Накопление позитронов, образовавшихся при взаимодействии фоновых гамма- и оптических квантов

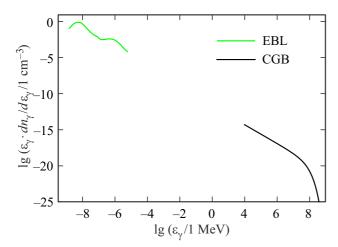
© А.Н. Попов, Д.П. Барсуков, А.В. Иванчик, С.В. Бобашев

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: bars.astro@mail.ioffe.ru

Поступило в Редакцию 4 мая 2025 г. В окончательной редакции 12 июля 2025 г. Принято к публикации 13 июля 2025 г.

Рассмотрена генерация позитронов при взаимодействии фоновых оптических и гамма-квантов и их последующее накопление в межгалактическом пространстве. При этом учитывается их торможение при рассеянии на реликтовом излучении.

Ключевые слова: космология, фоновое излучения, позитроны.


DOI: 10.61011/JTF.2025.12.61788.232-25

Введение

Пространство между галактиками заполнено крайне разреженным межгалактическим газом. Только в районе скопления галактик, где газ проваливается в гравитационную яму и его плотность возрастает, его концентрация может достигать величин $10^{-3} \, \text{cm}^{-3}$ [1]. В гораздо в большей степени данное пространство заполнено электромагнитным фоновым излучением. Основной его компонентой является реликтовое излучение (СМВ cosmic microwave background), которое образовалось в эпоху рекомбинации $z \sim 10^3$ и несет информацию о происходящих в то время процессах [2], где z — космологическое красное смещние. Гораздо позже образовались другие компоненты фонового излучения. Внегалактическое фоновое излучение (EBL — extragalactic background light) состоит из оптических и инфракрасных фоновых фотонов и создано в первую очередь излучением звезд [2]. Рентгеновское фоновое излучение создавалось в первую очередь при аккреции вещества на галактические ядра [2]. Возможно также имеется фоновое ультрафиолетовое излучение (CUB — cosmic ultraviolet background), созданное излучением межзвездных туманностей и горячих молодых звезд [2]. Фоновая компонента (CGB — cosmic gamma-ray background), состоящая из фотонов гамма-диапазона, рождалась во время вспышек сверхновых и возможно несет с собой информацию об этих событиях [2]. Это излучение взаимодействует в первую очередь с межгалактической и внутрикластерной средой [3]. Однако возможно и взаимодействие фоновых фотонов между собой с образованием электронпозитронных пар. Оптическая глубина по данному процессу на много порядков ниже, чем оптическая глубина из-за рассеяния фоновых фотонов на электронах и ионах среды [3]. Однако данный процесс приводит к появлению постоянно действующего источника позитронов в межгалактическом и междукластерном пространстве. В настоящей работе мы ограничили свое рассмотрение только процессом рождения позитронов при взаимодействии СGВ-фотонов с EBL-фотонами. Процесс с данными фотонами дает наибольший темп рождения позитронов [4]. Ему конкуренцию мог бы составить только процесс рождения позитронов при взаимодействии СGВ-фотонов с гипотетическими СИВ-фотонами, но только в случае если интенсивность потока СИВ-фотонов близка к своему верхнему пределу. Родившиеся позитроны имеют энергию порядка 100 GeV – 1 TeV и поэтому практически не аннигилируют при распространении в крайне разреженной межгалактической и междукластерной среде [5]. Среднее время их жизни до аннигиляции составляет $(2-3) \cdot 10^9$ year [5]. Поэтому в настоящей работе мы рассматриваем как меняется темп рождения позитронов с течением времени и как они постепенно накапливаются в межгалактическом пространстве. При этом учитывается влияние на спектр накопленных позитронов их комптоновского рассеяния на СМВ-фотонах. Поскольку данное рассеяние происходит в нерелятивистском (томпсоновском) режиме и, следовательно, энергия позитрона при каждом таком рассеянии меняется незначительно, то в настоящей работе мы предполагаем. что результат действия данного рассеяния может быть описан как действие некой эффективной силы трения, тормозящей позитроны.

1. Модель

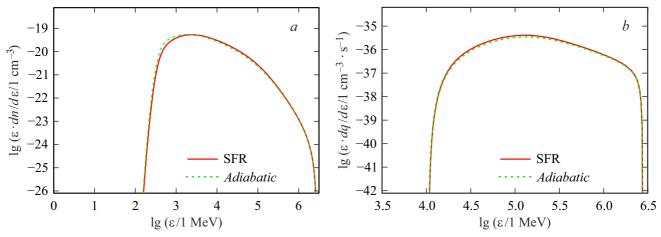
Темп образования позитронов при взаимодействии EBL-фотонов с CGB-фотонами, а также спектр рождающихся позитронов вычисляются точно также как в работе [4]. Для темпа звездообразования использовалась его аппроксимация из работы [6]. Считалось, что темп генерации CGB-фотонов пропорционален темпу звездообразования [7]. Для упрощения вычислений считалось, что спектр EBL-фотонов не зависит от красного смещения z и совпадает с наблюдаемым сейчас спектром [8]. Плотность EBL-фотонов считалась либо пропорциональной

Рис. 1. Используемые спектры EBL- и CGB-фотонов на красном смещении z=0. Здесь ε_{γ} — энергия фотонов, измеряемая в MeV, $dn_{\gamma}/d\varepsilon_{\gamma}$ — концентрация фотонов, т. е. число фотонов с энергией ε_{γ} в 1 cm³ в единичном интервале энергий.

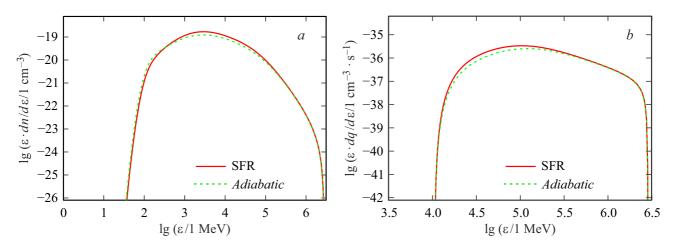
темпу звездообразования, либо соответствующей адиабатическому расширению при расширении Вселенной. Используемые спектры EBL- и CGB-фотонов при z=0 показаны на рис. 1. В настоящей работе мы ограничили свое рассмотрение только интервалом красных смещений $z\sim 1-3$. При этом учитывается, что родившиеся позитроны будут взаимодействовать с СМВ-фотонами, которые будут рассеиваться на них. Спектр СМВ-фотонов близок к чернотельному [9], а их температура $T=T_0(1+z)$, где $T_0\approx 2.73$ K [9], чрезвычайно мала в рассматриваемом интервале красных смещений. Энергии же позитронов, рождающихся при взаимодействии СGВ-фотонов с EBL-фотонами, не слишком велики $\varepsilon\sim 100\,{\rm GeV}-1\,{\rm TeV}.$ И, следовательно, в системе покоя

позитрона энергия СМВ-фотонов мала по сравнению с mc^2 , где m — масса покоя электрона, и, следовательно, мало и изменение энергии позитрона при столкновении с СМВ-фотонов по сравнению с его энергией ε . Поэтому влияние этого рассеяния можно учесть, рассматривая его как действие обычной силы трения, уменьшающей энергию ε позитронов

$$\frac{d\varepsilon}{dt} = -\mathscr{P}$$
, где $\mathscr{P} = \frac{4}{3} \sigma_T \cdot \left(\frac{\varepsilon}{mc^2}\right)^2 \cdot \epsilon_{CMB}$, (1)


 σ_T — томпсоновское сечение рассеяния, ϵ_{CMB} — плотность энергии СМВ-фотонов. Тогда уравнение переноса для позитронов при $\varepsilon\gg mc^2$ примет вид

$$\frac{\partial}{\partial t} \left(\frac{dn}{d\varepsilon} \right) + 2 \cdot \frac{H(z)}{1+z} \cdot \left(\frac{dn}{d\varepsilon} \right)
- \frac{H(z)}{1+z} \cdot \varepsilon \cdot \frac{\partial}{\partial \varepsilon} \left(\frac{dn}{d\varepsilon} \right) = \frac{\partial}{\partial \varepsilon} \left(\mathscr{P} \cdot \frac{dn}{d\varepsilon} \right) + \frac{dq}{d\varepsilon},$$
(2)


где $dn/d\varepsilon(\varepsilon,t)$ — число позитронов в $1\,\mathrm{cm}^3$ в интервале энергий $d\varepsilon$, а $dq/d\varepsilon(\varepsilon,t)$ — число позитронов, рождающихся в $1\,\mathrm{cm}^3$ за $1\,\mathrm{s}$ в интервале энергий $d\varepsilon$. Здесь $H(z)=H_0\cdot(1+z)\cdot\sqrt{\Omega_\Lambda+\Omega_m(1+z)^3},$ $\Omega_\Lambda=0.68,~\Omega_m=0.32,~H_0=66.9\,\mathrm{km/(s\cdot Mpc)}$ — значение постоянной Хаббла при z=0 [10]. Все величины измеряются в сопутствующей системе отсчета. Функция распределения позитронов считалась изотропной. Диффузией позитронов из-за их рассеяния на СМВ-фотонах мы пренебрегали.

2. Результаты

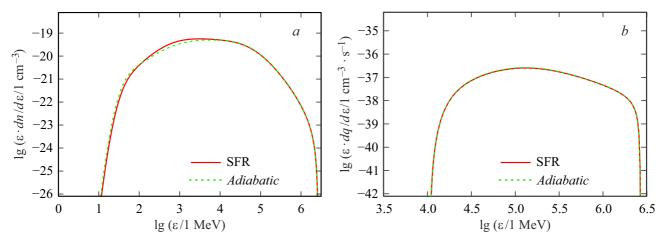

На рис. 2, b показан спектр рождающихся позитронов при z=2. На рис. 2, a приведен спектр позитронов

Рис. 2. b — спектр рождающихся позитронов на красном смещении z=2. a — соответствует спектру позитронов накопившихся и успевших затормозиться к красному смещению z=2. Сплошные кривые соответствуют случаю, когда концентрация EBL-фотонов пропорциональна темпу звездообразования, а штриховые кривые — случаю, когда концентрация соответствует адиабатическому расширению. Здесь ε — энергия позитронов, измеряемая в MeV, $dq/d\varepsilon$ — темп рождения позитронов, т. е. число позитронов с энергией ε , рождающихся за 1 s в 1 cm 3 в единичном интервале энергий, $dn/d\varepsilon$ — концентрация позитронов, т. е. число позитронов с энергией ε в 1 cm 3 в единичном интервале энергий. Все величины вычисляются в сопутствующей системе отсчета.

Puc. 3. To же самое, что на рис. 2, но для случая z = 1.

Рис. 4. То же самое, что на рис. 2, но для случая z = 0.

уже успевших накопиться и затормозиться к красному смещению z = 2. Сплошная кривая соответствует случаю, когда концентрация ЕВL-фотонов пропорциональна темпу звездообразования, а штриховая кривая — когда их концентрация соответствует просто адиабатическому расширению при расширении Вселенной. На рис. 3 и 4 показаны аналогичные результаты для z=1 и 0 соответственно. Видно, что ни спектр рождающихся позитронов, ни соответственно спектр накопившихся позитронов практически не зависят от выбранной аппроксимации для описания эволюции концентрации EBL-фотонов. При этом видно, что хотя позитроны и рождаются с энергиями $\varepsilon \sim 10\,\text{GeV}{-}1\,\text{TeV}$, но из-за взаимодействия с СМВ-фотонами они весьма заметно тормозятся, замедляясь уже на z=2 до энергий $\varepsilon\sim 300\,\mathrm{MeV}$, а к сегодняшнему моменту z = 0 их энергия может упасть до значений $\varepsilon \sim 10-30\,\mathrm{MeV}$. Последнее, разумеется, упрощает их аннигиляцию при столкновениях с электронами межгалактического и междукластерного газа. Однако даже для таких энергий время жизни подобных позитронов остается очень большим $\sim (1-3) \cdot 10^9$ year [5]. Надо также отметить, что даже общее количество родившихся в рассматриваемом процессе позитронов очень не велико. Оно, например, значительно меньше числа низкоэнергичных (с энергиями $\varepsilon \sim 10\,\mathrm{MeV}$) позитронов, которые производятся старыми пульсарами [11], и намного порядков меньше числа позитронов, которые выбрасывают джеты активных ядер галактик [5]. Однако стоит отметить, что рассматриваемые позитроны представляют собой более менее однородный фон. Тогда как низкоэнергичные позитроны, произведенные старыми пульсарами, скорее сосредоточены вблизи родительских галактик [11]. Гигантские джеты, в принципе, могут забрасывать позитроны далеко в междукластерную среду, но во-первых таких джетов уже не очень много, а вовторых из-за наличия в выбросе джета магнитного поля низкоэнергичные позитроны скорее всего не отходят далеко от остатка джета.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S.S. Murray, L. Van Speybroeck. ApJ, 640 (2), 691 (2006). DOI: 10.1086/500288
- [2] R. Hill, K.W. Masui, D. Scott. Appl. Spectr., 72 (5), 663 (2018). DOI: 10.1177/0003702818767133
- [3] С.А. Гребенев, Р.А. Сюняев. ПАЖ, 45 (12), 835 (2019).
 [S.A. Grebenev, R.A. Sunyaev. Astronomy Lett., 45 (12), 791 (2020). DOI: 10.1134/S1063773719120016]
- [4] А.Н. Попов, Д.П. Барсуков, А.В. Иванчик, С.В. Бобашев. ЖТФ, 94 (12), 2048 (2024).
 DOI: 10.61011/JTF.2024.12.59257.386-24
- [5] B.A. Nizamov, M.S. Pshirkov. ΠΑЖ, 49 (5), 322 (2023).
 [B.A. Nizamov, M.S. Pshirkov. Astronomy Lett., 49 (1), 9 (2023). DOI: 10.1134/S1063773723300011]
- [6] P.S. Behroozi, R.H. Wechsler, C. Conroy. ApJ, 770 (1), 57 (2013). DOI: 10.1088/0004-637X/770/1/57
- [7] M. Ackermann, M. Ajello, A. Albert, W.B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, E. Bissaldi, R.D. Blandford, E.D. Bloom, E. Bottacini, T.J. Brandt, J. Bregeon, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, M. Caragiulo, P.A. Caraveo, E. Cavazzuti, C. Cecchi, E. Charles, A. Chekhtman, J. Chiang, G. Chiaro, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, A. Cuoco, S. Cutini, F. D'Ammando, A. de Angelis, F. de Palma, C.D. Dermer, S.W. Digel, E. do Couto e Silva, P.S. Drell, C. Favuzzi, E.C. Ferrara, W.B. Focke, A. Franckowiak, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, S. Germani, N. Giglietto, P. Giommi, F. Giordano, M. Giroletti, G. Godfrey, G.A. Gomez-Vargas, I.A. Grenier, S. Guiriec, M. Gustafsson, D. Hadasch, K. Hayashi, E. Hays, J.W. Hewitt, P. Ippoliti, T. Jogler, G. Jóhannesson, A.S. Johnson, W.N. Johnson, T. Kamae, J. Kataoka, J. Knödlseder, M. Kuss, S. Larsson, L. Latronico, J. Li, L. Li, F. Longo, F. Loparco, B. Lott, M.N. Lovellette, P. Lubrano, G.M. Madejski, A. Manfreda, F. Massaro, M. Mayer, M.N. Mazziotta, J.E. McEnery, P.F. Michelson, W. Mitthumsiri, T. Mizuno, A.A. Moiseev, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, R. Nemmen, E. Nuss, T. Ohsugi, N. Omodei, E. Orlando, J.F. Ormes, D. Paneque, J.H. Panetta, J.S. Perkins, M. Pesce-Rollins, F. Piron, G. Pivato, T.A. Porter, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, T. Reposeur, S. Ritz, R.W. Romani, M. Sánchez-Conde, M. Schaal, A. Schulz, C. Sgrò, E.J. Siskind, G. Spandre, P. Spinelli, A.W. Strong, D.J. Suson, H. Takahashi, J.G. Thayer, J.B. Thayer, L. Tibaldo, M. Tinivella, D.F. Torres, G. Tosti, E. Troja, Y. Uchiyama, G. Vianello, M. Werner, B.L. Winer, K.S. Wood, M. Wood, G. Zaharijas, S. Zimmer. ApJ, 799 (1), 86 (2015). DOI: 10.1088/0004-637X/799/1/86
- [8] A. Franceschini, G. Rodighiero, M. Vaccari, A&A, 487 (3), 837 (2008). DOI: 10.1051/0004-6361:200809691
- [9] D.J. Fixen. ApJ, 707 (2), 916 (2009).DOI: 10.1088/0004-637X/707/2/916
- [10] Planck Collaboration: N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi et al. A&A, 641, A6 (2020). DOI: 10.1051/0004-6361/201833910
- [11] Ya.N. Istomin, D.O. Chernyshov, D.N. Sob'yanin. MNRAS, 498, 2089 (2020). DOI: 10.1093/mnras/staa2130