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The method of calculation of distributions of minority charge carriers generated in the two-layer semiconductor
by a wide electron beam with energies 5−30 keV based on use of model of independent sources is described.

PACS: 73.40.-c, 68.37.Hk

1. Introduction

Usually for the quantitative description of diffusion of
minority charge carriers (MCC) in semiconductors the fol-
lowing two approaches can be used: 1) model of collective
movement of the generated carriers in which on diffusion
of MCC from each microvolume of the semiconductor
also with the carriers generated in other areas of a target
are influenced [1–3]. Mathematically it is expressed that
as function of generation MCC the differential equation
of diffusion includes the function describing of electron
beam energy losses density in all volume of a target.
Such model can be used for the quantitative description
of processes in homogeneous semiconductors; 2) model
of independent sources in which all over again it is
considered diffusive process of the carriers generated in each
separate microvolume of the semiconductor, and resulting
distribution of MCC can be obtained by integrating of the
received distributions from each of microvolumes [4]. It can
be made by using of Green’s function [5] and for stationary
case — by using method, suggested in [6] — in this work
we used this method. Mathematically it is expressed that
the diffusion equation for each of dot sources of MCC
then by means of integration on the volume occupied MCC,
there is their distribution in the semiconductor as a result
of diffusion [5] all over again is solved. This model can
be applied for the quantitative description of processes in
non-uniform and multilayered structures and consequently is
perspective at studying planar structures of semiconductor
electronics [6,7].

At studying micro- and nanoelectronic structures the
informative signal is excited simultaneously in several layers
of multilayered structure and consequently the problem of
diagnostics of each separate layer at use a strongly focused
electronic probe powerfully becomes complicated. Partially

1 Researches are carried out at financial support of the Russian Fund
of Basic Researches and Government of the Kaluga District (the Project
N 04-03-97210).

to solve this problem we can use ideas of works [1,2,6,7]
in which parameters of a homogeneous target are offered
to be defined from dependences intensity monochromatic
cathodoluminescence (CL) from energy of a wide electron
beam; some opportunities of application of this method
are considered in [8]. At the same time for studying
multilayered structures, development of the approach is
necessary, allowing to describe the basic physical pheno-
mena and the processes occurring at interaction of electron
beam with such targets and on the basis of this to define
informative opportunities of a considered method. One of
the main moments in the decision of this problem is the
description of MCC distributions generated by an electron
beam after their diffusion in nonuniform planar structure.
The knowledge of distributions allows to create adequate
models of CL of such structures.

In the present work, the idea of work [9] based on a
model of independent planar sources MCC is used for
the decision of a problem of MCC distribution in the
multilayered structure.

The purpose of the present work is studying opportunities
of usage of an independent sources model for calculation
of distributions MCC generated in the two- and three-layer
semiconductor by a wide electron beam.

2. Statement of a problem

Statement of a problem is considered on an example of
two-layer structure [10]. The structure such as

”
epitaxial

film–substrate“, created is considered on the basis of the
same semiconductor material or at use of two various
materials, but having close density, charge numbers and
atomic weights. In this case the process of interaction
of electron beam with the target can be described as for
a homogeneous one then to consider diffusion generated
MCC separately in the first material (film) and the second
material (substrate). Really such model can be applied, for
example, to structure

”
epitaxial film–monocrystal substrate“
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with a different level by doping an impurity that pro-
vides various values of electrophysical parameters (diffusion
length L, diffusion constant D, factor of absorption α, etc.)
in each of materials. For one-dimensional diffusion in half-
infinite semiconductor distribution of nonequilibrium MCC
on depth z is given by expression [7]:

1p(z) =

∞∫
0

1p(z, z0)dz0. (1)

Here function 1p(z, z0) describes distribution of MCC,
generated by the plane indefinitely thin source which
is taking place on depth z0, z0 ∈ [0,∞); and z —
the coordinate counted from a plane surface deep into of
the semiconductor. Distribution 1p(z, z0) can be obtained
as the decision of the differential equation:

D
d21p(z, z0)

dz2
− 1p(z, z0)

τ
= −ρ(z) δ(z − z0) (2)

with boundary conditions

D
d1p(z, z0)

dz

∣∣∣∣
z=0

= vs1p(0, z0), 1p(∞, z0) = 0.

For two-layer structure we shall designate: z1 — co-
ordinate of border of the unit of two layers D1, D2, L1,
L2 and τ1, τ2 — factors of diffusion, diffusion lengths and
life-times of MCC in the first and the second materials,
S1 — the resulted reduced surface recombination rate MCC
(in the first layer), S2 — the same parameter on the
border of film-surface, ρ(z) — distribution of energy-loss
density in the target. Thus L1 =

√
D1τ1 and L2 =

√
D2τ2,

S1 = vs1L1/D1 and S2 = vs2L2/D2; here vs1 — surface rate
of nonequilibrium MCC in a surface of film, vs2 — the same
parameter on the border of film-surface. Then for the first
material (film) we have:

D1
d1p11(z, z0)

dz

∣∣∣∣
z=0

= vs11p11(0, z0), (3)

for the second material (substrate)

1p22(∞, z0) = 0, (4)

and on the border film–substrate

lim
z→z1−0

1p1(z, z0) = lim
z→z1+0

1p2(z, z0). (5)

Here

1p(z, z0 ≤ z1) =


1p11(z, z0), ∀z ∈ [0, z0],

1p12(z, z0), ∀z ∈ [z0, z1],

1p22(z, z0), ∀z ∈ [z1,∞),

1p(z, z0 ≥ z1) =


1p11(z, z0), ∀z ∈ [0, z1],

1p12(z, z0), ∀z ∈ [z1, z0],

1p22(z, z0), ∀z ∈ [z0,∞).

The sense of boundary conditions (3) and (4) is obvious,
and the condition (5) provides a continuity of function
1p(z, z0) on border of two materials (at z = z1).

3. Results and discussion

Distribution of MCC as a result of their diffusion in two-
layer structure was as follows: 1) all over again was solved
the diffusion equation (2) for the first material, thus one
of two constants of differentiation was determined from a
boundary condition (3); 2) the diffusion equation (2) for
the second material was solved, and one of the constants
was determined from a condition (4); 3) decisions in the
first and second materials were

”
sewed“ on their borders

with using of a condition (5). It allowed determining the
staying constants.

In result for each of the chances schematically represented
of Fig. 1, required decisions 1p(z, z0) are received:
1) for z0 ≤ z1

1p(z, z0)

=



1p11(z, z0) = ρ(z0)τ1

2L1
exp
(
− z0

L1

)
×
[
exp
(

z
L1

)
− S1−1

S1+1 exp
(
− z

L1

)]
, ∀z ∈ [0, z0],

1p12(z, z0) = ρ(z0)τ1

2L1
exp
(
− z

L1

)
×
[
exp
(

z0
L1

)
− S1−1

S1+1 exp
(
− z0

L1

)]
, ∀z ∈ [z0, z1],

1p22(z, z0) = ρ(z0)τ1

2L1
exp
(

z1−z
L2
− z1

L1

)
×
[
exp
(

z0
L1

)
− S1−1

S1+1 exp
(
− z0

L1

)]
, ∀z ∈ [z1,∞);

2) for z0 ≥ z1

1p(z, z0)

=



1p11(z, z0) = Ñ1(z0) exp
(

z
L1

)
+ C2(z0) exp

(
− z

L1

)
, ∀z ∈ [0, z1],

1p21(z, z0) = ρ(z0)τ2

2L2
exp
(
− z0

L2

)
×
[
exp
(

z
L2

)
− S2−1

S2+1 exp
(
− z

L2

)]
, ∀z ∈ [z1, z0],

1p22(z, z0) = ρ(z0)τ2

2L2
exp
(
− z

L2

)
×
[
exp
(

z0
L2

)
− S2−1

S2+1 exp
(
− z0

L2

)]
, ∀z ∈ [z0,∞),

where

Ñ1(z0) =
ρ(z0)τ2

2L2
exp

(
−z0

L2

)[
exp

(
z1

L2

)
− S2 − 1

S2 + 1

× exp

(
−z1

L2

)][
exp

(
z1

L1

)
− S1 − 1

S1 + 1
exp

(
−z1

L1

)]−1

,

Ñ2(z0) =
ρ(z0)τ2

2L2

[
exp

(
z1 − z0

L2

)
− S2 − 1

S2 + 1

× exp

(
−z1 + z0

L2

)][
exp

(
−z1

L1

)
− S1+1

S1−1
exp

(
z1

L1

)]−1

.

Using the received partities, distributions MCC on depth
1p(z) it is calculated under the formula (1).
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For three-layer structure target of type the
”
film-film-

substrate“, created on the basis of the same semiconductor
materials are considered or at use of three various, but
having close density, serial numbers and nuclear weights
of materials.

For three-layer structure we shall designate: z1 —
coordinate of border of section of the first and second layer,
z2 — coordinate of border of section of the second and
third layer. The system of the equations for the three-layer
semiconductor is made to similarly boundary conditions for
the two-layer semiconductor. In a result the expression is
received more unwieldy, but similar written for the two-
layer semiconductor. Below the received equation is written
only for a case z0 < z1; thus:

1p(z, z0 < z1)

=



1p11(z, z0) = C1(z0) exp
(

z
L1

)
+ C2(z0) exp

(−z
L1

)
, ∀z ∈ [0, z0],

1p12(z, z0) = C3(z0) exp
(

z
L1

)
+ C4(z0) exp

(−z
L1

)
, ∀z ∈ [z0, z1],

1p22(z, z0) = C5(z0) exp
(

z
L2

)
+ C6(z0) exp

(−z
L2

)
, ∀z ∈ [z1, z2],

1p33(z, z0) = C7(z0) exp
(

z
L3

)
+ C8(z0) exp

(−z
L3

)
, ∀z ∈ [z2,∞).

Analytical expressions for constants Ñi = Ñi (z0,2),
where 2 — the vector of parameters of the given semi-
conductor layer i = 1, 8 are received.

For example

Ñ1(z0,2)

=
ρ(z0)

[
exp
( 2z0

L2

)
+ 1−S2

1+S2

][
exp
( 2z0

L2

)(
D3
L3

+ D2
L2

)
+ 1−S2

1+S2

(
D3
L3
− D2

L2

)]
×

×
[
exp z0

L1
+ 1−S1

1+S1
exp
(
− z0

L1

)] .
Here 2 = {L1, L2, L3,D2,D3, S1, S2}.

Similar results are received for cases when source of
MCC is in the second and third materials of structure.

The checking of the received results is lead numerically
by using of expressions for distributions 1p(z, z0), and
the formula (1). As reference the similar expressions
received for two-layer structure are used; we shall note,
that validity of expressions for two-layer structure has been
confirmed earlier [10]: in limiting cases of infinitely thin or
infinitely thick first layer the expressions resulted in [9] for
homogeneous semiconductor have been received.

4. Results of calculations

Calculations are carried out for parameters, character-
istic for semiconductor structure

”
epitaxial film GaAs —

monocrystal substrate GaAs“ (and for three-layer structure

Figure 1. Distribution of MCC after diffusion from the thin
planar source situated at the depth z0 under a surface of the two-
layer semiconductor. Calculations are carried out for parameters,
the typical for semiconductor structure

”
epitaxial film GaAs–mo-

nocrystal substrate GaAs“.

Figure 2. Distribution of MCC, generated by an electron beam
in two-layer semiconducting structure

”
epitaxial film GaAs–mono-

crystalling substrate GaAs“.

with a thick second layer). The following values of
parameters are used: L1 = 0.69µm, τ1 = 9.5 · 10−10 s,
S1 = 50 — for the first material (film) and L2 = 0.4µm,
τ2 = 3.2 · 10−10 s, S2 = 50 — for the second material
(substrate); value z1 was necessary to equal z1 = 1.5µm.
The distributions of energy-loss density ρ(z) was used in
accordance with [7].

Results of calculations of dependences 1p(z, z0) for
considered structure are submitted of Fig. 1. Distri-
butions of MCC which is turning out as a result of
diffusion from indefinitely thin planar sources, are shown:
on depth z0 = 1µm (i. e. in the first material — curve 1),
z0 = 1.5µm (i. e. on border of materials — curve 2),
z0 = 2µm (i. e. in the second material — curve 3). For
each curve it is carried out normalization on the maximal
value of the density MCC, and the maximum of all three
curves 1p(z, z0) answers the same value. Energy of an
electron beam E0 = 20 keV.

Results of calculations of dependences 1p(z) for consid-
ered structure are submitted of Fig. 2. Distributions of MCC,
generated by an electron beam with energy of electrons
E0 = 10 (curve 1), 15 (2) and 20 (3) keV, — after their
diffusion are shown; value z1 = 1.5µm.
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5. Conclusion

Some opportunities of using of the model of inde-
pendent sources for calculation of distributions of MCC
are considered as a result of their diffusion in multilayer
semiconductor planar structure. For materials with close
values of density (charge numbers and atomic weights) are
received the analytical expressions, allowing to carry out
calculations of distributions of MCC generated by plane
indefinitely thin planar sources by using of any function of
generation of electron-hole pairs. The modeling calculations
which have been carried out for structure such as

”
film

GaAs–substrate GaAs“ in a range of energy of electrons
from 5 up to 30 keV, have shown an opportunity of using
of the received expressions for calculation of distributions of
MCC in considered semiconductor target.
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