Влияние легирования медью на кинетические явления в кристаллах $n\text{-Bi}_2\mathsf{Te}_{2.85}\mathsf{Se}_{0.15}$

© М.К. Житинская, С.А. Немов [¶], Т.Е. Свечникова⁺

Санкт-Петербургский государственный политехнический университет, 195251 Санкт-Петербург, Россия

⁺ Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, 119991 Москва, Россия

(Получена 1 февраля 2007 г. Принята к печати 12 февраля 2007 г.)

В монокристаллах твердых растворов $Bi_2Te_{2.85}Se_{0.15}$ с концентрацией электронов, близкой к $1\cdot 10^{19}$ см $^{-3}$, легированных медью и без нее, исследованы температурные зависимости кинетических коэффициентов Холла (R_{123},R_{321}) , Зеебека (S_{11}) , электропроводности (σ_{11}) , Нернста-Эттингсгаузена (Q_{123}) и теплопроводности (k_{11}) в диапазоне температур 77–400 К. Отсутствие заметных аномалий в температурных зависимостях кинетических коэффициентов позволяет при анализе экспериментальных результатов использовать однозонную модель. В рамках однозонной модели сделана оценка эффективной массы плотности состояний $(m_d \approx 0.8m_0)$, ширины запрещенной зоны $(\varepsilon_g \approx 0.2\, \mathrm{sB})$, эффективного параметра рассеяния $(r_{\mathrm{eff}} \approx 0.2)$. Полученное значение параметра r_{eff} свидетельствует о смешанном механизме рассеяния электронов при доминирующем рассеянии на акустических фононах. Приведены данные по теплопроводности и решеточному сопротивлению, полученному вычитанием вклада электронов по закону Видемана-Франца.

PACS: 72.20.My, 72.20.Pa, 72.80.Jc

1. Введение

Твердые растворы на основе $\mathrm{Bi}_2\mathrm{Te}_3$ являются основным компонентом материалов термоэлектрических преобразователей, работающих вблизи комнатной температуры [1]. Для улучшения термоэлектрических параметров материалов используются как легирование примесями, имеющими различное воздействие на электрофизические и тепловые свойства материала, так и создание твердых растворов. В настоящей работе исследовалось влияние примеси меди на электрофизические свойства монокристаллов $n\text{-Bi}_2\mathrm{Te}_{2.85}\mathrm{Se}_{0.15}$.

Медь оказывает сильное донорное действие и является эффективной добавкой в Ві₂Те₃ и в твердом растворе $Bi_2Te_{2.85}Se_{0.15}$. В предыдущих работах [2,3] было показано, что введение атомов меди в твердый раствор $Bi_2Te_{2.85}Se_{0.15}$ приводит к увеличению термоэлектрической эффективности материала за счет возрастания подвижности электронов. В [2] было установлено увеличение параметра гексагональной ячейки c, увеличение хрупкости материала, что объяснялось авторами внедрением атомов меди между плоскостями спайности, связанным, согласно [2], с усилением химической связи между квинтетами. В то же время известно [4], что медь обладает высоким коэффициентом диффузии, причем скорость диффузии вдоль плоскостей спайности на несколько порядков выше, чем в перпендикулярном направлении. Это приводит к некоторой нестабильности свойств Ві, Те, и его сплавов, легированных медью, а также к их старению. Авторы [4] предположили, что механизм старения заключается в том, что атомы меди диффундируют к поверхности материала в кислородсодержащую атмосферу, окисляются и перестают действовать как доноры. Однако, когда содержание меди в кристаллах не превышало 0.05% по массе, изменений термоэлектрических параметров при хранении на воздухе в течение 6 месяцев не было выявлено [5]. Изучению электрофизических свойств этих кристаллов посвящена настоящая работа.

2. Эксперимент

Эксперимент проводился на монокристаллических образцах $Bi_2Te_{2.85}Se_{0.15}$, легированных атомами Си. Для получения нужной концентрации электронов образцы дополнительно были легированы примесью йода, который вводился в виде соединения SbI_3 . Все монокристаллы выращены методом Чохральского [3]. Монокристаллы твердого раствора $Bi_2Te_{2.85}Se_{0.15}$ были выращены из расплава с подпиткой жидкой фазой из плавающего тигля. Монокристаллы росли в виде пластин в направлении [1010] — перпендикулярно главной кристаллографической оси c. Содержание меди в расплаве и кристаллах определяли методом атомно-абсорбционной спектроскопии по специально разработанной для этих материалов методике. Качество кристаллов контролировали рентгеновской дифракционной топографией.

На монокристаллических образцах измерялись две компоненты тензора Холла (R_{123},R_{321}) , коэффициенты Зеебека (S_{11}) , электропроводности (σ_{11}) , теплопроводности (k_{11}) в плоскости скола, а также компонента тензора Нернста—Эттингсгаузена (Q_{123}) при ориентации магнитного поля вдоль тригональной оси c_3 . Измерения кинетических коэффициентов проводились компенсационным методом в интервале температур $T=77-400~{\rm K}$.

[¶] E-mail: nemov_s@mail.ru

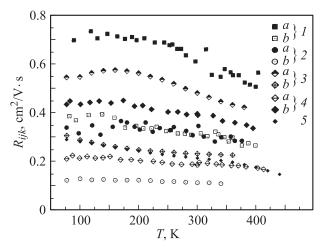
Состав, электрические и зонные параметры кристаллов $n\text{-Bi}_2\mathrm{Te}_{2.85}\mathrm{Se}_{0.15}$

Образец	n , 10^{19}cm^{-3}	SbI ₃ , мол%	Си, ат%	u_{H} , $cm^{2}/B \cdot c$ (77.3 K)	m_d/m_0 (120 K)	ε _{g0} , эВ
1	0.86	0.19		2250	0.52	0.18
2	1.8	0.08		730	0.58	
3	1.13	0.14	0.05	1550	0.68	0.18
4	1.43	0.14	0.3	1200	0.83	0.2

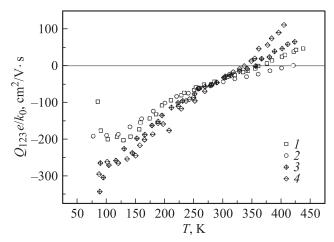
Концентрация электронов (n) определялась из величины большей компоненты тензора Холла R_{321} при 77 K по формуле $n=(eR_{321})^{-1}$ (e — заряд электрона), как это принято для соединений $A^{\rm V}B^{\rm VI}$. Ошибка в определении концентрации электронов при этом, как было показано в многочисленных исследованиях (см., например, [6]), не превышает 10%. Измерения теплопроводности были проведены стационарным методом при комнатной температуре.

Основные характеристики исследованных монокристаллических образцов ${\rm Bi}_2{\rm Te}_{2.85}{\rm Se}_{0.15}$ представлены в таблице. Отметим, что измеренные ранее в [5] значения коэффициента термоэдс и меньшей компоненты тензора Холла R_{123} для образца 3 совпадают с нашими данными во всем интервале температур. Это подтверждает стабильность свойств кристаллов с малым содержанием мели.

3. Обсуждение результатов


Качественный анализ температурных зависимостей компонент тензоров электропроводности (σ_{11}), термоэдс (S_{11}) , двух компонент тензора Холла (R_{123}, R_{321}) и поперечного эффекта Нернста-Эттингсгаузена (Q_{123}) в интервале температур 77-400 К, полученных в нашей работе (рис. 1,2) и в работе [5], не обнаруживает ярких особенностей, характерных для двухзонной модели. В связи с этим для анализа экспериментальных данных использована однозонная модель. Результаты анализа, а также использованная лигатура и концентрация электронов приведены в таблице. Как видно из таблицы, исследованные кристаллы с примесью Си и без нее имеют близкие концентрации электронов $n = (0.9-1.8) \cdot 10^{19} \,\mathrm{cm}^{-3}$. Отметим, что уровень концентрации электронов проводимости $n \approx 1 \cdot 10^{19} \, \text{cm}^{-3}$ является оптимальным с точки зрения термоэлектрического использования материала и достигнут в исследованных кристаллах с помощью дополнительного легирования донорной примесью йола.

При известной концентрации электронов в области примесной проводимости для вырожденных образцов эффективная масса плотности состояний m_d может быть рассчитана с помощью четырех основных кинетических


коэффициентов, измеренных в нулевом и слабом магнитном поле, по формуле [7]

$$m_d = \frac{e}{k_0} \frac{(3\pi^2 n)^{2/3}}{k_0 T} \left(\frac{\hbar}{\pi}\right)^2 \left(S_{11} - \frac{Q_{123}}{R_{123}\sigma_{11}}\right), \quad (1)$$

где k_0 — постоянная Больцмана. Следует отметить, что формула (1) справедлива и для случая произвольного вырождения электронного газа. Это было проверено нами с помощью компьютерных расчетов интегралов Ферми, входящих в четыре основных кинетических коэффициента для различных механизмов рассеяния носителей тока, которые описываются степенной зависимостью времени релаксации (τ) от энергии (ε) : $\tau \propto \varepsilon^{r-1/2}$, где r — параметр, характеризующий механизм рассеяния. Расчеты производились при следующих

Рис. 1. Температурные зависимости компонент тензора Холла R_{ijk} кристаллов n-Bi₂Te_{2.85}Se_{0.15}. Номера кривых I-4 соответствуют номерам образцов в таблице. a — R_{321} , b — R_{123} , c — R_{123} [5].

Рис. 2. Температурные зависимости коэффициента Нернста—Эттингсгаузена $Q_{123}e/k_0$ (в единицах подвижности) для кристаллов n-Bi₂Te_{2.85}Se_{0.15}. Номера зависимостей соответствуют номерам образцов в таблице.

значениях параметра рассеяния: r = 2 — рассеяние на кулоновском потенциале ионизированной примеси, r = 0 — рассеяние на акустических фононах и r = 1 рассеяние на оптических фононах, а также для случая времени релаксации, не зависящего от энергии электронов, — r = 0.5. Полученные с помощью формулы (1) значения эффективной массы m_d/m_0 (где m_0 — масса свободного электрона) при 120 К приведены в таблице. Расчет температурной зависимости эффективной массы показал, что в образцах, легированных медью, она практически постоянна и близка к значению $m_d = 0.8 m_0$, а в кристаллах без меди растет по степенному закону $m_d \propto T^{\nu}$ с показателем степени $\nu \approx 0.4$ от величины $m_d \approx (0.5 - 0.6) m_0$ при $T = 120 \, \mathrm{K}$ до $m_d \approx 0.8 m_0$ при $T = 200 \, \mathrm{K}$. Рост m_d при увеличении температуры может быть объяснен наличием дополнительного экстремума в зоне проводимости с большой эффективной массой. Отсутствие такого роста в образцах с медью согласуется с однозонной моделью, а в рамках двухзонной модели это возможно, если тяжелые электроны вносят основной вклад в кинетические коэффициенты.

Четыре основных кинетических коэффициента позволяют также независимым образом оценить параметр рассеяния r с помощью соотношения

$$\frac{Q_{123}}{S_{11}|R_{123}|\sigma_{11}} = \frac{r - 0.5}{r + 1}. (2)$$

Оценка параметра рассеяния электронов по формуле (2) дала эффективное значение $r_{\rm eff} \approx 0.2 - 0.3$, что свидетельствует о смешанном механизме рассеяния электронов в соединении $Bi_2Te_{2.85}Se_{0.15}$ при доминирующем рассеянии на акустических фононах. Отличие $r_{
m eff}$ от нуля свидетельствует о том, что в рассеяние электронов заметный вклад вносят механизмы рассеяния с более сильной энергетической зависимостью. К ним относятся, например, рассеяние на ионизованных примесях и на оптических фононах. С доминирующим характером акустического рассеяния согласуются данные по эффекту Нернста-Эттингсгаузена, который отрицателен в области низких температур (до начала смешанной электронно-дырочной проводимости), и по температурной зависимости холловской подвижности $u_H = |R_{123}|\sigma_{11}$. Для всех образцов наблюдается степенная зависимость $u_H \propto T^{-a}$, причем показатель степени aизменяется от 0.9 вблизи 77 К до 1.5 при повышении температуры до комнатной. Такая температурная зависимость подвижности характерна для рассеяния электронов на акустических фононах.

Эффект Нернста—Эттингсгаузена чрезвычайно чувствителен к появлению неосновных носителей заряда, концентрация которых возрастает с температурой по экспоненциальному закону. Для кристаллов n-типа проводимости неосновными носителями являются дырки. Их концентрацию (p) можно определить, используя

закон действующих масс:

$$np = \frac{4(2\pi k_0 T)^3 (m_{dn} m_{dp})^{3/2} \exp(-\varepsilon_g/k_0 T)}{h^6}, \quad (3)$$

где m_{dn} и m_{dp} — эффективные массы плотности состояний электронов и дырок соответственно, ε_g — ширина запрещенной зоны.

В начале собственной проводимости концентрация дырок (p) мала по сравнению с уровнем легирования кристаллов (n_0) :

$$p \ll n_0. \tag{4}$$

Тогда из (3) с учетом (4) следует

$$p \propto T^3 \exp(-\varepsilon_g/k_0 T). \tag{5}$$

В области смешанной электронно-дырочной проводимости коэффициент Нернста-Эттингсгаузена имеет вид [8]

$$Q = Q_n \frac{\sigma_n}{\sigma} + Q_p \frac{\sigma_p}{\sigma} + Q_{np}, \tag{6}$$

причем смешанное слагаемое Q_{nn} равно

$$Q_{np} = \frac{\sigma_n \sigma_p}{\sigma^2} (S_p - S_n) (u_n + u_p), \tag{7}$$

где индексами n и p снабжены парциальные вклады электронов и дырок в коэффициенты электропроводности (σ) , термоэдс (S), Нернста—Эттингсгаузена (Q); $\sigma = \sigma_n + \sigma_p$ — полная электропроводность; u_n и u_p — холловские подвижности электронов и дырок соответственно.

В начале собственной проводимости, когда справедливо (4).

$$\sigma_n \gg \sigma_n, \quad \sigma \approx \sigma_n.$$
 (8)

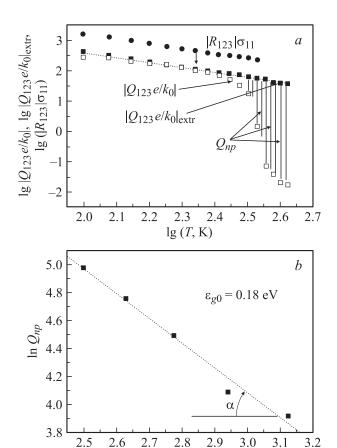
Выражения (6), (7) принимают вид

$$Q \approx Q_n + Q_{np},\tag{9}$$

$$Q_{np} \approx \frac{\sigma_p}{\sigma_n} \left(r_n + r_p + \frac{\varepsilon_g}{k_0 T} + 4 \right) (u_n + u_p)$$

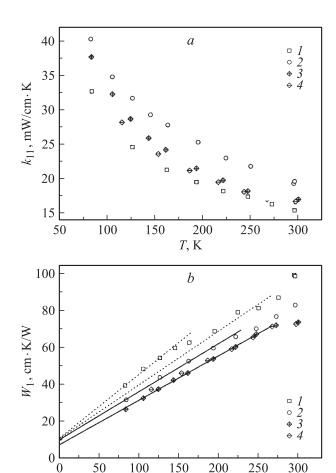
$$\propto \frac{p}{n_0} \propto T^3 e^{\varepsilon_g/k_0 T}, \tag{10}$$

где r_n и r_p — параметры рассеяния электронов и дырок соответственно. При выводе формулы (10) использовано выражение для коэффициента термоэдс в случае классической (невырожденной) статистики [8].


На температурной зависимости коэффициента Нернста—Эттингсгаузена появляется участок с резким экспоненциальным ростом величины Q вплоть до смены знака эффекта (см. рис. 2). Это обстоятельство позволяет выделить Q_{np} — вклад в Q, связанный с началом собственной проводимости, и определить ширину запрещенной зоны ε_g . Разделение вкладов в коэффициент Нернста—Эттингсгаузена иллюстрирует рис. 3. Экстраполяция величины $Q_n(T)$ в область смешанной электронно-дырочной проводимости

(точки $|Q_{123}e/k_0|_{\rm extr}$ на рис. 3) проводилась по закону изменения холловской подвижности с температурой $|R_{123}|\sigma_{11}-T^{-\nu}\>$ ($\nu=1.6$ для образца 4). Учитывая температурную зависимость ε_g в линейном приближении,

$$\varepsilon_{g}(T) = \varepsilon_{g0} + \alpha T, \tag{11}$$


из зависимости $\ln(Q_{np}/T^3)$ от 1/T (рис. 3,b) определили ширину запрещенной зоны ε_{g0} , экстраполированную к T=0 К. Полученные результаты ε_{g0} приведены в таблице, из которой видно, что ширина запрещенной зоны для исследованных образцов равна $\varepsilon_{g0}=0.18-0.20$ эВ, что близко к значениям ε_{g0} , полученным в работе [6].

На рис. 4, a приведена температурная зависимость удельной теплопроводности кристаллов, легированных медью и без нее. С помощью закона Видемана—Франца и с использованием данных по электропроводности была рассчитана электронная составляющая (k_e) и вычтена из полной теплопроводности (k). Число Лоренца рассчитано в предположении параболического зонного спектра и преобладающего рассеяния электронов на акустических фононах. Из полученной таким образом решеточной теплопроводности определено тепловое сопротивление образцов $W_1 = 1/k_1$, приведенное на рис. 4, b. Как видно

Рис. 3. Разделение вкладов в коэффициент Нернста—Эттингсгаузена (a) и определение ширины запрещенной зоны ε_{g0} из зависимости $\ln Q_{np}$ от 1000/T (b). Образец 4. Кинетические коэффициенты приведены в единицах подвижности $\mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$.

1000/T, K⁻¹

Рис. 4. Температурные зависимости удельной теплопроводности k кристаллов $n ext{-}\mathrm{Bi}_2\mathrm{Te}_{2.85}\mathrm{Se}_{0.15}~(a)$ и зависимости теплового сопротивления решетки W_1 от температуры (b). Номера зависимостей соответствуют номерам образцов в таблице.

T, K

из рис. 4, *b*, тепловое сопротивление решетки монотонно растет при увеличении температуры, не имеет аномалий, что свидетельствует о корректности разделения вкладов в теплопроводность. Однако следует заметить некоторое снижение теплового сопротивления в образцах, легированных медью, по сравнению с образцами без Си. Этот результат согласуется с данными по тепловому сопротивлению для теллурида висмута, легированного атомами йода и избыточного (по сравнению со стехиометрическим составом) висмута [6], и также может быть объяснен уменьшением рассеяния фононов на атомах антиструктурного висмута в присутствии атомов йода.

4. Заключение

Температурные зависимости электропроводности, термоэдс, коэффициентов Холла, Нернста—Эттингсгаузена и теплопроводности в кристаллах n-Bi $_2$ Te $_{2.85}$ Se $_{0.15}$, легированных медью и без нее, с концентрацией электронов $\sim 1 \cdot 10^{19} \, \mathrm{cm}^{-3}$ не обнаруживают ярких аномалий, что

свидетельствует о применимости однозонной модели для описания кинетических явлений.

В рамках однозонной модели сделаны оценки эффективной массы плотности состояний электронов $(m_d \approx 0.8 m_0)$, ширины запрещенной зоны $(\varepsilon_{g0} \approx 0.2 \, \mathrm{pm})$ и параметра рассеяния $(r_{\mathrm{eff}} \approx 0.2)$, свидетельствующего о смешанном механизме рассеяния электронов при преобладании рассеяния на акустических фононах.

В заключение авторы выражают глубокую признательность П.П. Константинову за проведение измерений теплопроводности.

Список литературы

- [1] В.А. Семенюк, Т.Е. Свечникова, Л.Д. Иванова. J. Adv. Mater., N 1 (15), 428 (1994).
- [2] М.А. Коржуев, С.Н. Чижевская, Т.Е. Свечникова и др. Неорг. матер., **28** (7), 1383 (1992).
- [3] Т.Е. Свечникова, Н.В. Чижевская, Н.В. Поликарпова. Неорг. матер., **23** (7), 1128 (1987).
- [4] М.А. Коржуев, Т.Е. Свечникова, В.С. Гарнык и др. Письма ЖТФ, **17** (20), 34 (1991).
- [5] Т.Е. Свечникова, П.П. Константинов, Г.Т. Алексеева. Неорг. матер., 36 (6), 667 (2000).
- [6] Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. *Полупроводниковые термоэлектрические материалы на основе* Ві₂Те₃ (М., Наука, 1977).
- [7] М.К. Житинская, В.И. Кайданов, И.А. Черник. ФТТ, **8**, 295 (1966).
- [8] Б.М. Гольцман, З.М. Дашевский, В.И. Кайданов, Н.В. Коломоец. Пленочные термоэлементы: физика и применение (М., Наука, 1985).

Редактор Л.В. Шаронова

Effect of doping with copper on kinetic phenomena in n-Bi₂Te_{2.85}Se_{0.15} crystals

M.K. Zhitinskaya, S.A. Nemov, T.E. Svechnikova+

Saint-Petersburg State Polytechnical University, 195251 St. Petersburg, Russia ⁺ A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991 Moscow, Russia