_R)$, уменьшение объемного содержания газа на порядок приводит к увеличению фазовой скорости приблизительно в 2 раза (кривые 1s, 2s на рис. 1). Изменение объемного содержания газа в пузырьковой жидкости не влияет на значение фазовой скорости "быстрой" волны (кривые *1f*, *2f* на рис. 1). Когда пористая среда насыщена "чистой" жидкостью, значение скорости "быстрой" волны выше во всем диапазоне частот примерно на 800 m/s (линия 4). При увеличении частоты

до величины ω_R коэффициент затухания "медленной" волны сильно возрастает для обоих значений объемного содержания газа (примерно на четыре порядка, линии Is, 2s). Во втором слое коэффициент затухания "медленной" волны меньше (линия 3), чем в первом слое (линии Is, 2s), во всем диапазоне частот. Коэффициент затухания "быстрой" волны для частот $\omega < \omega_R$ не зависит от того, какой жидкостью (с пузырьками или без) насыщена пористая среда (линии If, 2f, 4). Отметим, что зависимости фазовой скорости и линейного декремента затухания от частоты для "медленной" волны такие же, как для пузырьковой жидкости [12].

На рис. 2 представлены зависимости модулей коэффициентов отражения $|N_{ss}|$, $|N_{sf}|$ и прохождения $|M_{ss}|$, $|M_{sf}|$ от круговой частоты ω . Для частот $0<\omega<\omega_R$ имеем $|N_{ss}|\approx 0.9$, $|M_{ss}|\approx 1.7$, а для полосы непрозрачности $\omega_R\leqslant\omega\leqslant\omega_C$ — $|N_{ss}|\approx 1.0$, $|M_{ss}|\approx 1.9$. Таким образом, отражение падающей "медленной" волны от границы $x=x_b$ аналогично отражению от жесткой стенки в диапазоне частот $0<\omega<10^6\,\mathrm{s^{-1}}$, т.е. модуль коэффициента прохождения больше единицы. При падении "медленной" волны на границу между слоями в первом слое инициируется отраженная "быстрая" волна небольшой амплитуды $(|N_{sf}|\approx 0.13)$, а во втором слое прошедшая "быстрая" волна для частот $\omega>\omega_T$ практически не инициируется: $|M_{sf}|\approx 0$.

При падении "быстрой" волны на границу в первом слое инициируется отраженная "быстрая" волна с модулем коэффициента отражения, приблизительно равным 0.06 для диапазона частот $0 < \omega < \omega_C$, а при увеличении частоты модуль коэффициента отражения возрастает до 0.15 (рис. 3). Во втором слое инициируется про-

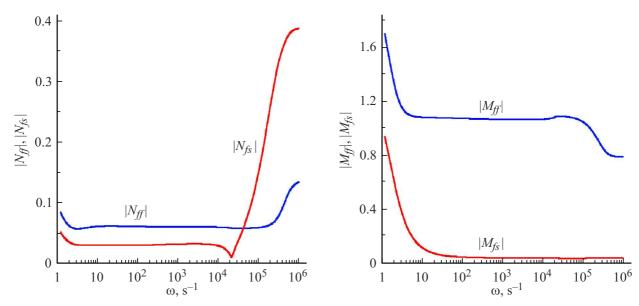


Рис. 3. То же, что на рис. 2, для падающей на границу $x = x_b$ "быстрой" волны. Параметры расчета такие же, как для рис. 2.

шедшая "быстрая" волна. Для частот $1<\omega<\omega_T$ коэффициент прохождения уменьшается с $|M_{ff}|\approx 1.7$ до $|M_{ff}|\approx 1.1$, а для частот $\omega_T<\omega<\omega_R-|M_{ff}|\approx 1.1$. При дальнейшем увеличении частоты коэффициент прохождения уменьшается до 0.8, т. е. "быстрая" волна практически не отражается от границы. Для частот $\omega<\omega_R$ в первом слое инициируется отраженная "медленная" волна с коэффициентом $|N_{fs}|\approx 0.06$, а при частоте $\omega_R<\omega$ этот коэффициент постепенно возрастает до значения 0.4. Модуль коэффициента прохождения "медленной" волны, инициированной во втором слое, $|M_{fs}|$ при возрастании частоты от 1 до ω_T уменьшается от 1.0 до 0, т. е. при отражении "быстрой" волны от границы $x=x_b$ для частот $\omega>\omega_T$ "медленные" волны во втором слое не инициируются.

На основе полученных волновых чисел и коэффициентов отражения и прохождения методом быстрого преобразования Фурье изучена динамика волны конечной длительности, падающей на границу $x = x_b$. Пусть на левой границе первого слоя (x = 0) создается "медленная" волна в виде импульса, имеющего колоколообразную форму с протяженностью $t_* = 10 \,\mathrm{ms}$ и единичной амплитудой (рис. 4). Основная частота импульса равна $\sim 6000\,\mathrm{s}^{-1}$. Амплитуда импульса при прохождении 5 m уменьшается от 1 до 0.7 из-за диссипации энергии в пузырьковой жидкости и межфазных сил (линия 2). Необходимо отметить, что на профиле волн нет осцилляций, характерных для пузырьковой жидкости, поскольку характерная временная протяженность импульса намного превышает период собственных колебаний пузырьков $(t_* \gg t_R, t_R = 2\pi/\omega_R)$. Отражение импульса через границу $x = x_b$ приводит к уменьшению ее амплитуды до 0.55 (линия 3), амплитуда прошедшей волны возрастает до 1.2 (линия 4). Амплитуда отраженного импульса на датчике D_1 приблизительно равна 0.4 (линия 5). На рис. 4, b представлены графики для случая, когда на левой границе первого слоя (x=0) создается "быстрая" волна в виде импульса. Импульс проходит расстояние 40 m (до границы $x=x_b$) почти без затухания (линия 2). Амплитуда этого импульса ~ 0.95 . Отраженный от границы $x=x_b$ импульс (линия 3) имеет всего лишь амплитуду ~ 0.05 , т.е. "быстрая" волна слабо отражается. "Быстрая" волна в виде импульса проходит через границу $x=x_b$ с амплитудой ~ 1 (линия 4). Отраженный импульс "возвращается" к датчику D_1 с амплитудой ~ 0.05 (линия 5).

На рис. 4 наблюдается только одна волна, поскольку отраженные и прошедшие "быстрая" и "медленная" волны (линии 3 и 4) накладываются друг на друга. Отраженный импульс, дошедший до границы x=0 (линия 5), также имеет одноволновую структуру, так как инициированная "медленная" волна (рис. 4,b) успевает затухать, а инициированная "быстрая" волна (рис. 4,a) имеет очень малую амплитуду.

В заключение отметим, что было установлено следующее:

- зависимости фазовой скорости и линейного декремента затухания от частоты для "медленной" волны в пористой среде, насыщенной пузырьковой жидкостью, такие же, как для волны в пузырьковой жидкости;
- отражение "медленной" волны (в диапазоне частот $0\leqslant\omega\leqslant10^5\,\mathrm{s}^{-1})$ от границы пузырьковая жидкость—чистая жидкость при падении со стороны пузырьковой жидкости аналогично отражению от твердой стенки $(|N_{ss}|\approx0.9,\ |M_{ss}|\approx1.8),\$ а "быстрая" волна в том же диапазоне частот практически не отражается от этой границы $(|N_{ff}|\approx0.05,\ |M_{ff}|\approx1.0).$

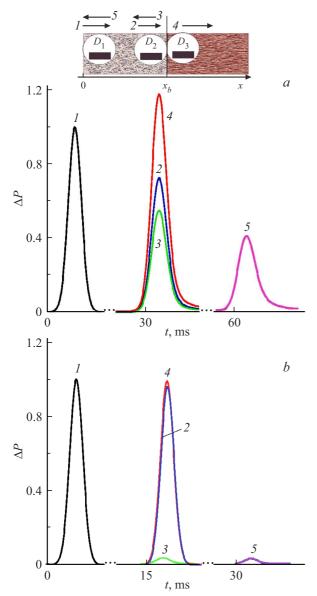


Рис. 4. Отражение и прохождение импульса "медленной" (a) и "быстрой" (b) волн границы между слоями $(\alpha_{g0}=0.01)$. $x_b=5$ (a) и 40 m (b). На вставке сверху — схема задачи: датчики $D_1,\,D_2,\,D_3$ расположены соответственно на границе расчетной области x=0, слева и справа от границы $x=x_b$. Цифры соответствуют расчетным осциллограммам: I — первоначальный импульс, 2 — импульс, распространяющийся слева направо на границе $x=x_b,\,3$ — отраженный импульс, 4 — прошедший импульс, 5 — отраженный импульс, дошедший до границы x=0.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 24-11-00274 (https://rscf.ru/project/24-11-00274/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A.A. Чернова, Изв PAH. A.A. Афанасьев, (2022). Механика жидкости и газа, № 5. 51 10.31857/S0568528122050036 A.A. Chernova. A.A. Afanasyev, Fluid Dyn., 57 (5), 597 (2022). DOI: 10.1134/s0015462822050032].
- [2] Т.А. Кремлева, А.С. Смирнов, К.М. Федоров, Изв. РАН. Механика жидкости и газа, № 5, 76 (2011). [Т.А. Kremleva, A.S. Smirnov, K.M. Fedorov, Fluid Dyn., **46** (5), 736 (2011). DOI: 10.1134/S0015462811050073].
- [3] А.А. Губайдуллин, О.Ю. Болдырева, Д.Н. Дудко, Прикладная механика и техническая физика, **63** (4), 56 (2022). DOI: 10.15372/PMTF20220406 [A.A. Gubaidullin, O.Yu. Boldyreva, D.N. Dudko, J. Appl. Mech. Tech. Phys., **63** (4), 599 (2022). DOI: 10.1134/S002189442204006X].
- [4] А.Т. Ахметов, И.К. Гималтдинов, М.А. Азаматов, А.Ф. Мухаметзянов, Д.Р. Богданов, Письма в ЖТФ, **48** (1), 22 (2022). DOI: 10.21883/PJTF.2022.01.51874.18834 [A.T. Akhmetov, I.K. Gimaltdinov, M.A. Azamatov, A.F. Mukhametzyanov, D.R. Bogdanov, Tech. Phys. Lett., **48**, 97 (2022). DOI: 10.1134/S1063785022040022].
- [5] В.Е. Донцов, Изв. РАН. Механика жидкости и газа, № 1, 80 (1992).
- [6] D.M.J. Smeulders, J.P.M. De La Rosette, M.E.H. Van Dongen, Transp. Porous Media, 9 (1), 25 (1992). DOI: 10.1007/BF01039623
- [7] И.К. Гималтдинов, И.Г. Хусаинов, А.Л. Галиев, Инженерная физика, № 8, 50 (2024). DOI: 10.25791/infizik.8.2024.1421
- [8] О.Ю. Болдырева, Д.Н. Дудко, А.А. Губайдуллин, в сб.: XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики (Казань, 2015), с. 507.
- [9] А.А. Губайдуллин, О.Ю. Болдырева, Д.Н. Дудко, Уч. зап. Казанского ун-та. Сер. Физ.-мат. науки, 157 (1), 101 (2015).
- [10] Р.И. Нигматулин, Динамика многофазных сред (Наука, М., 1987), ч. 1.
- [11] M.A. Biot, J. Appl. Phys., 33 (4), 1482 (1962).DOI: 10.1063/1.1728759
- [12] Р.И. Нигматулин, В.Ш. Шагапов, Н.К. Вахитова, ДАН СССР, 304 (5), 1077 (1989).