Теоретическое описание фотонного топологического изолятора на основе кубической решетки из бианизотропных резонаторов

© А.Д. Розенблит, Н.А. Олехно

Национальный исследовательский университет ИТМО, 197101 Санкт-Петербург, Россия e-mail: alina.rozenblit@metalab.ifmo.ru

Поступило в Редакцию 4 мая 2025 г. В окончательной редакции 30 июня 2025 г. Принято к публикации 16 июля 2025 г.

Предложена теоретическая модель на основе метода диадной функции Грина для описания фотонного топологического изолятора в виде кубической решетки из резонаторов с бианизотропным откликом. В рамках модели исследованы влияние величины параметра бианизотропии на зонный спектр, а также топологические свойства системы с помощью вычисления распределений кривизны Берри для трех различных плоскостей.

Ключевые слова: фотонные топологические изоляторы, бианизотропия, диадная функция Грина, кривизна Берри.

DOI: 10.61011/JTF.2025.12.61773.226-25

Введение

Фотонные топологические изоляторы представляют собой массивы связанных резонаторов, обеспечивающих существование краевых состояний — распространение или локализацию электромагнитной энергии вдоль границ структуры. Существование такого волнового режима обусловлено симметрийными свойствами объема системы и характеризуется однонаправленностью и отсутствием рассеяния на геометрических дефектах [1].

Один из способов реализации фотонного топологического изолятора основан на использовании резонаторов, геометрия которых характеризуется отсутствующим центром инверсии. Нарушение симметрии пространственной инверсии резонатора приводит к тому, что вместо электрической и магнитной дипольных мод исходного резонатора с ненарушенной симметрией формируются две гибридные моды, соответствующие бианизотропному отклику [2,3]. В свою очередь, введение бианизотропии приводит к открытию запрещенной зоны, в которой существуют псевдоспин-поляризованные краевые топологические состояния, направление распространения которых строго связано со знаком псевдоспина, что является аналогом спин-орбитального взаимодействия [2,4]. Так, например, были предложены топологические изоляторы на основе треугольной решетки, характеризующиеся дираковской дисперсией [3,5], а также на основе структур с симметрией C_{4v} , с квадратичным вырождением собственных мод [6].

Настоящая работа посвящена разработке теоретической модели на основе метода диадной функции Грина для описания топологического изолятора, состоящего из бианизотропных частиц, расположенных в узлах кубической решетки. Для исследования топологических свойств рассматриваемой системы нами проведено вычисление кривизны Берри для трех ортогональных на-

правлений решетки. Раннее было предложено теоретическое описание подобных систем в рамках теории возмущений [7], применимое только в окрестностях точек высокой симметрии и не включающее исследование топологических свойств, для которого необходимо вычисление кривизны Берри во всей зоне Бриллюэна.

1. Вывод эффективного блоховского гамильтониана

Рассмотрим кубическую решетку с периодом a, в узлах которой расположены точечные электрические $p_{x(y)}$ и магнитные $m_{x(y)}$ диполи, ориентированные вдоль оси x(y) (рис. 1), соответствующие одновременному возбуждению электрического и магнитного диполей в плоскости xy диэлектрического резонатора, состоящего из двух концентрических цилиндров разных размеров, ось

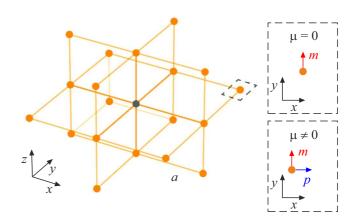


Рис. 1. Кубическая решетка с периодом a, в узлах которой расположены частицы с бианизотропным откликом. Параметр μ характеризует силу связи электрического p и магнитного m дипольных моментов.

которых совпадает с осью z [3,6,8]. При этом геометрия указанных резонаторов обеспечивает равенство величин электрического и магнитного отклика, необходимое для вырождения собственных мод в точках высокой симметрии в отсутствии бианизотропии [2], поэтому будем считать амплитуды электрических и магнитных полей в заданном узле равными.

Компоненты электрического E и магнитного H полей в узле с координатами (ia,ja,ka) связаны с дипольными моментами тензором поляризуемости $\hat{\alpha}$ (в симметричной системе единиц СГС):

$$\begin{pmatrix} p_x^{ijk} \\ p_y^{ijk} \\ m_x^{ijk} \\ m_y^{ijk} \end{pmatrix} = \widehat{\alpha} \begin{pmatrix} E_x^{ijk} \\ E_y^{ijk} \\ H_x^{ijk} \\ H_y^{ijk} \end{pmatrix} = \begin{pmatrix} \beta & 0 & 0 & i\chi \\ 0 & \beta & -i\chi & 0 \\ 0 & i\chi & \beta & 0 \\ -i\chi & 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} E_x^{ijk} \\ E_y^{ijk} \\ H_x^{ijk} \\ H_y^{ijk} \end{pmatrix},$$

где β — поляризуемость, а χ — электромагнитная связь. Тогда компоненты электрического и магнитного поля в заданном узле определяются следующим выражением:

$$\begin{pmatrix}
E_{x}^{ijk} \\
E_{y}^{ijk} \\
H_{x}^{ijk} \\
H_{y}^{ijk}
\end{pmatrix} = \widehat{\alpha}^{-1} \begin{pmatrix}
p_{x}^{ijk} \\
p_{y}^{ijk} \\
m_{x}^{ijk} \\
m_{y}^{ijk}
\end{pmatrix} = \begin{pmatrix}
u & 0 & 0 & -iv \\
0 & u & iv & 0 \\
0 & -iv & u & 0 \\
iv & 0 & 0 & u
\end{pmatrix} \begin{pmatrix}
p_{x}^{ijk} \\
p_{y}^{ijk} \\
m_{x}^{ijk} \\
m_{y}^{ijk}
\end{pmatrix},$$
(1)

где $u=\beta/(\beta^2-\chi^2)$ и $v=\chi/(\beta^2-\chi^2)$. Пусть в области частот, где наблюдается гибридизация электрического и магнитного дипольных моментов, существует только одно резонансное состояние с частотой ω_0 . Тогда параметр u можно представить в виде аппроксимирующей функции $u=(\omega-\omega_0)/C$, где C — константа. Для того чтобы привести параметры u и v к безразмерному виду, введем параметры $\mu=va^3$ и $\lambda=a^3(\omega-\omega_0)/C$ [8].

С другой стороны, амплитуды полей в заданном узле могут быть найдены как сумма полей, созданных всеми остальными точечными диполями, выраженных с помощью диадной функции Грина $G(r,k_0)=G$:

$$\begin{pmatrix} E_{x}^{ijk} \\ E_{y}^{ijk} \\ H_{x}^{ijk} \\ H_{y}^{ijk} \end{pmatrix} = \sum_{\substack{m \neq i, \\ n \neq j, \\ l \neq k}} \begin{pmatrix} G_{xx}^{ee} & G_{xy}^{ee} & G_{xx}^{em} & G_{xy}^{em} \\ G_{yx}^{ee} & G_{yy}^{ee} & G_{yx}^{em} & G_{yy}^{em} \\ G_{xx}^{me} & G_{xy}^{me} & G_{xx}^{mm} & G_{xy}^{mm} \\ G_{yx}^{me} & G_{yy}^{me} & G_{yy}^{mm} & G_{yy}^{mm} \end{pmatrix} \begin{pmatrix} p_{x}^{mnl} \\ p_{y}^{mnl} \\ m_{x}^{mnl} \\ m_{y}^{mnl} \end{pmatrix} .$$

Диадная функция Грина определяется расстоянием между точечными диполями

$$r = a\sqrt{(m-i)^2 + (n-j)^2 + (l-k)^2}$$

и волновым числом k_0 . Согласно введенным допущениям, электрические и магнитные компоненты диадной функции Грина совпадают, $G^{ee}=G^{mm}$. Кроме того, электромагнитные и магнитоэлектрические компоненты связаны соотношением $G^{em}=-G^{me}$. Компоненты диадной

функции Грина определяются следующими выражениями (в симметричной системе единиц СГС):

$$G^{ee}_{\xi\eta}=(\partial_{\xi}\partial_{\eta}+k_{0}^{2}\delta_{\xi\eta})\,rac{e^{ik_{0}r}}{r},$$

$$G_{\xi\eta}^{em} = \operatorname{rot} G_{\xi\eta}^{ee} = ik_0 \varepsilon_{\xi\eta z} \partial_z \frac{e^{ik_0 r}}{r}$$

где $\varepsilon_{\xi\eta z}$ — символ Леви—Чивиты, $\delta_{\xi\eta}$ — символ Кронекера и $\partial_{\xi}=\partial/\partial_{\xi}$. Полученные выражения для компонент диадной функции Грина в квазистатическом приближении $(k_0=0)$ имеют следующий вид:

$$\begin{split} G_{xx}^{ee} &= \left(3a^2(m-i)^2/r^2 - 1\right)/r^3, \\ G_{yy}^{ee} &= \left(3a^2(n-j)^2/r^2 - 1\right)/r^3, \\ G_{xy}^{ee} &= 3a^2(m-i)(n-j)/r^5, \\ G_{xx}^{em} &= G_{xy}^{em} = G_{yx}^{em} = G_{yy}^{em} = 0. \end{split}$$

Для упрощения вывода будем учитывать только связи между соседями в первой и второй координационных сферах. Согласно теореме Блоха, дипольные моменты в узлах кубической решетки с координатами (ia, ja, ka) и (ma, na, la) связаны между собой фазовым множителем

$$egin{aligned} \left(p_x^{ijk},\,p_y^{ijk},\,m_x^{ijk},\,m_y^{ijk}
ight)^T &= e^{-ik_x(i-m)-ik_y(j-n)-ik_z(k-l)} \ & imes \left(p_x^{mnl},\,p_y^{mnl},\,m_x^{mnl},\,m_y^{mnl}
ight)^T, \end{aligned}$$

где k_x, k_y и k_z — волновые вектора вдоль осей x,y и z. Объединив уравнения (1) и (2) и переписав результат в виде задачи на собственные значения $\widehat{H}|\psi\rangle=\lambda|\psi\rangle$ с учетом теоремы Блоха и полученных выражений для диадной функции Грина, получим эффективный блоховский гамильтониан \widehat{H} в базисе $|\psi\rangle=(p_x,p_y,m_x,m_y)^T$. Перейдем в базис псевдоспиновых состояний $|\psi'\rangle=(p_x+m_x,p_y+m_y,p_x-m_x,p_y-m_y)^T$ [3] путем преобразования $\widehat{H}'=U\widehat{H}U^{\uparrow}$, где матрица U имеет следующий вид:

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}.$$

Наконец, эффективный блоховский гамильтониан в псевдоспиновом базисе $|\psi'\rangle$ определяется как:

$$\widehat{H}' = \begin{pmatrix} b & i\mu - d & 0 & 0 \\ -i\mu - d & c & 0 & 0 \\ 0 & 0 & b & -i\mu - d \\ 0 & 0 & i\mu - d & c \end{pmatrix} = \begin{pmatrix} \widehat{H}^{\uparrow} & 0 \\ 0 & \widehat{H}^{\downarrow} \end{pmatrix},$$

$$b = 4\cos k_x - 2\cos k_y - 2\cos k_z$$

$$+\frac{1}{\sqrt{2}}(\cos k_x\cos k_y+\cos k_x\cos k_z-2\cos k_y\cos k_z),$$

$$c = -2\cos k_x + 4\cos k_y - 2\cos k_z$$

$$+ \frac{1}{\sqrt{2}}(\cos k_x \cos k_y + \cos k_y \cos k_z - 2\cos k_x \cos k_z),$$

$$d = \frac{3}{\sqrt{2}}\sin k_x \sin k_y,$$

где \widehat{H}^{\uparrow} и \widehat{H}^{\downarrow} обозначают псевдоспиновые части блоховского гамильтониана с противоположной поляризацией.

2. Дисперсионные кривые и топологические свойства

Дисперсионные кривые полученного блоховского гамильтониана \widehat{H}' для трех различных значений параметра бианизотропии μ показаны на рис. 2 и описываются следующим выражением:

$$\begin{split} \lambda_{1(2)}^{\uparrow(\downarrow)} &= \cos k_x + \cos k_y - 2\cos k_z \\ &+ \frac{1}{2\sqrt{2}} \left(2\cos k_x \cos k_y - \cos k_x \cos k_z - \cos k_y \cos k_z \right) \\ &\pm \frac{1}{4\sqrt{2}} \left(32\mu^2 + 342 + 117\cos(2k_y) + 144\sqrt{2}\cos k_z \right. \\ &+ 72\sqrt{2}\cos(2k_y)\cos k_z + 18\cos(2k_z) + 9\cos(2k_y)\cos(2k_z) \\ &- 36\cos k_x \cos k_y \left(17 + 8\sqrt{2}\cos k_z + \cos(2k_z) \right) \\ &+ 9\cos(2k_x) \left(13 + 4\cos(2k_y) + 8\sqrt{2}\cos k_z + \cos(2k_z) \right) \right)^{1/2}. \end{split}$$

В отсутствии бианизотропии $(\mu=0)$ дисперсия характеризуется квадратичным вырождением в точках высокой симметрии $\Gamma(0,0,0)$ и $M(\pi,\pi,0)$. Кроме того, вырождение наблюдается в точке $A(\pi,\pi,\pi)$, между точками $\Gamma(0,0,0)$ и $Z(0,0,\pi)$ и между точками $M(\pi,\pi,0)$

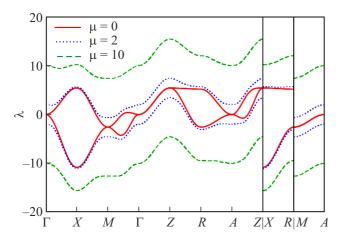


Рис. 2. Дисперсионные кривые эффективного блоховского гамильтониана \widehat{H}' в первой зоне Бриллюэна кубической решетки. Сплошные, пунктирные и штриховые кривые соответствуют трем различным значениям параметра бианизотропии.

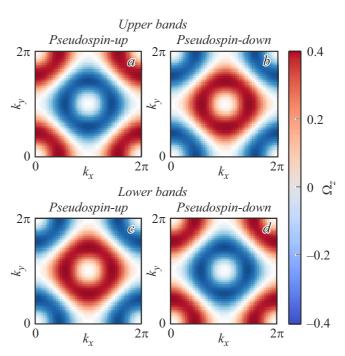


Рис. 3. Распределения кривизны Берри Ω_z в плоскости xy для верхней (a,b) и нижней (c,d) ветвей собственных состояний, отвечающие псевдоспин-вверх \widehat{H}^{\uparrow} и псевдоспин-вниз \widehat{H}^{\downarrow} частям гамильтониана \widehat{H}' при значении параметра бианизотропии $\mu=10$.

и $A(\pi,\pi,\pi)$. При введении бианизотропии вырождение снимается, а увеличение значения параметра μ сопровождается увеличением ширины запрещенной зоны. Действительно, в точке $\Gamma(0,0,0)$ выражение для собственных значений принимает вид $\lambda_{1(2)}^{\uparrow(\downarrow)}=\pm\mu$, что подчеркивает определяющую роль бианизотропии в открытии запрещенной зоны.

Для исследования топологических свойств кубической решетки из бианизотропных частиц было проведено вычисление распределения кривизны Берри (представляющей собой аналог магнитного поля в обратном пространстве [9]) для трех различных плоскостей по формуле

$$\Omega_{\xi}(k_{\xi}, k_{\eta}, k_{\xi} = 0) = \frac{\partial}{\partial k_{\xi}} \left\langle \psi_{1(2)}^{\uparrow(\downarrow)} \left| \frac{\partial}{\partial k_{\eta}} \middle| \psi_{1(2)}^{\uparrow(\downarrow)} \right\rangle - \frac{\partial}{\partial k_{\eta}} \left\langle \psi_{1(2)}^{\uparrow(\downarrow)} \middle| \frac{\partial}{\partial k_{\xi}} \middle| \psi_{1(2)}^{\uparrow(\downarrow)} \right\rangle,$$

где $\xi \neq \xi \neq \eta$ принимают значения [x;y;z], верхний индекс собственной функции ψ указывает на псевдоспиновую часть гамильтониана $\widehat{H}^{\uparrow(\downarrow)}$, а нижний индекс — на ветвь собственных значений. В отсутствии бианизотропии $(\mu=0)$ кривизна Берри для всех плоскостей обращается в нуль. При введении бианизотропии $(\mu=10)$ наблюдается ненулевое локальное и противоположное по знаку распределение кривизны Берри Ω_z в окрестностях точек с координатами (0,0) и (π,π) , как показано

на рис. 3. При этом значения распределения кривизны Берри меняют свой знак при смене направления псевдоспина или ветви собственных состояний. Кривизна Берри в двух других плоскостях Ω_x и Ω_y сохраняет свои тривиальные свойства даже при ненулевом параметре бианизотропии μ . Таким образом, рассматриваемая кубическая решетка является примером слабого топологического изолятора с нетривиальными топологическими свойствами вдоль оси z.

Заключение

Предложена теоретическая модель для описания кубической решетки из бианизотропных резонаторов, основанная на диадной функции Грина и учитывающая связи между узлами в первой и второй координационных сферах. Продемонстрирована определяющая роль бианизотропии в открытии запрещенной зоны и возникновении нетривиальных топологических свойств, как следует из распределений кривизны Берри. Предложенная модель может быть использована для описания массивов резонаторов с бианизотропным откликом, размер которых, как и расстояние между ближайшими резонаторами, много меньше длины волны электромагнитного излучения в рассматриваемом диапазоне частот.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (Проект FSER-2025-0009).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T. Ozawa, H.M. Price, A. Amo, N. Goldman, M. Hafezi,
 L. Lu, M. Rechtsman, D. Schuster, J. Simon, O. Zilberberg,
 Ia. Carusotto. Rev. Mod. Phys., 91 (1), 015006 (2019).
 DOI: 10.1103/RevModPhys.91.015006
- [2] A.B. Khanikaev, S.H. Mousavi, W.-K. Tse, M. Kargarian, A.H. MacDonald, G. Shvets, Nat. Mater., 12 (3), 233 (2013). DOI: 10.1038/nmat3520
- [3] A.P. Slobozhanyuk, S.H. Mousavi, X. Ni, D. Smirnova, Y.S. Kivshar, A.B. Khanikaev. Nature Photon., 11 (2), 130 (2017). DOI: 10.1038/nphoton.2016.253
- [4] K.Y. Bliokh, D. Smirnova, F. Nori. Science, 348 (6242), 1448 (2015). DOI: 10.1126/science.aaa9519
- [5] A.P. Slobozhanyuk, A.V. Shchelokova, X. Ni, S.H. Mousavi,
 D.A. Smirnova, P.A. Belov, A. Alu, Y.S. Kivshar,
 A.B. Khanikaev. Appl. Phys. Lett., 114 (3), 031103 (2019).
 DOI: 10.1063/1.5055601
- [6] A.D. Rozenblit, G.D. Kurganov, D.V. Zhirihin,
 N.A. Olekhno. Phys. Rev. B, 111 (8), 085415 (2025).
 DOI: 10.1103/PhysRevB.111.085415

- [7] T. Ochiai. Phys. Rev. A, 96 (4), 043842 (2017).DOI: 10.1103/PhysRevA.96.043842
- [8] A.A. Gorlach, D.V. Zhirihin, A.P. Slobozhanyuk,
 A.B. Khanikaev, M.A. Gorlach. Phys. Rev. B, 99 (20),
 205122 (2019). DOI: 10.1103/PhysRevB.99.205122
- [9] D. Xiao, M.C. Chang, Q. Niu. Rev. Mod. Phys., 82 (3), 1959 (2010).