О применимости модели монодисперсной среды при численных исследованиях течений в пузырьковых колоннах

© А.С. Чернышев, А.А. Шмидт

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: alexander.tchernyshev@mail.ioffe.ru

Поступило в Редакцию 1 мая 2025 г. В окончательной редакции 12 августа 2025 г. Принято к публикации 17 августа 2025 г.

Проведено сравнение результатов численного исследования течения в пузырьковой колонне в рамках моделей монодисперсной и полидисперсной рабочей среды. Оценка различия полученных решений показала, что при увеличении размеров пузырей $R_b > 1\,\mathrm{mm}$ (что соответствует числу Рэйнольдса для пузырька $\mathrm{Re}_b > 400$) обе модели эквивалентны. Это объясняется перестройкой потока в связи со сменой характера силового взаимодействия между фазами. Таким образом, для исследования потоков с крупными пузырями возможно использовать экономичные модели монодисперсной среды.

Ключевые слова: многофазные течения, полидисперсность, численное моделирование.

DOI: 10.61011/JTF.2025.12.61803.225-25

Введение

Многофазные течения и, в частности, пузырьковые течения являются неотъемлемой частью многих природных и технологических процессов. Примерами могут служить всплывающие со дна моря газовые пузыри (как маркеры глубинных месторождений), спутный газ в виде пузырей при нефтедобыче и транспорте нефтегазовой смеси, химические пузырьковые реакторы [1].

Полидисперсность, как правило, играет важную роль в формировании как глобальной структуры течений, так и локальных свойств потока [2]. Учет полидисперсности при численном моделировании предъявляет повышенные требования к вычислительным системам, однако обеспечивает детальное описание течений в широком диапазоне определяющих параметров.

Несмотря на то что учет полидисперсности важен для решения большого круга задач о течении пузырьковых сред, монодисперсный подход также активно используется исследователями. Например, в работе [3] представлен расчет трехмерной пузырьковой колонны в рамках монодисперсного описания, сравнение с экспериментальными результатами показало применимость использованного подхода.

Целью настоящей работы является анализ влияния полидисперсности в интересующем диапазоне определяющих параметров, первичный анализ причин снижения влияния полидисперсности на картину течения и выделение режима, при котором возможно использование монодисперсного подхода.

1. Математическая модель

Модель основана на эйлеро-эйлеровском подходе к описанию многофазных течений (см., например, [4]).

В рамках этого подхода несущая (индекс l) и дисперсная (индекс b) фазы рассматриваются как сплошносредные, заполняющие всю расчетную область, в каждой точке которой задается объемное содержание фазы α . При этом плотности ρ каждой из фаз вычисляются как $\alpha \cdot \rho_0$, где ρ_0 — плотность вещества соответствующей фазы.

Полидисперсность учитывается в рамках модели многих групп (MUltiple SIze Group или MUSIG). В модели вводится набор классов монодисперсных пузырьков, для каждого класса i определяется свой размер пузырька, R_{ib} , объемная доля α_{ib} и скорость V_{ib} , а также своя система уравнений сохранения импульса и массы (так называемая гетерогенная модель MUSIG [5]). Распределение пузырей по размерам задается кусочнопостоянной функцией, описывающей N классов (фракций) с постоянным размером пузырей [4].

Модель основана на уравнениях сохранения массы и импульса для несущей и дисперсной фаз с учетом межфазного силового взаимодействия, турбулентности и дисперсии пузырей [4]. Силовое межфазное взаимодействие включает в себя силу плавучести F_{iB} , силу Стокса F_{iD} , Сэффмана F_{iL} , силу присоединенных масс F_{iVM} и пристенную силу F_{iWL} :

$$F_{iB} = \alpha_{ib}(\rho_{ib} - \rho_{l})g,$$

$$F_{iD} = \frac{3\rho_{l}}{8R_{ib}} \alpha_{ib}C_{iD}V_{irel}|V_{irel}|, V_{irel} = V_{l} - V_{ib},$$

$$F_{iL} = C_{iL}\alpha_{ib}\rho_{l}V_{irel} \times \text{rot}V_{l},$$

$$F_{iVM} = 0.5\alpha_{ib}\rho_{l}\left(\frac{D_{b}V_{ib}}{Dt} - \frac{D_{l}V_{l}}{Dt}\right),$$

$$F_{iWL} = -C_{iWL}\alpha_{ib}\rho_{l}|V_{irel} - (V_{irel}n_{W})n_{W}|^{2}n_{W}.$$

Здесь g — ускорение свободного падения на поверхности несущей среды, n_W — нормаль к ближайшей стенке.

В работе [6] предложена корреляция для коэффициента сопротивления C_{iD} , основанная на числах Рэйнольдса Rei_p и Этвеша Eo_i :

$$C_{iD} = \sqrt{C_D(Re_{ip})^2 + C_D(Eo_i)^2},$$

$$Re_{ip} = \rho_l R_{ib} V_{ib} / \mu_l, \quad Eo_i = 4g(\rho_l - \rho_{ib}) R_{ib}^2 / \sigma,$$

$$C_D(Re_{ip}) = \frac{16}{Re_{ip}} (1 + 2/(1 + 16/Re_{ip} + 3.315/\sqrt{Re_{ip}})),$$

$$C_D(Eo_i) = 4Eo_i / (Eo_i + 9.5), \quad Eo_i < 5.$$

Здесь μ_l — динамическая вязкость несущей среды, σ — коэффициент поверхностного натяжения.

Для коэффициента C_{iL} используется следующее выражение [7]:

$$C_{iL} = \min[0.288 \tanh(0.121 \text{Re}_{ip}), f(Eo_i)], Eo_i < 4,$$

$$f(Eo_i) = 0.00105Eo_i^3 - 0.0159Eo_i^2 - 0.0204Eo_i + 0.474.$$

Коэффициент C_{iWL} вычисляется по следующей формуле [4]:

$$C_{iWL} = 0.47 \max \left\{ 0, \frac{1}{6.3} \cdot \frac{\left[1 - y_W/(20R_{ib})\right]}{y_W[y_W/(20R_{ib})]^{0.7}} \right\},\,$$

где y_W — расстояние до ближайшей стенки.

В работе используется $k-\omega$ SST-модель турбулентности [8] с дополнительными источниковыми слагаемыми, описывающими генерацию и диссипацию турбулентности из-за движения пузырьков относительно несущей среды [4]. Эффективная вязкость несущей среды вычисляется с учетом поправки Сато [9]. Дисперсия пузырьков за счет турбулентных пульсаций скорости в несущей среде учитывается при помощи дополнительного диффузионного члена в уравнениях сохранения объемной доли пузырей и их численной плотности [4].

2. Численный метод

Предложенная математическая модель была реализована в виде программного кода с использованием конечно-объемной аппроксимации уравнений на неструктурированных гексагональных сетках. Для получения детальной картины течения и минимизации опибки дискретизации использовался второй порядок точности по пространственным координатам. Для расчета полей давления и скоростей фаз был применен алгоритм SIMPLE с поправкой на многофазность. Итерационный процесс был организован при помощи метода установления по псевдовремени с первым порядком точности. Модель и численный метод были детально протестированы, получено хорошее согласие с экспериментом (см. [4]).

3. Постановка задачи

В настоящей работе проведена серия расчетов с постоянным расходом пузырей. Число классов N=1для случая монодисперсных пузырей. На основе анализа, проведенного в статье [4], для полидиспесного случая N = 10. Течение происходит в осесимметричной пузырьковой колонне диаметром $D = 0.07 \,\mathrm{m}$ и высотой $H = 0.65 \,\mathrm{m}$ за счет силы Архимеда, пузыри поступают со дна колонны и покидают ее сверху через свободную поверхность. Колонна изначально заполнена водой. Газ в виде пузырей поступает в колонну через вмонтированный в дно соосный осесимметричный аэратор диаметром $d = 0.05 \,\mathrm{m}$. Параметры газа соответствуют воздуху при нормальных условиях. Давление окружающей среды, соответствующее давлению на свободной поверхности, считается равным атмосферному, температура окружающей среды $T = 297 \,\mathrm{K}$, коэффициент поверхностного натяжения $\Sigma = 0.072 \, \text{N/m}$ (вода-воздух).

4. Результаты

Результаты моделирования в полидисперсной и монодисперсной постановках для характерного размера пузырька R_b 0.25 и 1 mm представлены на рис. 1. В качестве критерия для оценки различия решений, полученных в рамках полидисперсного и монодисперсного подходов, использовалось нормированное среднеквадратичное отклонение искомой величины, рассчитанное по всей области течения. Видно, что для пузырьков размером 0.25 mm влияние полидисперсности существенно (величина критерия составляет 10% для скорости и более 60% для объемной доли и межфазной поверхности), в то время как для пузырей 1 mm величина критерия составляет менее 1%.

Расчет равновесной относительной скорости пузырей V_{rel} был проведен также с использованием аналитической нульмерной модели, основанной на уравнении баланса межфазного силового взаимодействия и силы плавучести:

$$\alpha_{ib}(\rho_{ib} - \rho_l)g = \frac{3\rho_l}{8R_{ib}}\alpha_{ib}C_{iD}V_{irel}|V_{irel}|.$$

Замыкающие соотношения взяты из полной математической модели. Расчеты показали хорошее согласие с численными экспериментами (рис. 2) и возможность применимости аналитического выражения для анализа течения.

Исследование изменения характера силового взаимодействия было проведено с использованием аналитической модели, результаты представлены на рис. З. Видно, что с увеличением размеров пузырьков меняется влияние отдельных составляющих силы межфазного трения. При малых размерах пузырька доминирует вязкое трение на поверхности пузырька, при увеличении размера форма пузырька становится отличной от сферической,

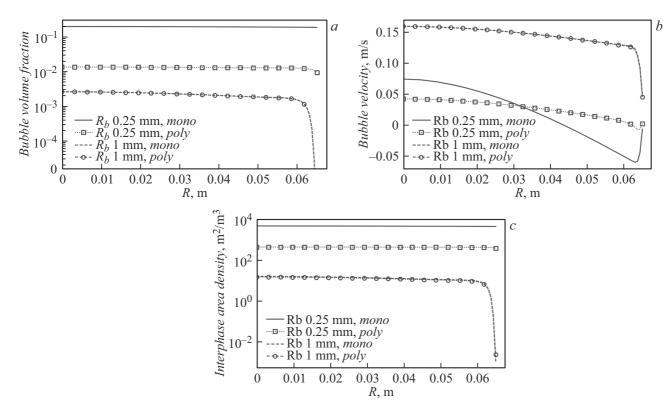


Рис. 1. Распределения объемной доли пузырей (a), скорости пузырей (b) и плотности площади межфазной поверхности (c) в поперечном сечении, отстоящем от дна на 0.45 m, с использованием монодисперсного и полидисперсного подходов.

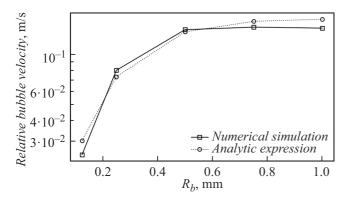
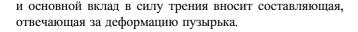


Рис. 2. Сравнение результатов вычисления относительной скорости пузырей при помощи численного моделирования и с использованием аналитического выражения.



Заключение

Анализ силового взаимодействия показал, что при размерах пузырька R_b порядка 1 mm происходит перестройка потока, в частности, меняется характер силы трения (Стокса). Для малых пузырей основной вклад в силу Стокса вносит вязкое трение на границе раз-

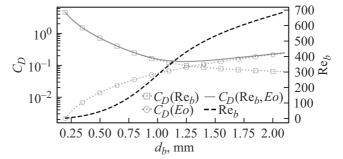


Рис. 3. Изменение полного коэффициента силы Стокса $C_D(\mathrm{Re}_b, Eo)$ в зависимости от размера пузырька $d_b=2R_b$; приведены отдельные составляющие, описывающие зависимость от вязкого трения $C_D(\mathrm{Re}_b)$, и от формы пузырька $C_D(Eo)$. Приведена кривая изменения числа Рэйнольдса пузырька Re_b от размера пузырька.

дела фаз, а для больших пузырей сила Стокса определяется деформацией пузырька. Результаты численного моделирования хорошо согласуются с предсказаниями предложенной аналитической модели для определения равновесной скорости пузырей, основанной на балансе межфазного силового взаимодействия. Изменение характера силового взаимодействия фаз при увеличении размера пузырька приводит к уменьшению влияния полидисперсности пузырьковой фазы на структуру течений в пузырьковых реакторах колонного типа, что

позволяет использовать экономичные модели монодисперсной среды.

Благодарности

Статья выполнена в рамках Государственного задания, номер темы FFUG-2024-0005.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] F. Wang, N.D. Jin, D.Y. Wang, Y.F. Han, D.Y. Liu. Experimental Thermal and Fluid Science, **88**, 361 (2017). DOI: 10.1016/j.expthermflusci.2017.06.017
- [2] М.А. Пахомов, В.И. Терехов. ЖТФ, **85** (9), 8 (2015). [М.А. Pakhomov, V.I. Terekhov. Tech. Phys., **60** (9), 1268 (2015). DOI: 10.1134/S1063784215090157]
- [3] M. Raković, D. Radenković, A. Ćoćić, M. Lečić. Advances in Mechanical Engineering, 14 (4), 1 (2022). DOI: 10.1177/16878132221094909
- [4] A. Chernyshev, A. Schmidt, V. Chernysheva. Water, 15, 778 (2023). DOI: 10.3390/w15040778
- [5] E. Krepper, D. Lucas, T. Frank, H.-M. Prasser, P.J. Zwart. Nucl. Eng. Des., 238, 1690 (2008).DOI: 10.1016/j.nucengdes.2008.01.004
- [6] I. Roghair, Y.M. Lau, N.G. Deen, H.M. Slagter, M.W. Baltussen, M. Van Sint Annaland, J.A.M. Kuipers. Chem. Eng. Sci., 66, 3204 (2011). DOI: 10.1016/j.ces.2011.02.030
- [7] A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa. Chem. Eng. Sci., 57, 1849 (2002). DOI: 10.1016/S0009-2509(02)00085-4
- [8] F.R. Menter, M. Kuntz, R. Langtry. Heat Mass Transf., 4, 625 (2003).
- [9] Y. Sato, K. Sekoguchi. Int. J. Multiphase Flow, 10, 79 (1975).DOI: 10.1016/0301-9322(75)90030-0