Проводимость на переменном токе и электронный парамагнитный резонанс соединений $Cd_{1-x}Fe_xTe$

© П. Жуковски, Я. Партыка, П. Венгерэк, Т. Колтунович, Ю. Сидоренко*, В. Стельмах*, Н. Лапчук*

Люблинский технический университет,

20-618 Люблин, Польша

* Белорусский государственный университет,

220050 Минск, Беларусь

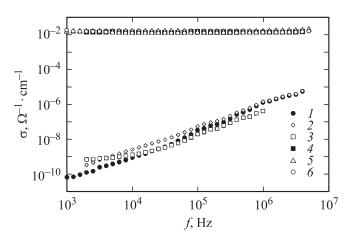
(Получена 30 марта 2006 г. Принята к печати 21 августа 2006 г.)

Представлены результаты измерений частотных зависимостей проводимости и спектров электронного парамагнитного резонанса материалов $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$ (0.01 $\leq x \leq$ 0.05) при комнатной температуре. Установлено, что в области концентраций $0.003 \leq x \leq 0.05$ появляется несимметричная линия поглощения ЭПР с $g \approx 3.9$, обнаруживается ее гистерезис, а образцы намагничиваются. Линия с $g \approx 3.9$ связана с зарядовым состоянием атомов железа 3^+ , которое проявляется в тетраэдрах с тремя атомами Fe.

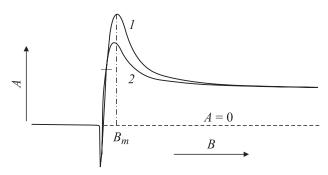
PACS: 76.30.Fc, 72.80.Ey, 72.60.+g

Для образцов $Cd_{1-x}Fe_xTe$ с концентрацией Fex < 0.03 ранее нами была обнаружена дополнительная поляризация, вызванная прыжковым обменом зарядами [1]. В области концентраций x < 0.01 энергия термической активации поляризации составляла ~ 0.38 эВ, а в области 0.02 < x < 0.03 около 0.14 эВ. Дополнительная поляризация с такими энергиями активации была обусловлена прыжковым обменом зарядами между дефектами, в состав которых входили 1 и 2 атома железа соответственно. Увеличение числа атомов железа в дефекте с 1 до 2 приводит, как видно, к уменьшению глубины залегания дефектного уровня. Прыжковый обмен зарядами может проявляться и в прыжковой проводимости на переменном токе. На рис. 1 представлены зависимости удельной проводимости σ от частоты f для образцов с разной концентрацией железа. Как видно из этого рисунка, для материалов с $x \le 0.03$ наблюдается рост проводимости с частотой, а для образцов с $x \ge 0.035$ проводимость не зависит от частоты.

Рост σ с частотой имеет место в случае прыжковой проводимости, а в случае типичной для полупроводников проводимости путем переноса носителей в одной из разрешенных зон ее величина не должна изменяться до частоты $\sim 100\,\mathrm{MFu}$ [2].


Выполненные нами исследования проводимости показали, что в образцах с $x \le 0.03$ происходит прыжковый перенос зарядов. При увеличении x до 0.035 этот перенос прекращается, уступая место переносу зарядов в разрешенной зоне. Это означает уменьшение энергии активации, связанное с глубиной залегания энергетических уровней дефектов в запрещенной зоне. При $x \ge 0.035$ уровни становятся мелкими, что приводит к росту проводимости на 8 порядков на частоте $1 \, \text{к} \, \Gamma \text{ц}$ и исчезновению ее частотной зависимости. Так как вследствие роста концентрации атомов Fe с 0.03 до 0.035 запрещенная зона расширяется всего на $\sim 0.015 \, \text{эB}$, а энергия активации уменьшается с $0.14 \, \text{эB}$ [1] до $0.01-0.05 \, \text{эB}$, эти процессы между собой не связаны. Для объяснения перехода от прыжкового переноса при $x \le 0.03 \, \text{к}$ зонной

проводимости при $x \ge 0.035$ необходимо принять, что в этом случае появляется новый тип дефектов, содержащих 3 атома Fe, что вызывает уменьшение глубины залегания энергетического уровня в запрещенной зоне.


Магнитные свойства соединения $Cd_{1-x}Fe_x$ Те $(0.0035 \le x \le 0.05)$ были исследованы методом электронного парамагнитного резонанса (ЭПР). Измерения проводились при комнатной температуре.

Для образцов с концентрациями Fe $0.0035 \le x \le 0.03$ в спектрах ЭПР не наблюдается линий поглощения. Это может быть связано, скорее всего, с тем, что в этой области концентраций ионы Fe имеют зарядовое состояние 2+, которое не является парамагнитным.

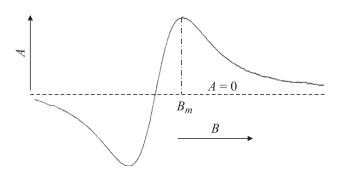
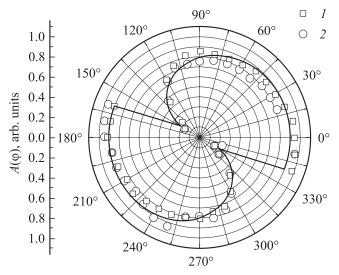

В образцах с x=0.03 наблюдается широкая линия с g-фактором $g\approx 2.0$ (ширина $\Delta B\approx 300-325\,\Gamma c$), на которую накладываются шесть узких линий с $\Delta B\approx 25-30\,\Gamma c$. Узкие линии могут быть связаны с присутствием ионов Мп, которые в этом случае являются остаточной примесью [3]. В области низких полей наблюдается несимметричная линия с g=3.9.

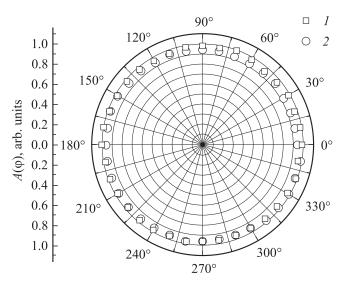
Рис. 1. Частотная зависимость проводимости соединений $Cd_{1-x}Fe_x$ Те с x=0.01 (1), 0.02 (2), 0.03 (3), 0.035 (4), 0.045 (5), 0.05 (6). Температура измерений 300 К.

Рис. 2. Спектр ЭПР образца $Cd_{1-x}Fe_x$ Те (x=0.035) при увеличении поля (1) и при его уменьшении (2). Штриховая линия — уровень, принятый за нулевой.

Рис. 3. Спектр ЭПР $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}\ (x=0.5)$. Штриховая линия — уровень, принятый за нулевой.


Такая же линия с большим значением g-фактора обнаружена в образцах с концентрациями железа 0.035 и 0.045 (рис. 2). Установлено, что эта линия имеет гистерезис. На рис. 2 кривая I получена при росте индукции магнитного поля B, а кривая 2 при уменьшении индукции. Обнаружено, что образцы с $0.030 \le x \le 0.045$ намагничиваются. Намагничивание образцов и явление гистерезиса (с учетом низких концентраций Fe) указывают на то, что исследованные материалы могут являться спиновыми стеклами.

Было проведено сравнение спектров ЭПР соединений $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$, которые обладают антиферромагнитными свойствами, и $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$. Для материалов $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$ спектры ЭПР имеют симметричную линию с $g\approx 2.002$, ширина которой возрастает с ростом концентрации переходного металла и уменьшается с повышением температуры [4]. Для исследований был выбран образец с содержанием атомов $\mathrm{Mn}\ x=0.5$. Спектр ЭПР этого образца представлен на рис. 3.


Для исследования анизотропии магнитных свойств соединений $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$ и $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$ использовалась следующая процедура. Из рис. 2 и 3 были определены значения индукции магнитного поля B_m , соответствующие максимуму спектра ЭПР. Затем при постоянном значении внешнего поля B_m регистрировалась зависи-

мость амплитуды сигнала ЭПР A от угла поворота образца φ , шаг поворота составлял 10° . Таким образом была получена угловая зависимость амплитуды сигнала ЭПР $A(\varphi)$ для образцов $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$ (x=0.035) — рис. 4 и $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$ (x=0.5) — рис. 5. Значения магнитного поля B_m и сигнала ЭПР A=0 показаны на рис. 2 и 3.

Как видно из рис. 4, зависимость $A(\phi)$ для $Cd_{1-x}Fe_x$ Те похожа на асимметричную восьмерку, и при последующих оборотах образца ее форма не изменяется. Это связано с процессами намагничивания и размагничивания образца при его повороте в постоянном магнитном поле.

Рис. 4. Угловая зависимость амплитуды сигнала A, измеренная в точке B_m (рис. 2), для образца $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$ (x=0.035). I — первый цикл, 2 — второй. Сплошная линия — результаты компьютерного моделирования по формулам (1)–(5).

Рис. 5. Угловая зависимость амплитуды сигнала A, измеренная в точке B_m (рис. 3), для образца $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}\ (x=0.5)$. I — первый цикл, 2 — второй.

Известно [5], что в магнитном материале индукция есть

$$B = \mu_0 H_m + \mu_0 J. \tag{1}$$

В нашем случае $\mu_0 H_m$ соответствует значению B_m , показанному на рис. 2, J — величина вектора намагниченности, μ_0 — магнитная восприимчивость. В магнитных материалах J является функцией напряженности магнитного поля H, которая называется петлей гистерезиса J(H).

Характерные точки петли гистерезиса:

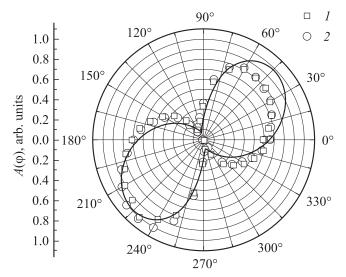
- намагниченность насыщения $J_s = J(H = \infty)$,
- остаточная намагниченность $J_r = J(H = 0)$,
- коэрцитивное поле H_c , для которого $J(H_c) = 0$.

Из зависимости $A(\varphi)$, представленной на рис. 4, следует, что материал $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$ (x=0.035) обладает петлей гистерезиса. При увеличении внешнего магнитного поля до значения B_m , при котором проводилась регистрация $A(\varphi)$, материал намагничивается до $J(H_m=B_m/\mu_0)$. После поворота образца на угол φ на вектор \mathbf{J} действует магнитное поле с напряженностью

$$H = H_m \cos \varphi = \frac{B_m}{\mu_0} \cos \varphi. \tag{2}$$

Если в нашем образце значение вектора поляризации определяется петлей гистерезиса, то

$$J(\varphi) = J\left(H = \frac{B_m}{\mu_0}\cos\varphi\right). \tag{3}$$


Существенным в явлении ЭПР является значение индукции магнитного поля в направлении, параллельном вектору напряженности электрического поля микроволн, поглощенных исследованным объектом. При повороте образца на угол φ вектор индукции магнитного поля

$$\mathbf{B} = \mathbf{B}_m + \mu_0 \mathbf{J}(\boldsymbol{\varphi}) \tag{4}$$

не параллелен \mathbf{B}_m . Интересующее нас значение получаем с учетом проекции $\mathbf{J}(\phi)$ на направление \mathbf{B}_m :

$$B = B_m + \mu_0 J(\varphi) \cos \varphi. \tag{5}$$

Проанализируем зависимость $A(\varphi)$, полученную для $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}\ (x=0.035)$ — см. рис. 4. Как следует из формул (3) и (5), при намагничивании образца внешним полем $H_m=B_m/\mu_0$ магнитная индукция внутри образца составляет $B_m+\mu_0J(H_m=B_m/\mu_0)$. При повороте образца на угол φ индукция, вызывающая явление ЭПР, уменьшается, во-первых, вследствие уменьшения поляризации в соответствии с петлей гистерезиса, а вовторых, в связи с уменьшением проекции вектора $\mathbf{J}(\varphi)$ на направление внешнего поля \mathbf{B}_m . Уменьшение поля внутри образца приводит к смещению точки измерений на спектре ЭПР (рис. 2) в сторону меньших, чем B_m ,

Рис. 6. Угловая зависимость амплитуды сигнала, измеренная в точке B_m (рис. 2), для образца $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}\ (x=0.045)$. I — первый цикл, 2 — второй. Сплошная линия — результаты компьютерного моделирования по формулам (1)–(5).

значений поля. При достижении угла $\varphi=90^\circ$ проекция магнитного поля на направление электрического поля внутри образца сравнивается с внешним полем — см. формулу (5). При $\varphi>90^\circ$ индукция уменьшается все медленнее, и при угле φ_{\min} получаем минимальное ее значение. Зависимость $A(\varphi)$ при φ_{\min} также достигает минимума:

$$A(\varphi_{\min}) = \min$$
.

Для образца с x=0.035 $\varphi_{\min}=150^\circ$, а для x=0.045 (рис. 6) $\varphi_{\min}=110^\circ$. Дальнейший рост φ приводит к тому, что значение B начнет возрастать. При достижении угла φ_c , при котором $(B_m/\mu_0)\cos\varphi_c=-H_c$ — напряженность коэрцитивного поля, поле внутри образца возрастает до значения внешнего поля $B=B_m$, вектор намагниченности J=0, а амплитуда достигает значения, которое принимала при $\varphi=90^\circ$, $A(\varphi_c)=A(90^\circ)$. Из рис. 4 следует, что для x=0.035 $\varphi_c=160^\circ$, а для x=0.045 $\varphi_c=140^\circ$ (рис. 6). Это означает, что петля гистерезиса является широкой, а коэрцитивное поле H_c составляет для образца с x=0.035 около $1\cdot 10^5$ А/м (для x=0.045 $H_c=7.6\cdot 10^4$ А/м).

При небольшом дальнейшем росте φ выше φ_c происходит намагничивание образца во внешнем магнитном поле B_m до значения $J_m(H_m=B_m/\mu_0)$, чему соответствует рост амплитуды $A(\varphi)$. Дальнейший рост φ выше φ_c приводит к повторению вышеописанной ситуации.

Угловая зависимость $A(\phi)$ для материала $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$ (x=0.5), представленная на рис. 5, имеет форму окружности. Этот материал проявляет антиферромагнитные свойства. Поле внутри образца равно значению внешнего поля, а амплитуда спектра ЭПР в том случае не зависит от угла установки образца в магнитное поле.

Параметры спектров ЭПР образцов $Cd_{1-x}Fe_x$ Те

x	H_c , A/M	J_s , A/M	B_s , Тл	ΔB , Тл
0.035 0.045	10^5 $7.6 \cdot 10^4$	$2.15 \cdot 10^4 \\ 2.77 \cdot 10^4$	0.027 0.035	0.04 0.036

Для образца $Cd_{1-x}Fe_xTe_x$ (x=0.045) также получена зависимость амплитуды спектра ЭПР от угла поворота образца в магнитном поле (рис. 6). Эта зависимость подобна представленной на рис. 4 для образца с содержанием железа x=0.035.

Оценим намагниченность образцов в состоянии насыщения [5]:

$$J_s = C\mu_B n, \tag{6}$$

где C — концентрация атомов железа в исследуемом образце, $\mu_B=9.25\cdot 10^{-24}\,\mathrm{A\cdot m^2}$ — магнетон Бора, n=2.218 — число магнетонов Бора на один атом железа.

В соединениях $Cd_{1-x}Fe_x$ Те концентрация атомов составляет $\sim 6\cdot 10^{28}~{\rm M}^{-3}$. Для образца с концентрацией x $C=x\cdot 3\cdot 10^{26}~{\rm M}^{-3}$. Подставляя значения $C,~\mu_B$ и n в формулу (6), получаем значение J_s , а из формулы (1) — соответствующее значение индукции магнитного поля B_s .

Изменения индукции магнитного поля внутри образца, возникающие вследствие намагничивания и размагничивания в процессе его поворота, могут достигать значений 0.027 Тл для x=0.035 и 0.035 Тл для x=0.045. Эти величины сравнимы с шириной ΔB спектров ЭПР, значения которых приведены в таблице.

Таким образом, обнаруженные в работе угловые зависимости сигнала спектров ЭПР $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$, представленные на рис. 4, 6, вызваны циклическим намагничиванием и размагничиванием образцов в процессе их поворота в магнитном поле.

На основании уравнений (1)–(5) было выполнено компьютерное моделирование угловых зависимостей амплитуды ЭПР $A(\phi)$, результаты которого представлены в виде сплошных линий на рис. 4 и 6. Как видно из рисунков, получено достаточно хорошее согласие с экспериментальными данными. Из сравнения экспериментальных и расчетных зависимостей $A(\phi)$ следует, что в образце с x=0.045 наблюдается небольшая анизотропия сигнала, которая не была учтена в моделировании (рис. 6).

При компьютерном моделировании не был также учтен размагничивающий фактор [6], поскольку его расчет был затруднен в связи с неправильной формой образцов. Учет размагничивающего фактора может уменьшить в несколько раз величину определенного экспериментально коэрцитивного поля. Остальные величины, приведенные в таблице, при этом не изменятся.

Для образца $\mathrm{Cd}_{1-x}\mathrm{Fe}_x\mathrm{Te}$ с x=0.05 линия с g=3.9 исчезает и появляется широкая симметричная линия в области $g\approx 2.5$. Ширина этой линии составляет

 $\sim 2500\, {\rm Fc}$. В соединении ${\rm Cd}_{1-x}{\rm Mn}_x{\rm Te}$ такая ширина линии поглощения наблюдается при концентрации переходного металла x=0.7. Ширина линии указывает на то, что локальная концентрация атомов железа в исследованном образце должна быть сравнима с концентрацией Mn в ${\rm Cd}_{0.3}{\rm Mn}_{0.7}{\rm Te}$. Это означает, что железо склонно не только к коррелированному микроскопическому размещению в тетраэдрах [1], но и к образованию скоплений с высокой локальной концентрацией. Появление широкой линии с $g\approx 2.5$ свидетельствует о том, что образец ${\rm Cd}_{1-x}{\rm Fe}_x{\rm Te}$ с x=0.05 стал, как и материал ${\rm Cd}_{1-x}{\rm Mn}_x{\rm Te}$, антиферромагнитным.

Обнаруженная в описанных выше исследованиях склонность атомов Fe к коррелированному расположению в кристаллической решетке CdTe может послужить в качестве основы для объяснения факта низкой растворимости атомов Fe в $Cd_{1-x}Fe_xTe$, для которых однофазный твердый раствор существует только до $x \le 0.05$ [7].

Таким образом, из измерений диэлектрической проницаемости, результаты которых представлены в [1], проводимости на переменном токе и электронного парамагнитного резонанса мы установили три области концентраций, отличающихся количеством атомов Fe в элементарном тетраэдре $Cd_{1-x}Fe_x$ Te, а также взаимную корреляцию этих свойств.

Первая область, $x \le 0.03$, характеризуется температурной и частотной зависимостью проводимости и диэлектрической проницаемости, что свидетельствует о прыжковом механизме переноса зарядов. На основании результатов изменений зависимости энергии активации диэлектрической проницаемости от концентрации атомов Fe предложено существование в этой области дефектов, включающих 1 и 2 атома железа. В этой области концентраций Fe не наблюдается линий поглощения электронного парамагнитного резонанса. Это означает, что одиночные атомы железа и их пары находятся в непарамагнитном зарядовом состоянии 2+.

Появление в области концентраций $0.03 \le x \le 0.045$ несимметричной линии ЭПР с g=3.9, ее гистерезис и намагничивание образцов связаны с ферромагнитным состоянием железа $\mathrm{Fe^{3+}}$. Это означает, что в образцах происходит дальнейшая перестройка тетраэдров с появлением в них трех атомов Fe. На это указывает и изменение характера проводимости на переменном токе — переход от прыжковой к зонной проводимости, а также исчезновение дополнительной поляризации материалов.

Необходимо отметить, что в образце с x=0.03 одновременно существуют дефекты с двумя атомами Fe, по которым происходит прыжковая проводимость, и с тремя атомами Fe, обусловливающие линию ЭПР с $g\approx 3.9$.

Увеличение x до 0.05 приводит к появлению линии ЭПР шириной $\sim 2500\, \Gamma$ с. Эта линия связана с появлением кластеров с высокой концентрацией железа.

Список литературы

- П. Жуковский, Я. Партыка, П. Венгерэк, Ю. Сидоренко, Ю. Шостак, А. Родзик. ФТП, 33, 270 (1999).
- [2] Н. Мотт, Э. Дэвис. Процессы в некристаллических веществах (М., Мир, 1982).
- [3] A. Twardowski. Sol. St. Commun., 64, 63 (1987).
- [4] N. Samarth, J.K. Furdyna. Phys. Rev. B, 37, 9227 (1988).
- [5] С.А. Уэрт, Р.М. Томсон. *Физика твердого тела* (М., Мир, 1970).
- [6] В.И. Чечерников. Магнитные измерения (М., Изд-во МГУ, 1969).
- [7] A. Mycielski. J. Appl. Phys., 63 (8), 3279 (1988).

Редактор Л.В. Шаронова

The alternating current conductivity and electron spin resonance $Cd_{1-x}Fe_xTe$ compounds

P. Zhukovskii, Ya. Partyka, P. Vengerek, T. Koltunovich, Yu. Sidorenko*, V. Stelmakh* N. Lapchuk*

Technical University of Lublin 20-618 Lublin, Poland * Belarusian State University 220050 Minsk, Belarus