Моделирование расширенного основания эмиссионных линий в спектрах HII областей

© Я.О. Ананьев,^{1,2} О.А. Куричин,¹ А.В. Иванчик¹

¹Физико-технический Институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

²Санкт-Петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН,

194021 Санкт-Петербург, Россия

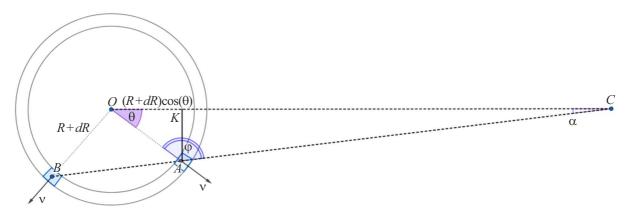
e-mail: yarik.ananev@mail.ru

Поступило в Редакцию 5 мая 2025 г. В окончательной редакции 28 июля 2025 г. Принято к публикации 9 августа 2025 г.

Проведено моделирование профиля добавочной уширенной спектральной компоненты у эмиссионных линий областей НІІ в районе континуума. Предложена простая физическая модель для описания эмиссионных профилей линий, а также проведено моделирование наблюдаемого профиля линий на реальных спектрографах. Показано, что для обработки данных SDSS и DESI интегральный профиль линии, связанный с расширяющимися оболочками, может быть описан одной гауссовой функцией. Тестовая обработка спектров с учетом этого эффекта показала, что пренебрежение широкой компонентой при моделировании профилей линий может приводить к ошибке в измеряемых потоков на величину до 10 %, что, в свою очередь, может приводить к заметным систематическим сдвигам оценок физических параметров областей НІІ. Предложенный метод может быть включен в процедуры автоматической обработки и анализа большого количества спектров с низким и средним спектральным разрешением.

Ключевые слова: эмиссионные линии, НІІ области, карликовые галактики.

DOI: 10.61011/JTF.2025.12.61795.239-25


Введение

Области НІІ — это зоны ионизированного водорода, возникающие вокруг молодых горячих звезд спектральных классов О и В. Их излучение ионизует окружающий газ, а при рекомбинации атомов водорода и других элементов возникают характерные эмиссионные линии серии Бальмера (H_{α} , H_{β} , H_{γ} и др.) и запрещенные линии металлов ([OIII]4959/5007 Å, [NII]6548/6584 Åи др.).

Моделирование эмиссионных линий в спектрах областей HII является важным инструментом для изучения физических свойств и химического состава этих объектов. В малометалличных компактных голубых карликовых галактиках находится большое количество молодых звезд О и В классов, что дает возможность рассматривать их спектр как суммарный спектр многих областей HII. Карликовые голубые галактики являются крайне интересными объектами с точки зрения наблюдательной космологии: анализируя их спектры, можно получать оценки на распространенности первичного гелия-4 [1–4], получать оценку на современное значение постоянной Хаббла [5,6] и т.д. Ключевой сложностью при обработке спектров этих объектов является необходимость поправки на большое число систематических эффектов, приводящих к отличию между наблюдаемыми и испускаемыми потоками эмиссионных линий в таких объектах.

Одним из таких эффектов является наличие уширенной компоненты эмиссионных линий. Этот эффект ранее описывался в ряде работ в применении к анализу профилей линий H_{α} для получения точной оценки собственной ширины линии, которая, в свою очередь, параметризует дисперсию скоростей в объекте [7,8]. При этом в работах, посвященных анализу карликовых галактик для космологических исследований [1–6], этот эффект игнорировался. Игнорирование этого эффекта может приводить к систематическим сдвигам в получаемых оценках, что недопустимо в современной прецензионной космологии, когда борьба идет за субпроцентную точность оценок космологических параметров.

В работе [9] было показано, что видимая добавочная компонента связана с излучением в оболочках расширяющихся областей HII. Расширение происходит из зоны ионизированного водорода HII с характерной температурой $T_{HII} = 10^4 \, \mathrm{K}$ в зону атомарного водорода $HIcT_{HI} = 10^2 \, K$ из-за разницы давлений по обе стороны ионизационного фронта. Уравнения эволюции расширяющейся области HII подробно описаны в классической работе [10]. До сих пор продолжаются поиски наиболее полной модели расширяющейся области HII, современные численные и аналитические модели представлены в работе [11]. Эффект уширенного основания эмиссионных линий подробно исследован на небольшой выборке областей HII в хорошем разрешении в работах [7,8,12]. В этих работах исследовался профиль линии H_{α} , и дополнительные спектральные компоненты подбирались вручную для достижения наилучшего согласования модельного профиля линии с наблюдаемым для каждого индивидуального объекта. Настоящая работа посвящена разработке простой и эффективной модели описания

Рис. 1. Модель расширяющейся области HII. C — положение наблюдателя, R — радиус основной области, α — угловой размер, φ : $\left[0, \frac{\pi}{2}\right]$ — угол между v и CB (движение от наблюдателя); $\left[\frac{\pi}{2}, \pi\right]$ — угол между v и CA (направление на наблюдателя).

уширенной спектральной компоненты эмиссионных линий областей НІІ, которая могла бы быть включена в коды автоматической обработки большого количества спектров с низким и средним спектральным разрешением (например, спектры из каталогов SDSS и DESI), а также оценке величины систематического сдвига, появляющегося при игнорировании этого эффекта.

1. Модель расширяющейся области HII

Для аналитического описания данного явления была рассмотрена классическая сфера Стремгрена (см. [9]), расширяющаяся в облако атомарного водорода НІ.

При однородном и изотропном расширении со скоростью v одна часть объема оболочки движется по направлению к наблюдателю, а другая часть — от наблюдателя, что дает два добавочных вклада в интегральный поток эмиссионных линий. Рассмотрим элемент объема $dV = RdRd\theta$, движущийся от наблюдателя (точка В на рис. 1). Интенсивность излучения этого участка

$$\int dI_u = \int j_u dV = F_u \int_{\frac{\pi}{2} - \alpha}^{\pi} \psi_u(\theta) d\theta,$$

где F — значение потока на заданной u, оно является фитируемым параметром модели, а $\psi_u(\theta)=e^{-\frac{(u-v_0)^2}{2\sigma^2}}$ — профиль линии со смещением от центра линии $v_0=v\cdot\cos(\varphi)$. Согласно рис. 1, $\theta=\pi-\varphi-\alpha$, тогда для перехода к интегралу по φ получим $\frac{d\theta}{d\varphi}=-1-\frac{d\alpha}{d\varphi}$. По теореме синусов в ΔBOC получаем $\sin(\alpha)=\frac{R+dR}{D}\sin(\varphi)\Rightarrow\alpha=\arcsin\left(\frac{R+dR}{D}\sin(\varphi)\right)$, где расстояние до объекта от наблюдателя $D\gg R$. Введем параметр $A=\frac{R+dR}{D}$, после несложных преобразований и разложения в ряд по A, получим

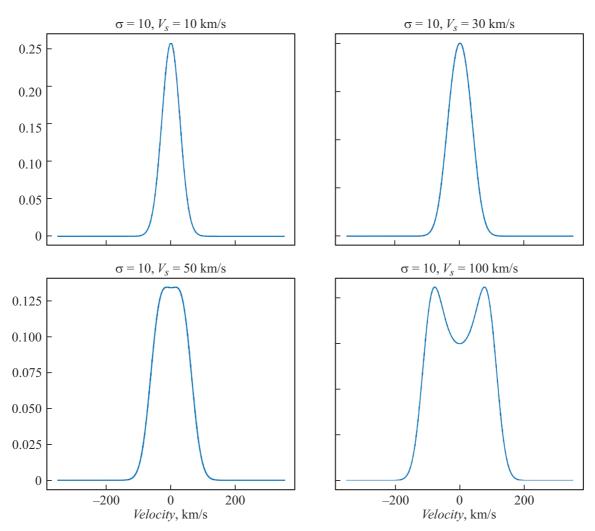
$$\frac{d\theta}{d\varphi} = -1 - A\cos(\varphi).$$

Подставляя это выражение в уравнение для интенсивности, получим профиль вклада в суммарный поток в

линии для части оболочки, двигающейся от наблюдате-

$$I_{from} \sim \int\limits_{0}^{rac{\pi}{2}} e^{-rac{(u-v\cdot\cos(arphi))^2}{2\sigma^2}} (1+A\cos(arphi)) darphi.$$

Аналогично получим профиль вклада для части, двигающейся к наблюдателю:


$$I_{at} \sim \int\limits_{0}^{rac{arphi}{2}} e^{-rac{(u+v\cdot\cos(arphi))^2}{2\sigma^2}} (1-Acos(arphi)) darphi.$$

Заметим, что профиль широкой добавочной компоненты зависит от скорости движения расширяющейся оболочки, внутренней дисперсии скоростей в ней и углового размера объекта. В рамках поставленной задачи мы не будем учитывать угловой размер, считая его достаточно малым. Полученные профили линий в рамках этой простой модели отлично согласуются с результатами полного гидродинамического моделирования расширяющихся оболочек, выполненного с помощью кода ZEUS [7].

2. Влияние аппаратной функции телескопа

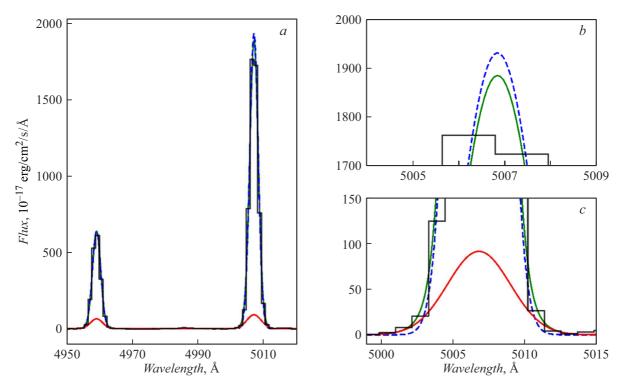
Определив вид широкой добавочной компоненты для эмиссионных линий HII областей, мы можем выяснить, как будет выглядеть сумма двух вкладов расширяющейся оболочки с учетом инструментальной дисперсии σ_{inst} , считая аппаратную функцию гауссовой, что часто верно для оптических телескопов. В качестве примера была выбрана дисперсия скоростей $\sigma = \sqrt{\frac{kT_{HII}}{m_p}} = 10 \, \mathrm{km/s}$ и $\sigma_{inst} = 25 \, \mathrm{km/s}$, результат свертки двух вкладов добавочной компоненты представлен на рис. 2.

При характерной скорости расширения оболочки $v=13\,\mathrm{km/s}$ видимое отличие результирующего профиля от функции Гаусса не наблюдается вплоть до значений

Рис. 2. Свертка профилей I_{from} и I_{at} добавочной компоненты с дисперсией скоростей $\sigma=10\,\mathrm{km/s}$ в оболочке, движущейся со скоростью V_s , с аппаратной функцией с $\sigma_{inst}=25\,\mathrm{km/s}$.

 $\sigma_{inst} = 6 \, \mathrm{km/s}$, поэтому моделирование исследуемого эффекта в большинстве случаев можно проводить, не разделяя добавочный вклад на две составляющих I_{from} и I_{at} .

3. Моделирование реального спектра


Мы показали, что для моделирования эмиссионной линии с широкой добавочной компонентой в спектрах голубых карликовых галактик из каталога SDSSDR17 [13] достаточно найти параметры суммы двух гауссианов заданной линии, так как инструментальное уширение этого телескопа $\sigma_{inst} = 69 \, \mathrm{km/s}$.

В качестве примера представлено моделирование профилей самых мощных линий [OIII] 4959/5007 Å в галактике J1227+5137 с красным смещением z=0.044 на рис. 3. Широкая компонента имеет низкую собственную интенсивность, поскольку объем расширяющейся оболочки мал по сравнению с объемом основной области ионизированного водорода, и большую ширину линии, так как дисперсия скоростей в основной области мень-

ше, чем в расширяющейся части, в силу чего не всегда удается учесть исследуемую поправку в менее мощных линиях. Оптимальные параметры профилей определяются с помощью метода Монте-Карло, оценка достоверности фитирования осуществляется по критерию χ^2 . Игнорирование учета широкой компоненты приводит к тому, что при моделировании эмиссионных линий интегральный поток F имеет завышенное значение, так как на самом деле является суммой собственного потока линии и потока добавочной компоненты. В представленных на рис. З линиях значение F отличается на 10% без учета и с учетом эффекта уширения, а систематическая ошибка моделирования уменьшается в два раза. Аналогичные результаты получены для выборки галактик из работы [4].

Заключение

В работе проведено исследование влияния излучения оболочки расширяющейся области HII на наблюдаемый

Рис. 3. Дублет [OIII] 4959/5007 Å в галактике J1227 + 5137 (a); b, c — фрагменты линии 5007 Å и ее компонент в увеличенном масштабе. Синяя линия — моделирование без учета добавочной компоненты; зеленая линия — суммарный профиль линии с добавочной компонентой; красная линия — профиль добавочной компоненты.

спектр. В рамках простой модели был получен вид профиля добавочной широкой компоненты, а также рассмотрены его свертки с различными аппаратными функциями телескопа. Был проведен сравнительный анализ моделирования наиболее мощных эмиссионных линий с учетом и без учета нового эффекта. Результаты работы показывают необходимость включения исследуемого эффекта в будущие фотоионизационные модели НІІ областей. Это позволит уменьшить систематическую ошибку в определяемых параметрах областей НІІ.

Финансирование работы

Работа выполнена за счет гранта Российского научного фонда № 23-12-00166.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E. Aver, K.A. Olive, E.D. Skillman. JCAP, 07, 011 (2015). DOI: 10.1088/1475-7516/2015/07/011
- [2] T. Hsyu, R.J. Cooke, J.X. Prochaska, M. Bolte. ApJ, 896, 77 (2020). DOI: 10.3847/1538-4357/ab91af
- [3] A. Matsumoto, M. Ouchi, K. Nakajima, M. Kawasaki, K. Murai, K. Motohara, Yu. Harikane, Yo. Ono, K. Kushibiki, Sh. Koyama. ApJ, 941, 167 (2022). DOI: 10.3847/1538-4357/ac9ea1

- [4] O.A. Kurichin, P.A. Kislitsyn, V.V. Klimenko, S.A. Balashev, A.V. Ivanchik. Mon. Not. R. Astron. Soc., 502 (2), 3045 (2021). DOI: 10.1093/mnras/stab215
- [5] D. Fernández-Arenas, R. Chávez. Mon. Not. R. Astron. Soc. Lett., 425, L56 (2024).
 DOI: 10.1007/978-981-99-0177-7_13
- [6] Я.О. Ананьев, О.А. Куричин, А.В. Иванчик. ЖТФ, 94 (12), 2066 (2024).
 DOI: 10.61011/JTF.2024.12.59262.393-24
- [7] M. Relaño, J.E. Beckman, A. Zurita, M. Rozas,
 C. Giammanco. A&A, 431 (2), 235 (2005).
 DOI: 10.1051/0004-6361:20040483
- [8] M. Relaño, J.E. Beckman, O. Daigle, C. Carignan. A&A, 467, 1117 (2007). DOI: 10.1051/0004-6361:20065815
- [9] D.E. Osterbrock, G.J. Ferland. *Astrophysics Of Gas Nebulae and Active Galactic Nuclei* (University Science Books, 2006), p. 152.
- [10] J.H. Oort, L. Spitzer (Jr). Astrophys. J., 121, 6 (1955). DOI: 10.1086/145958
- [11] A.C. Raga, J. Cantó, L.F. Rodríguez. Mon. Not. R. Astron. Soc., 419 (1), L39 (2012).
 DOI: 10.1111/j.1745-3933.2011.01173.x
- [12] M. Rozas, M.G. Richer, W. Steffen, G. García-Segura, J.A. López. A&A, 467 (2), 603 (2007). DOI: 10.1051/0004-6361:20065262
- [13] M.R. Blanton. Astron. J., 154 (1), id. 28 (2017).DOI: 10.3847/1538-3881/aa7567