Фотоэлектрические явления в барьерах Шоттки Cu(Al, ln)/p-Cu ln_3Se_5

© И.В. Боднарь ¶, В.Ю. Рудь*¶¶, Ю.В. Рудь+

Белорусский государственный университет информатики и радиоэлектроники, 220031 Минск, Белоруссия

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 5 апреля 2006 г. Принята к печати 17 апреля 2006 г.)

На кристаллах p-CuIn $_3$ Se $_5$ созданы структуры и исследованы фотоэлектрические явления в барьерах Шоттки Cu/p-CuIn $_3$ Se $_5$, Al/p-CuIn $_3$ Se $_5$ и In/p-CuIn $_3$ Se $_5$. Получены первые спектры квантовой эффективности фотопреобразования новых структур. Обсуждается характер межзонных переходов и определена ширина запрещенной зоны CuIn $_3$ Se $_5$. Сделан вывод о возможностях применения кристаллов CuIn $_3$ Se $_5$ при создании высокоэффективных широкополосных фотопреобразователей оптического излучения.

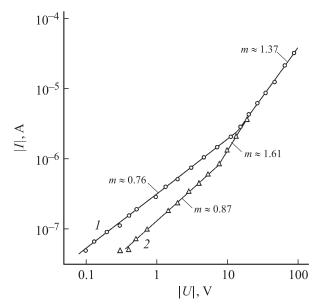
PACS: 73.30.+y, 73.50.Pz, 84.60.Jt

Исследование тройных алмазоподобных соединений $A^IB^{III}C^{VI}_{2}$, являющихся ближайшими электронными аналогами бинарных соединений A^{II}B^{VI}, привели к обнаружению среди них веществ, которые обеспечили создание тонкопленочных солнечных элементов с рекордной для такого типа систем квантовой эффективностью фотопреобразования ~ 20% [1]. Однако в тройных системах $A^{I}-B^{III}-C^{VI}$ взаимодействие между входящими в их состав элементами оказалось настолько богатым, что к настоящему времени уже удалось получить еще более сложные фазы типа $A^{\rm I} B_{2n+1}^{\rm III} C_{3n+2}^{\rm VI}$ (где n=1;2). Такие фазы дали возможность за счет тех же трех компонент, не прибегая к образованию твердых растворов, создавать новые алмазоподобные позиционно упорядоченные соединения, которые отвечают требованиям, предъявляемым к материалам для получения максимальной квантовой эффективности фотопреобразования солнечного излучения в электричество [2]. Одним из таких соединений является тройное соединение CuIn₃Se₅, на котором была продемонстрирована возможность создания фоточувствительных структур, пригодных для использования в фотопреобразователях солнечного излучения [3,4]. Настоящая работа является дальнейшим развитием этого актуального направления и посвящена разработке и первым исследованиям новых барьеров Шоттки на кристаллах CuIn₃Se₅.

Для выращивания кристаллов тройного соединения $CuIn_3Se_5$ применялся метод направленной кристаллизации близкого к стехиометрии данного полупроводника расплава с контролируемой по отношению к стехиометрии добавкой селена. Развитый технологический процесс позволил получить однофазные монокристаллические образцы $CuIn_3Se_5$. Исследования состава и структуры полученных кристаллов позволили установить, что их состав отвечает формуле соединения, а параметры

элементарной ячейки согласуются с приведенными в литературе данными [3,5,6].

Выращенные в данной работе кристаллы CuIn₃Se₅ имели р-тип проводимости и удельное сопротивление $\rho \approx 2 \cdot 10^7 \, \text{Om} \cdot \text{cm}$ при $T = 300 \, \text{K}$. Энергия активации акцепторных центров в полученных кристаллах $E_a \approx 0.4$ эВ. Для создания поверхностно-барьерных структур приготавливались плоскопараллельные пластины со средними размерами $0.5 \times 5.0 \times 5.0$ мм. Поверхность пластин после механической полировки обрабатывалась в полирующем травителе, а затем многократно промывалась в дистиллированной воде и тщательно просушивалась. Барьеры Шоттки создавались методом вакуумного термического напыления тонких пленок чистых металлов меди, алюминия и индия ($d \approx 0.5-1$ мкм) через маску на поверхность пластин p-CuIn₃Se₅. В качестве омического контакта к пластинам CuIn₃Se₅ использовалась серебряная паста.


Измерения стационарных вольт-амперных характеристик (BAX) полученных барьеров Шоттки $Cu/CuIn_3Se_5$ и $Al/CuIn_3Se_5$ позволили выявить, что контакт меди и алюминия, как и индия [3], с поверхностью кристаллов p- $CuIn_3Se_5$ воспроизводимо обнаруживает четкое выпрямление. Пропускное направление в таких барьерах отвечает положительной полярности внешнего смещения U на кристалле p- $CuIn_3Se_5$. Коэффициент выпрямления во всех таких структурах оказался на уровне 1.5-2.0 (рис. 1), что, возможно, связано с низким совершенством периферии впервые полученных барьеров Шоттки. Прямая ветвь ВАХ при U > 10-20 В обычно следует закону

$$I = \frac{U - U_0}{R_0},\tag{1}$$

где U_0 — напряжение отсечки, а R_0 — остаточное сопротивление, которое, как показали наши измерения, практически не зависит от природы использованных в этих экспериментах барьерных металлов и

[¶] E-mail: chemzav@gw.bsuir.unibel.by

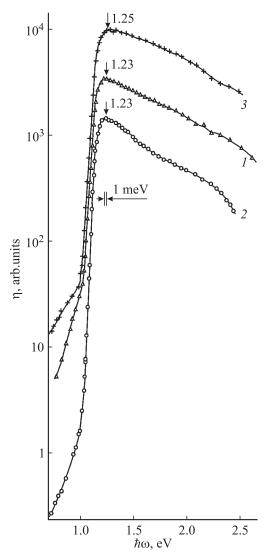

^{¶¶} E-mail: rudvas@spbstu.ru

Рис. 1. Стационарная вольт-амперная характеристика барьера Шоттки Al/p-Cu In_3Se_5 при T=300 К. I — прямая, 2 — обратная ветви характеристики.

в основном определяется свойствами полупроводника CuIn₃Se₅. Для полученных барьеров остаточное сопротивление было достаточно высоким и лежало в пределах $R_0 = 10^6 - 10^7$ Ом при T = 300 К. В исследованном диапазоне напряжений внешнего смещения $0.1 < U < 100 \,\mathrm{B}$ воспроизводимо наблюдается степенная зависимость прямого и обратного тока от напряжения $I \propto U^m$ (рис. 1). Показатель степени $m \approx 0.8 - 0.9$ при $U < 10\,\mathrm{B}$, что позволяет связать прохождение тока либо с туннельным механизмом, либо с ограничением переноса носителей заряда в режиме насыщения скорости дрейфа носителей заряда [7,8]. При $U > 10\,\mathrm{B}$ происходит рост показателя m до значений 1.4-1.6 у разных барьеров, что можно приписать конкуренции вклада токов, ограниченных пространственным зарядом в режимах насыщения скорости и подвижности (безловушечный квадратичный закон) [7,8].

На рис. 2 сопоставлены типичные спектральные зависимости относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ для полученных барьеров Шоттки при их освещении со стороны барьерных пленок. Отметим, что зависимости $\eta(\hbar\omega)$ для барьеров из меди, алюминия и индия на объемных кристаллах CuIn₃Se₅ оказались весьма сходными. Эти барьеры, как видно из рис. 2, обеспечивают фоточувствительность в широком спектральном диапазоне от 0.5 до 2.5 эВ при их освещении со стороны барьеров. Длинноволновый край спектров $\eta(\hbar\omega)$ до энергии фотонов $\hbar\omega\approx 1.0\,\mathrm{sB}$ следует закону Фаулера (рис. 3, кривые 1-3) и из экстраполяции на ось абсцисс $\eta^{1/2} o 0$ оценены значения высоты потенциального барьера $\phi_{\rm b}$ для каждого из использованных металлов (см. таблицу). Эти исследования позволили установить, что наиболее высокие значения $\phi_{\rm b}$ обеспечивают барьеры из меди и алюминия. С ростом энергии фотонов выше 1 эВ в спектрах $\eta(\hbar\omega)$ для полученных барьеров (рис. 2) наступает экспоненциальный рост квантовой эффективности, из которого оценивалась крутизна $S = \delta(\ln\eta)/\delta(\hbar\omega)$. Для всех полученных барьеров крутизна длинноволнового края фоточувствительности оказалась близкой и достигала величины $S \approx 60$ эВ $^{-1}$, что, может быть, предположительно связано с осуществлением прямых межзонных переходов в CuIn $_3$ Se $_5$. Анализ длинноволнового края фоточувствительности барьеров Шоттки с позиций теории межзонного поглощения в полупроводниках [9] для всех полученных структур позволяет выделить четкие прямолинейные участки в зависимостях $(\eta \cdot \hbar\omega)^{1/2} = f(\hbar\omega)$ (рис. 3, кривые 4, 6 и 8) и $(\eta \cdot \hbar\omega)^2 = f(\hbar\omega)$ (рис. 3,

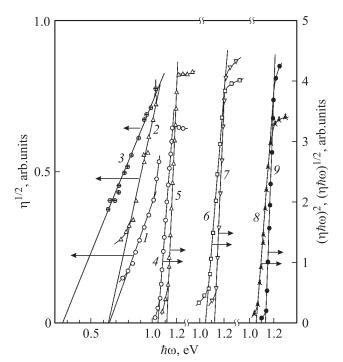


Рис. 2. Спектральные зависимости квантовой эффективности фотопреобразования поверхностно-барьерных структур $\mathrm{Cu}/p\text{-}\mathrm{Cu}\mathrm{In}_3\mathrm{Se}_5$ (*I*), $\mathrm{Al}/p\text{-}\mathrm{Cu}\mathrm{In}_3\mathrm{Se}_5$ (*2*) и $\mathrm{In}/p\text{-}\mathrm{Cu}\mathrm{In}_3\mathrm{Se}_5$ (*3*) при $T=300~\mathrm{K}$ в неполяризованном излучении. Освещение со стороны барьерного контакта. Спектры смещены параллельно оси ординат. Стрелками отмечены значения $\hbar\omega_{\mathrm{max}}$.

кривые 5, 7 и 9). Из экстраполяции этих зависимостей $(\eta \cdot \hbar \omega)^{1/2} \to 0$ и $(\eta \cdot \hbar \omega)^2 \to 0$ можно определить значения ширины запрещенной зоны для непрямых $(E_G^{\rm ind})$ и прямых $(E_G^{\rm d})$ межзонных переходов в кристаллах ${\rm Culn_3Se_5}$ (см. таблицу). Из таблицы видно, что значения ширины запрещенной для непрямых и прямых межзонных переходов $E_G^{\rm ind}$ и $E_G^{\rm d}$ оказались весьма близкими для различных барьеров на кристаллах ${\rm Culn_3Se_5}$, что и должно быть при условии отсутствия химического взаимодействия при получении барьеров металлов с полупроводниковым соединением.

Важно подчеркнуть, что значения ширины запрещенной зоны в тройном соединении ${\rm CuIn_3Se_5}$, определенном из спектров $\eta(\hbar\omega)$, оказались близкими к значению $E_{\rm G}$ четверного твердого раствора ${\rm CuInGaSe_2}$ [10], с помощью которого уже удалось создать тонкопленочные солнечные элементы с рекордной величиной квантовой эффективности [1]. Получить значения $E_{\rm G}$ в полупроводниках ${\rm A^IB_{2n+1}^{III}C_{3n+1}^{VI}}$, близкие к ширине запрещенной зоны в ${\rm CuInGaSe_2}$, удается только за счет увеличения содержания атомов индия и селена при n>1, не выходя за пределы системы ${\rm Cu-In-Se}$. Очень важно подчеркнуть, что новое тройное соединение ${\rm CuIn_3Se_5}$ по величине $E_{\rm G}$ удовлетворяет требованиям к полупроводникам, используемым для получения солнечных элементов с максимальной квантовой эффективностью [2].

Энергетическое положение максимумов $\hbar\omega_{\rm max}$ в спектрах $\eta(\hbar\omega)$ полученных барьеров (рис. 2) практически совпадает, а с ростом энергии падающих фотонов

Рис. 3. Зависимости $\eta^{1/2}=f(\hbar\omega)$ (кривые I–3), $(\eta\cdot\hbar\omega)^{1/2}=f(\hbar\omega)$ (кривые 4, 6, 8) и $(\eta\cdot\hbar\omega)^2=f(\hbar\omega)$ (кривые 5, 7, 9) для структур $\mathrm{Cu}/p\text{-}\mathrm{CuIn}_3\mathrm{Se}_5$ (1, 4, 5), $\mathrm{Al}/p\text{-}\mathrm{CuIn}_3\mathrm{Se}_5$ (2, 6, 7) и $\mathrm{In}/p\text{-}\mathrm{CuIn}_3\mathrm{Se}_5$ (3, 8, 9).

Фотоэлектрические параметры поверхностно-барьерных структур на основе кристаллов $\mathrm{CuIn}_3\mathrm{Se}_5$ при $T=300\,\mathrm{K}$

Тип структур	$\hbar\omega_{\mathrm{max}},$ эВ	δ _{1/2} , эВ	φ _b , эВ	S_U^{\max} , B/BT	E ^{ind} , эВ	Е ^d , ЭВ
Cu/p-CuIn ₃ Se ₅	1.23	0.52	0.63	4	1.04	1.11
Al/p-CuIn ₃ Se ₅	1.23	0.50	0.63	3700	1.04	1.12
In/p-CuIn ₃ Se ₅	1.25	0.88	0.25	1200	1.04	1.12

 $\hbar\omega>1.25$ эВ наступает плавное снижение квантовой эффективности преобразования. Этот спад у разных барьеров несколько различен и связывается с усилением роли поверхностной рекомбинации фотогенерированных пар. Различия между рекомбинационными параметрами структур вызывают изменения полной ширины спектров $\eta(\hbar\omega)$ на их полувысоте $\delta_{1/2}$ (см. таблицу). Как видно из таблицы, наиболее широкополосная фоторегистрация достигнута в барьерах Шоттки \ln/p -Cu \ln_3 Se $_5$. Сравнительные исследования фоточувствительности полученных барьеров также позволили выявить, что наиболее высокая вольтовая фоточувствительность $S_U^{\rm max}$ достигнута при создании барьеров Шоттки Al/p -Cu In_3 Se $_5$ (см. таблицу).

Таким образом, на объемных кристаллах тройного соединения ${\rm CuIn_3Se_5}$ p-типа проводимости термическим осаждением чистых металлов (${\rm Cu}$, ${\rm Al}$, ${\rm In}$) реализована возможность получения фоточувствительных барьеров Шоттки. При освещении полученных барьеров воспроизводимо проявляется фотовольтаический эффект, который доминирует в случае падения излучения на металлический барьер. Получены первые спектры фоточувствительности созданных барьеров и определены характер межзонного поглощения и ширина запрещенной зоны нового полупроводника. Продемонстрирована возможность применения барьеров Шоттки из кристаллов p- ${\rm CuIn_3Se_5}$ в качестве широкополосных фотопреобразователей неполяризованного излучения.

Работа выполнена при финансовой поддержке программы ОФН РАН "Новые принципы преобразования энергии в полупроводниковых структурах" и фонда INTAS (проект N 03-6314).

Список литературы

- [1] O. Lundberg, M. Edoff, L. Stolt. *ISES Abstract Book. Solar World Congress* (Göteborg, Sweden, 2003).
- [2] Ж. Панков. Оптические процессы в полупроводниках (М., Мир, 1973).
- [3] И.В. Боднарь, Т.Л. Кушнер, В.Ю. Рудь, Ю.В. Рудь, М.В. Якушев. ЖПС, 69, 520 (2002).
- [4] И.В. Боднарь, Е.С. Дмитриева, В.Ю. Рудь, Ю.В. Рудь. ЖТФ, 75, 84 (2005).
- [5] G. Martin, R. Marques, R. Guevara. Jpn. J. Appl. Phys., 39, 44 (2000).

- [6] Y.P. Wang, I. Shih, C.H. Champness. Thin Sol. Films, 361-362, 494 (2000).
- [7] E. Hernandez. Cryst. Res. Technol., 33, 285 (1988).
- [8] Г. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [9] S.M. Sze. Physics of Semiconductor Devices (N.Y., Willey Interscience Publ., 1981).
- [10] Copper Indium Diselenide for Photovoltaic Applications, by ed. T.J. Coutts, L.L. Kazmerski and S. Wagner (N. Y., Elsevier, 1986).

Редактор Л.В. Беляков

Photoelectrical phenomena in a Cu(Al, In)-CuIn₃Se₅ Schottky barrier

I.V. Bodnar, V.Yu. Rud*, Yu.V. Rud+

Belarusian State University of Informatics and Radioelectronics, 220027 Minsk, Belarus * St. Petersburg State Polytechnical University, 195152 St. Petersburg, Russia + Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The p-CuIn $_3$ Se $_5$ are used to obtain structures and investigate photoelectrical phenomena in Schottky barriers Cu/p-CuIn $_3$ Se $_5$, Al/p-CuIn $_3$ Se $_5$ and In/p-CuIn $_3$ Se $_5$. We have obtained new spectra of the new structures photo transformation quantum efficiency. The character of the interzone transitions is discussed and CuIn $_3$ Se $_5$ band gap width is determined. We have drawn a conclusion concerning the practical use of CuIn $_3$ Se $_5$ crystals for wide band photo transformations of the optical radiation.