01

Температурная зависимость частоты Дебая и параметра Грюнайзена в области низких температур

© М.Н. Магомедов

Институт проблем геотермии и возобновляемой энергетики — филиал Объединенного института высоких температур РАН, 367030 Махачкала, Россия

e-mail: mahmag4@mail.ru

Поступило в Редакцию 17 января 2025 г. В окончательной редакции 5 сентября 2025 г. Принято к публикации 25 сентября 2025 г.

Показано, что при наличии функциональной зависимости температуры Дебая $\Theta(T)$ в выражения для энтропии и изохорной теплоемкости должны входить члены с первой и второй производными функции $\Theta(T)$ по температуре. Поэтому для выполнимости третьего начала термодинамики для n-мерного кристалла функция $\Theta(T)$ и температурная зависимость параметра Грюнайзена $\gamma(T)$ при низких температурах должны изменяться согласно зависимости $(T/\Theta_0)^{n+1}$. При этом значение Θ_0 отличается от величины Θ_{0s} , которое определяется из экспериментальной температурной зависимости теплоемкости без учета зависимости $\Theta(T)$. Показано, что если функция $\Theta(T)$ уменьшается, то функция $\gamma(T)$ возрастает с ростом температуры от значений $\Theta_0 > \Theta_{0s}$ и $\gamma_0 > \gamma_{0s}$ соответственно. При средних температурах функция $\Theta(T)$ имеет минимум, а функция $\gamma(T)$ имеет максимум. Если функция $\gamma(T)$ возрастает от $\gamma_0 < \gamma_{0s}$ до минимума. Предложен метод определения температурной зависимости функции $\gamma(T)$

Ключевые слова: энтропия, изохорная теплоемкость, температура Дебая, параметр Грюнайзена, графен.

DOI: 10.61011/JTF.2025.12.61806.6-25

Введение

Температура Дебая (Θ) является важным параметром, определяющим различные свойства вещества. Величина Θ также приближенно указывает температурную границу, ниже которой начинают сказываться квантовые эффекты. Поэтому определению величины Θ уделяется большое внимание как в экспериментальных, так и в теоретических работах.

В традиционной теории Дебая предполагается, что величина Θ не зависит от температуры (T) [1,2]. Тогда выражения для вычисления свободной энергии (F_D) , энтропии $(S_D=-(\partial F_D/\partial T)_V)$ и изохорной теплоемкости $(C_D=T(\partial S_D/\partial T)_V=-T(\partial^2 F_D/\partial T^2)_V)$ n-мерного молекулярного кристалла получаются в виде

$$f_D^* = \frac{F_D}{nN_A n_i k_B} = \frac{n\Theta}{2(n+1)} + T \ln \left[1 - \exp\left(-\frac{\Theta}{T}\right) \right] - \frac{T}{n} \operatorname{Deb}_n\left(\frac{\Theta}{T}\right), \tag{1}$$

$$s_{D}^{*} = \frac{S_{D}}{nN_{A}n_{i}k_{B}} = -\left(\frac{\partial f_{D}^{*}}{\partial T}\right)_{V} = -\ln\left[1 - \exp\left(-\frac{\Theta}{T}\right)\right] + \frac{(n+1)}{n}\operatorname{Deb}_{n}\left(\frac{\Theta}{T}\right),$$
(2)

$$c_D^* = \frac{C_D}{nN_A n_i k_B} = -T \left(\frac{\partial^2 f_D^*}{\partial T^2}\right)_V$$
$$= (n+1) \operatorname{Deb}_n \left(\frac{\Theta}{T}\right) - \frac{n\left(\frac{\Theta}{T}\right)}{\exp\left(\frac{\Theta}{T}\right) - 1}. \tag{3}$$

Здесь N_A — число Авогадро, n_i — число ионов (или атомов) в молекуле, k_B — постоянная Больцмана, V — объем кристалла, n=1,2,3, $\mathrm{Deb}_n(x)$ — функция Дебая для n-мерного кристалла, которая имеет вид [3]:

$$Deb_{n}(x) = \frac{n}{x^{n}} \int_{0}^{x} \frac{t^{n}}{[\exp(t) - 1]} dt.$$
 (4)

При низких температурах функцию $\mathrm{Deb}_n(x)$ можно преобразовать к виду

$$\operatorname{Deb}_n(x \gg 1) \cong \frac{nA_n}{r^n} - n \exp(-x) \cong \frac{nA_n}{r^n},$$
 (5)

где $A_n=n!\,\xi\,(n+1),\;\;\xi\,(n+1)$ — дзета-функция Римана [3]: $\xi\,(2)=\pi^2/6,\;\xi\,(3)=1.202057,\;\;\xi\,(4)=\pi^4/90,\;$ т. е. $A_1=\pi^2/6,\;A_2=2.404114,\;A_3=\pi^4/15.$

Значения Θ для конкретных веществ, экспериментально определенные по температурной зависимости теплоемкости в предположении о независимости Θ от T, представлены во многих справочниках и монографиях. Вместе с тем, у многих веществ обнаруживается зависимость величины Θ от температуры [1,2,4-11]. Если принять во внимание наличие такой зависимости, то выражения (2)-(3) будут содержать производные

2408 М.Н. Магомедов

от функции $\Theta(T)$ по температуре и имеют более сложный вид [12]:

$$s^{*} = \frac{S}{nN_{A}n_{i}k_{B}} = s_{D}^{*} - \left[\frac{n}{2(n+1)} + \left(\frac{T}{\Theta}\right)\operatorname{Deb}_{n}\left(\frac{\Theta}{T}\right)\right] \times \left(\frac{\partial\Theta}{\partial T}\right)_{V},$$

$$c^{*} = \frac{C}{nN_{A}n_{i}k_{B}} = c_{D}^{*}\left[1 - \left(\frac{T}{\Theta}\right)\left(\frac{\partial\Theta}{\partial T}\right)_{V}\right]^{2} - \left[\frac{n}{2(n+1)} + \left(\frac{T}{\Theta}\right)\operatorname{Deb}_{n}\left(\frac{\Theta}{T}\right)\right]T\left(\frac{\partial^{2}\Theta}{\partial T^{2}}\right)_{V},$$

$$(7)$$

где S и C — это энтропия и изохорная теплоемкость вещества, в котором обнаруживается зависимость величины Θ от температуры.

Для области низких температур ($T \ll \Theta(T)$) данные выражения имеют вид

$$s_{low}^{*} = \left(\frac{S}{nN_{A}n_{i}k_{B}}\right)_{low} \cong s_{D \, low}^{*} - \frac{n}{2(n+1)} \left(\frac{\partial\Theta}{\partial T}\right)_{V}, \quad (8)$$

$$c_{low}^{*} = \left(\frac{C}{nN_{A}n_{i}k_{B}}\right)_{low} \approx c_{D \, low}^{*} \left[1 - \frac{T}{\Theta} \left(\frac{\partial\Theta}{\partial T}\right)_{V}\right]^{2}$$

$$- \frac{n}{2(n+1)} T \left(\frac{\partial^{2}\Theta}{\partial T^{2}}\right)_{V}. \quad (9)$$

Здесь функции $s_{D low}^*$ и $c_{D low}^*$ имеют традиционный дебаевский вид [1,2]:

$$s_{D low}^{*} \cong \frac{(n+1)}{n} \operatorname{Deb}_{n} \left(\frac{\Theta}{T} \gg 1\right) = (n+1) A_{n} \left(\frac{T}{\Theta(T)}\right)^{n},$$

$$(10)$$

$$c_{D low}^{*} \cong (n+1) \operatorname{Deb}_{n} \left(\frac{\Theta}{T} \gg 1\right) = (n+1) n A_{n} \left(\frac{T}{\Theta(T)}\right)^{n}.$$

$$(11)$$

Из (9) видно, что если параметр Θ в области низких температур имеет функциональную зависимость от температуры, то величина $\Theta(T)$ должна определяться из экспериментальной зависимости $c^*(T)_{low}$ с помощью дифференциального уравнения. Однако на данном этапе величину $\Theta(T)$ определяют с помощью степенного уравнения (11) [1,2,4–11].

При низких температурах функция $\Theta(T)$ должна иметь такую зависимость, чтобы выражения (8) и (9) удовлетворяли третьему началу термодинамики в "сильной" формулировке Планка

$$\lim_{T \to 0 \text{ K}} \frac{S}{nN_A n_i k_B} = 0, \quad \lim_{T \to 0 \text{ K}} \frac{C}{nN_A n_i k_B} = 0.$$
 (12)

Это накладывает определенные ограничения на функциональную зависимость $\Theta(T)$. В настоящей работе изучены эти ограничения и получена корректная зависимость для функции $\Theta(T)$ в области низких температур.

1. Метод расчета и результаты

Так как в большинстве случаев экспериментально определенная зависимость $\Theta(T)$ убывает с ростом температуры от значения $\Theta_0 = \Theta(T=0\,\mathrm{K})$ [1,2,4–11], примем для функции $\Theta(T)$ при низких температурах формулу вида

$$\Theta(T)_{low} = \Theta_0 \left[1 - \chi_n \left(\frac{T}{\Theta_0} \right)^k \right], \tag{13}$$

где χ_n — численный коэффициент.

Тогда из (8)-(11), ограничиваясь при $T\ll\Theta_0$ линейными по $(T/\Theta_0)^n$ членами, легко получить

$$s_{low}^{*} \cong s_{D \, low}^{*} - \frac{n}{2(n+1)} \left(\frac{\partial \Theta}{\partial T}\right)_{V}$$

$$= (n+1)A_{n} \left(\frac{T}{\Theta_{0}}\right)^{n} + \frac{n}{2(n+1)} k \chi_{n} \left(\frac{T}{\Theta_{0}}\right)^{k-1}, \quad (14)$$

$$c_{low}^{*} \cong c_{D \, low}^{*} - \frac{n}{2(n+1)} T \left(\frac{\partial^{2} \Theta}{\partial T^{2}}\right)_{V}$$

$$= (n+1)n A_{n} \left(\frac{T}{\Theta_{0}}\right)^{n} + \frac{n}{2(n+1)} k(k-1) \chi_{n} \left(\frac{T}{\Theta_{0}}\right)^{k-1}. \quad (15)$$

Из (14) и (15) видно, что при любом χ_n функции s_{low}^* и c_{low}^* равны нулю при T=0 К. При этом для соблюдения зависимости $c_{low}^* \propto (T/\Theta_0)^n$ должно выполняться условие $k \geq n+1$. Кроме того, чтобы при $\chi_n < 0$ выполнялось $s_{low}^* \geq 0$ и $c_{low}^* \geq 0$, должно соблюдаться условие

$$\frac{2(n+1)^2}{nk}A_n\left(\frac{T}{\Theta_0}\right)^{n+1-k} \ge -\chi_n = |\chi_n| > 0.$$
 (16)

Из (16) следует, что для того чтобы величина $\chi_n < 0$ не зависела от температуры, необходимо принять k = n+1. Также при $\chi_n < 0$ и k > n+1 из (16) следует наличие максимумов у функций s_{low}^* и c_{low}^* при $T_{\rm max}/\Theta_0 > 0$, после которых функции s_{low}^* и c_{low}^* будут уменьшаться с ростом T/Θ_0 . Так как наличие этих максимумов противоречит экспериментам, мы должны принять k = n+1. Значения максимумов легко найти из (14) и (15):

$$\frac{T_{\max(s)}}{\Theta_0} = \left[\frac{2(n+1)^2 A_n}{k(k-1)|\chi_n|} \right]^{1/[k-(n+1)]},$$

$$\frac{T_{\max(c)}}{\Theta_0} = \left[\frac{2(n+1)^2 n A_n}{k(k-1)^2 |\chi_n|} \right]^{1/[k-(n+1)]}.$$
(17)

Из (17) видно, что для того чтобы температуры максимумов совпадали, т.е. чтобы выполнялось условие: $T_{\max(s)} = T_{\max(c)}$, также должно выполняться k = n + 1. При этом значения максимумов уходят в бесконечность, т.е. становятся недостижимыми. Таким образом, можно

утверждать, что для *п*-мерного кристалла входящие в (13) параметры должны удовлетворять условиям

$$k = n + 1, \quad \chi_n > -\frac{2(n+1)A_n}{n}.$$
 (18)

Из зависимости (13) можно получить выражение для параметра Грюнайзена в виде

$$\gamma(T)_{low} = -\left(\frac{\partial \ln \Theta(T)_{low}}{\partial \ln V}\right)_{T}$$

$$= \gamma_{0} + \frac{\chi_{n}\left[(n+1)\gamma_{0} + \left(\frac{\partial \ln \chi_{n}}{\partial \ln v}\right)_{T}\right]\left(\frac{T}{\Theta_{0}}\right)^{n+1}}{\left[1 - \chi_{n}\left(\frac{T}{\Theta_{0}}\right)^{n+1}\right]}$$

$$\cong \gamma_{0} + \chi_{n}\left[(n+1)\gamma_{0} - \lambda_{0}\right]\left(\frac{T}{\Theta_{n}}\right)^{n+1}.$$
(19)

Здесь введены следующие обозначения:

$$\gamma_0 = -\left(\frac{\partial \ln \Theta_0}{\partial \ln V}\right)_{T=0 \text{ K}}, \ \lambda_n = -\left(\frac{\partial \ln \chi_n}{\partial \ln V}\right)_T.$$
(20)

Параметр Грюнайзена определяет степень возрастания температуры Дебая при изотермическом сжатии кристалла. Параметр λ_n определяет степень увеличения значения χ_n при изотермическом сжатии кристалла. Заметим, что в литературе (в зависимости от метода экспериментального определения) встречаются два параметра Грюнайзена: вибрационный и термодинамический [4,13–15]. Вибрационный параметр Грюнайзена определяется по изменению частоты колебаний атомов (ω) при сжатии кристалла: $\gamma = (\partial \ln \omega / \partial \ln V)_T$. Термодинамический параметр Грюнайзена определяется по соотношению изобарного коэффициента теплового расширения ($\alpha_p = (\partial \ln V / \partial T)_P$), изотермического модуля упругости ($B_T = -V(\partial P/\partial V)_T$), объема (V) и изохорной теплоемкости (C): $\gamma_{\text{Th}} = \alpha_p B_T V/C$. Отметим, что при наличии температурной зависимости $\Theta(T)$ данное выражение для γ_{Th} некорректно [15]. Это связано с тем, что, согласно (7), в теплоемкость войдут члены с первой и второй производными функции $\Theta(T)$ по температуре, а величина $\alpha_p B_T = (\partial S/\partial V)_T$ будет зависеть от первой производной функции $\Theta(T)$ по температуре. Это приводит к отличию величин γ и γ_{Th} . Здесь мы изучаем вибрационный параметр Грюнайзена γ .

При k=n+1 зависимость в (15) будет соответствовать экспериментальной, но вычисление величины Θ_0 необходимо будет производить уже не из (11), а из выражения, которое следует из (15):

$$c_{low}^* \cong \left[(n+1)nA_n + \frac{n^2}{2}\chi_n \right] \left(\frac{T}{\Theta_0} \right)^n.$$
 (21)

Это приводит к поправке в рассчитанную из (11) температуру Дебая при $T=0\,\mathrm{K}$. Приравнивая выражения для теплоемкостей из (11) и (21), можно получить

$$\Theta_0 \cong \Theta_{0s} \left[1 + \frac{n}{2(n+1)A_n} \chi_n \right]^{1/n}, \tag{22}$$

где Θ_{0s} — величина, определенная из экспериментальных значений теплоемкости без учета зависимости $\Theta(T)_{low}$, т.е. Θ_{0s} рассчитывается из степенного уравнения (11).

Из формулы (22) выражение для параметра Грюнайзена примет вид

$$\gamma_0 = -\left(\frac{\partial \ln \Theta_0}{\partial \ln V}\right)_{T=0 \text{ K}} = \gamma_{0s} + \frac{\chi_n \lambda_n}{2(n+1)A_n + n\chi_n}. \quad (23)$$

где γ_{0s} — это величина параметра Грюнайзена, определенная из функции $\Theta_{0s}(V)$, т.е. без учета температурной зависимости $\Theta(T)_{low}$:

$$\gamma_{0s} = -\left(\frac{\partial \ln \Theta_{0s}}{\partial \ln V}\right)_{T=0 \text{ K}}.$$

Таким образом, при $\chi_n > 0$ с ростом температуры функция $\Theta(T)_{low}$ уменьшается (это следует из (13)), а функция $\gamma(T)_{low}$ возрастает (это следует из (19)). Функция $\Theta(T)_{low}$ уменьшается от значений $\Theta_0 > \Theta_{0s}$ (это неравенство следует из (22)), а функция $\gamma(T)_{low}$ возрастает от значения $\gamma_0 > \gamma_{0s}$ (это следует из (23)). Так как при высоких температурах $(T \gg \Theta_0)$ функция $\Theta(T)$ не уходит в область отрицательных значений (как это должно быть следуя (13)), а имеет положительное значение, сравнимое с Θ_0 (как это следует из экспериментальных данных), в области средних температур функция $\Theta(T)$ должна иметь минимум. Функция $\gamma(T)$ при высоких температурах не уходит в бесконечность (как это должно быть, следуя (19)), а имеет конечное значение, поэтому в области средних температур функция $\gamma(T)$ должна иметь максимум. Отметим, что из наших формул не следует наличие указанных экстремумов, так как эти формулы получены при условии $T \ll \Theta_0$. Поэтому из этих формул нельзя оценить положение этих экстремумов. Однако существование этих экстремумов следует из физического определения функций $\Theta(T)$ и $\gamma(T)$, согласно которым эти функции должны иметь конечное положительное значение. На наличие экстремумов было также указано во многих работах, например, в [1,2,4,5,10].

При $\chi_n < 0$ картина меняется на противоположную: функция $\Theta(T)_{low}$ возрастает с ростом температуры от значения $\Theta_0 < \Theta_{0s}$, а функция $\gamma(T)_{low}$ уменьшается от $\gamma_0 < \gamma_{0s}$. В обоих случаях для выполнения третьего начала термодинамики в виде (12) изменение функций $\Theta(T)_{low}$ и $\gamma(T)_{low}$ должно быть пропорционально зависимости $(T/\Theta_0)^{n+1}$. Отметим, что в случае $\chi_n > 0$ и k > n+1, либо при $\chi_n = 0$, функции $s^*(T)_{low}$ и $c^*(T)_{low}$ будут следовать дебаевским зависимостям, а величины Θ_0 и γ_0 будут совпадать со значениями Θ_{0s} и γ_{0s} , ввиду исчезновения поправок к дебаевским зависимостям в формулах (14) и (15). В случае $\chi_n = 0$ это очевидно. А в случае $\chi_n > 0$ и k > n+1 вторые слагаемые в (14) и (15) при T/Θ_0 , близком к нулю, будут намного меньше первых слагаемых, и поэтому их

2410 *М.Н. Магомедов*

Значения температур Дебая, которые определены из теплоем-кости и из упругих свойств кристалла [16], и рассчитанные из них с помощью (25) значения χ_3

Crystal	Θ_{0s} , K	$\Theta_0^{\mathrm{el}},\mathrm{K}$	χ3
C-diam	2220	2252	0.7597
Si	645	655	0.8180
Ge	374	379	0.7039
3C-SiC	1080	1108	1.3821
c-BN	1850	1900	1.4424
AlN	825	903	5.3907
AlP	588	553	-2.9119
AlAs	417	411	-0.7368
ZnO	399.5	418.8	2.6330
ZnS	340	349	1.4119

можно не учитывать в расчетах как величины Θ_0 , так и значения γ_0 .

Для оценки величины χ_n можно предложить следующий метод. Известно, что температуру Дебая можно определить также и по модулю упругости кристалла $(B_T = -V(\partial P/\partial V)_T)$ [4,16–22]. Однако значение, определенное из модуля упругости $\Theta_0^{\rm el}$, отличается от значения температуры Дебая, которое определяется из температурной зависимости изохорной теплоемкости (Θ_{0s}), т.е. из формулы (11). Так как при расчетах модуля упругости кристалла не используются производные свободной энергии по температуре, можно предположить, что значение $\Theta_0^{\rm el}$ совпадает со значением Θ_0 , или очень близко к нему. Тогда оценку величины χ_n можно сделать из выражения, которое следует из (22):

$$\chi_n = \frac{2(n+1)A_n}{n} \left[\left(\frac{\Theta_0^{\text{el}}}{\Theta_{0s}} \right)^n - 1 \right]. \tag{24}$$

Для трехмерного кристалла (24) преобразуется к виду

$$\chi_3 = \frac{8\pi^4}{45} \left[\left(\frac{\Theta_0^{el}}{\Theta_{0s}} \right)^3 - 1 \right] = 17.317 \left[\left(\frac{\Theta_0^{el}}{\Theta_{0s}} \right)^3 - 1 \right].$$
 (25)

В таблице представлены значения χ_3 , которые рассчитаны с помощью (25) для некоторых кристаллов. Значения температур Дебая, которые определены из теплоемкости (Θ_{0s}) и из упругих свойств ($\Theta_0^{\rm el}$) кристалла при $T=0\,\mathrm{K}$, взяты из работы [16, табл. 4].

Из таблицы видно, что в большинстве случаев функция $\Theta(T)_{low}$ убывает с ростом температуры от величины $\Theta_0^{\rm el}$. Отметим, что величины Θ_{0s} и $\Theta_0^{\rm el}$, как это указано в обзоре [16], имеют определенный интервал дисперсии, который довольно разный у разных авторов. Поэтому оценки величины χ_3 из таблицы также

имеют приближенный характер. Однако оценки функции $\Theta(T)_{low}$, проведенные другими, более сложными методами в работах [1,2,4–11], также указывают, что для большинства изученных веществ функция $\Theta(T)_{low}$ убывает с ростом температуры. Отметим также, что в [15] нами был предложен другой метод для оценки величины χ_n однокомпонентных кристаллов, исходящий из параметров парного межатомного потенциала. Однако метод из (25), несмотря на свою простоту, применим и для многокомпонентных кристаллов.

2. Обсуждение результатов

К сожалению, не все зависимости, полученные для функции $\Theta(T)_{low}$, удовлетворяют вышеуказанным условиям: некорректные зависимости были получены во многих работах. Например, для трехмерных кристаллов в [8,16] была получена квадратичная зависимость: $\Theta(T)_{low} \propto T^2$, а в работе [23] было получено линейное возрастание функции $\Theta(T)_{low}$ с ростом T. Квадратичная зависимость для $\Theta(T)_{low}$ приводит к появлению линейной зависимости энтропии и теплоемкости от температуры в (8) и (9), а линейная зависимость для $\Theta(T)_{low}$ приводит к нарушению третьего начала термодинамики (12) для энтропии.

В [11] для функции $\Theta(T)$ была предложена формула с шестью подгоночными константами: "calorimetric Debye temperature", которая имеет вид [11, Eq. (12)]:

$$\Theta_{cal}(T) = a_1 \exp(-b_1 T) + a_2 [1 - \exp(-b_2 T^2)] + c.$$

Однако подстановка данной зависимости в формулу (8) приводит к нарушению третьего начала термодинамики (12) из-за следующих соотношений:

$$\left(\frac{\partial \Theta_{cal}}{\partial T}\right)_V = -a_1b_1 \exp(-b_1T) + a_2b_2zT^{z-1} \exp(-b_1T^2),$$

$$\lim_{T\to 0} \left(\frac{\partial \Theta_{cal}}{\partial T}\right)_{V} = -a_1 b_1 \neq 0.$$

В последнее время модель Дебая также используют для изучения теплоемкости двух-(2D) [24,25] и одномерных (1D) структур [26]. При этом в [24] для 2D-слоя Ne было получено линейное убывание функции $\Theta(T)_{low}$ с ростом температуры. А в [25] для 2D-графена был получен линейный рост функции $\Theta(T)_{low}$ с ростом температуры. Однако для выполнения третьего начала термодинамики в виде (12) изменение функции $\Theta(T)_{low}$ должно быть для 2D-структур пропорционально зависимости $(T/\Theta_0)^3$, а для 1D-структур — пропорционально $(T/\Theta_0)^2$. Использование некорректной зависимости для функции $\Theta(T)_{low}$ может привести к некорректным температурным зависимостям других свойств кристалла, которые связаны с данной функцией.

Чтобы в теоретических моделях избавиться от проблемы корректного учета температурной зависимости температуры Дебая, можно пойти по простому пути, предположив (как это сделали Эйнштейн и Дебай), что функция Θ зависит только от плотности и не изменяется при изохорическом росте температуры. Так было сделано в работах [20–22,27,28], где величину Θ рассчитывали либо из упругих свойств кристалла [20–22], либо из параметров парного межатомного потенциала [27,28]. Этот метод позволил как соблюсти третье начало термодинамики, так и получить хорошее согласие с экспериментальными данными.

Заключение

Если при низких температурах температура Дебая для n-мерного кристалла изменяется с температурой, то значения $\Theta(T)$ должны определяться из экспериментальной зависимости $c^*(T)_{low}$ путем решения дифференциального уравнения (7) или (9), а не из степенного уравнения (11). При этом термодинамический параметр Грюнайзена должен отличаться от вибрационного параметра Грюнайзена: $\gamma_{\text{Th}} \neq \gamma$.

Для выполнения третьего начала термодинамики функция $\Theta(T)$ при низких температурах должна изменяться согласно зависимости

$$\Theta(T)_{low} = \Theta_0[1 - \chi_n (T/\Theta_0)^{n+1}].$$

При этом параметр Грюнайзена должен изменяться по зависимости (19). Для нахождения значений Θ_0 и χ_n можно также использовать степенное уравнение, которое следует из формул (15) и (18):

$$c^*(T)_{low} \cong c_D(T)^*_{low} + \frac{n^2}{2} \chi_n \left(\frac{T}{\Theta_0}\right)^n$$
$$= n \left[(n+1)A_n + \frac{n}{2} \chi_n \right] \left(\frac{T}{\Theta_0}\right)^n.$$

Показано, что при $\chi_n>0$ функция $\Theta(T)_{low}$ уменьшается, а функция $\gamma(T)_{low}$ возрастает с ростом температуры от значений $\Theta_0>\Theta_{0s}$ и $\gamma_0>\gamma_{0s}$ соответственно. В области средних температур функция $\Theta(T)$ должна иметь минимум, а функция $\gamma(T)$ должна иметь максимум. При $\gamma_n<0$ картина меняется на противоположную: функция $\gamma(T)_{low}$ возрастает с ростом температуры от значения $\gamma(T)_{low}$ до максимума, а функция $\gamma(T)_{low}$ уменьшается от $\gamma_0<\gamma_{0s}$ до минимума.

При любом $\chi_n \neq 0$ значение Θ_0 отличается от величины Θ_{0s} , которое определяется из экспериментальных значений теплоемкости без учета зависимости $\Theta(T)_{low}$. В случае $\chi_n > 0$ и k > n+1, либо при $\chi_n = 0$ функции $s^*(T)_{low}$ и $c^*(T)_{low}$ будут следовать дебаевским зависимостям, а величины Θ_0 и γ_0 будут совпадать со значениями Θ_{0s} и γ_{0s} ввиду исчезновения поправок к дебаевским зависимостям.

Благодарности

Автор выражает благодарность С.П. Крамынину, К.Н. Магомедову, Н.Ш. Газановой, З.М. Сурхаевой и М.М. Гаджиевой за помощь в работе.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 25-23-00001, https://rscf.ru/project/25-23-00001/

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Г. Лейбфрид. Микроскопическая теория механических и тепловых свойств кристаллов (ГИФМЛ, М. 1963) [G. Leibfried. Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle (Springer-Verlag, Berlin, 1955)]
- [2] А. Марадудин, Е. Монтролл, Дж. Вейсс. Динамическая теория кристаллической решетки в гармоническом приближении (Мир, М., 1965) [A.A. Maradudin, E.W. Montroll, G.H. Weiss. Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, London 1963)]
- [3] М. Абрамовиц, И. Стиган (ред.) Справочник по специальным функциям (Наука, М., 1979) [M. Abramowitz, I. Stegun (eds.) Handbook of Mathematical Functions (National Bureau of Standards, NY., 1964) https://www.math.hkbu.edu.hk/support/aands/intro.htm]
- [4] T.H.K. Barron, J.G. Collins, G.K. White. Adv. Phys., 29 (4), 609 (1980). DOI: 10.1080/00018738000101426
- [5] J. Rosén, G. Grimvall. Phys. Rev. B, 27 (12), 7199 (1983).DOI: 10.1103/PhysRevB.27.7199
- [6] T. Tohei, A. Kuwabara, F. Oba, I. Tanaka. Phys. Rev. B, 73 (6), 064304 (2006). DOI: 10.1103/PhysRevB.73.064304
- [7] S. Ahmed, M. Zafar, M. Shakil, M.A. Choudhary. Chinese Phys., B 25 (3), 036501 (2016).
 DOI: 10.1088/1674-1056/25/3/036501
- [8] R. Pässler. Rec. Prog. Mater., **3** (4), 1 (2021). DOI: 10.21926/rpm.2104042
- [9] R. Tomaschitz. J. Phys. Chem. Solids, 152, 109773 (2021). DOI: 10.1016/j.jpcs.2020.109773
- [10] A. Aliakbari, P. Amiri. Mater. Chem. Phys., **270**, 124744 (2021). DOI: 10.1016/j.matchemphys.2021.124744
- J. Biele, M. Grott, M.E. Zolensky, A. Benisek, E. Dach. Int.
 J. Thermophys., 43 (9), 144 (2022).
 DOI: 10.1007/s10765-022-03046-5
- [12] М.Н. Магомедов. ФТТ, **45** (1), 33 (2003). [М.N. Magomedov. Phys. Solid State, **45** (1), 32 (2003).] DOI: 10.1134/1.1537405
- [13] И.В. Александров, А.Ф. Гончаров, А.Н. Зисман, С.М. Стишов. ЖЭТФ, **93** (8), 680 (1987). [I.V. Aleksandrov, A.F. Goncharov, A.N. Zisman, S.M. Stishov. Sov. Phys. JETP, **66** (2), 384 (1987). http://jetp.ras.ru/cgi-bin/dn/e_066_02_0384.pdf]
- [14] O.L. Anderson. Geophys. J. Intern., 143 (2), 279 (2000).DOI: 10.1046/j.1365-246X.2000.01266.x

2412 *М.Н. Магомедов*

[15] М.Н. Магомедов. ЖТФ, **80** (9), 150 (2010). [М.N. Magomedov. Tech. Phys., **55** (9), 1382 (2010)]. DOI: 10.1134/S1063784210090240

- [16] R. Pässler. Phys. Stat. Solidi (b), 247 (1), 77 (2010). DOI: 10.1002/pssb.200945158
- [17] O.L. Anderson. J. Phys. Chem. Solids, 24 (7), 909 (1963). DOI: 10.1016/0022-3697(63)90067-2
- [18] A. Konti. Debye temperature of some cubic elements and alkali halides (Doctoral diss., University of Ottawa, Canada, 1970), 92 p. https://ruor.uottawa.ca/server/api/core/bitstreams/ed4a321b-30a3-4fcc-9395-9f39db 316a7b/content
- [19] H. Siethoff, K. Ahlborn. Phys. Stat. Solidi (b), 190 (1), 179 (1995). DOI: 10.1002/pssb.2221900126
- [20] H. Righi, M. Mokhtari, F. Dahmane, S. Benalia, M. Merabet, L. Djoudi, Y. Djabellah. Chinese J. Phys., 66, 124 (2020). DOI: 10.1016/j.cjph.2020.04.017
- [21] A. Azam, N. Erum, R. Sharma, V. Srivastava, S. Al-Qaisi, A.A. Ghfar, H. Ullah, Z. Ahmed. Opt. Quant. Electr., 56 (6), 1001 (2024). DOI: 10.1007/s11082-024-06891-w
- [22] N.O. Nenuwe, S.E. Kpuwhara. Phys. B: Cond. Matt., 685, 416002 (2024). DOI: 10.1016/j.physb.2024.416002
- [23] N.L. Lethole, P. Mukumba. Materials, 17 (15), 3879 (2024). DOI: 10.3390/ma17153879
- [24] S. Ramachandran, O.E. Vilches. Phys. Rev. B, 76 (7), 075404 (2007). DOI: 10.1103/PhysRevB.76.075404
- [25] X.X. Ren, W. Kang, Z.F. Cheng, R.L. Zheng. Chinese Phys. Lett., 33 (12), 126501 (2016).
 DOI: 10.1088/0256-307X/33/12/126501
- [26] M.S. Barabashko, M.I. Bagatskii, A.V. Dolbin,
 V.V. Sumarokov. Low Temp. Phys., 49 (8), 979 (2023).
 DOI: 10.1063/10.0020166
- [27] М.Н. Магомедов. ЖТФ, **83** (9), 56 (2013). [М.N. Magomedov. Tech. Phys., **58** (9), 1297 (2013). DOI: 10.1134/S106378421309020X]
- [28] М.Н. Магомедов. ФТТ, **64** (7), 765 (2022). DOI: 10.21883/FTT.2022.07.52559.319 [M.N. Magomedov. Phys. Sol. State, **64** (7), 765 (2022). DOI: 10.21883/PSS.2022.07.54579.319]