CdTe как пассивирующий слой в гетероструктуре CdTe/HgCdTe

© И.С. Вирт[†], И.В. Курило*, И.А. Рудый*, Ф.Ф. Сизов[‡], Н.Н. Михайлов•, Р.Н. Смирнов•

79013 Львов, Украина

(Получена 10 сентября 2007 г. Принята к печати 29 октября 2007 г.)

Исследовались гетероструктуры $CdTe/Hg_{1-x}Cd_xTe$, где CdTe используется как пассивирующий слой, осаждаемый в виде поликристалла или монокристалла на монокристаллическую пленку $Hg_{1-x}Cd_xTe$. Пленку и пассивирующий слой получали в едином технологическом процессе молекулярно-лучевой эпитаксии. Структуру пассивирующих слоев исследовали методом дифракции электронов высоких энергий на отражение, а влияние структуры пассивирующего слоя на свойства активного слоя — методом рентгеновской дифракции. Механические свойства гетероструктур исследованы методом микротвердости. Представлены электрофизические и фотоэлектрические параметры эпитаксиальных пленок $Hg_{1-x}Cd_xTe$.

PACS: 61.66.Fn, 68.55.Jk, 72.80.Ey, 73.40.Lq

1. Введение

Свойства полупроводниковых приборов существенно зависят от качества поверхностных диэлектрических защитных слоев, которые до сих пор по аналогии с Si создавали окислением поверхности кристаллов и пленок. Полученные таким путем слои сложных полупроводников (например, $Hg_{1-x}Cd_xTe$) вследствие разных скоростей окисления элементов были смесью окислов разного химического состава. Это приводило к сильной зависимости физических свойств как самих окислов, так и границ раздела окисел-полупроводник от технологии формирования окисла и первоначального состояния поверхности. Альтернативный метод защиты поверхности приборных структур, полученных на основе сложных полупроводников, — наращивание диэлектрических материалов на основе сульфидов, селенидов и фторидов кадмия. Однако такие слои на поверхности $Hg_{1-x}Cd_x$ Те являются нестабильными, как и слои собственного окисла [1].

Нанесение слоев CdTe не так давно начали применять для пассивации многих приборных структур на базе $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$, в особенности фотодиодных. Пассивирование осаждением диэлектрических материалов и CdTe проводили после необходимой в таких случаях предварительной обработки поверхности рабочего слоя [2]. Данные о технологии такой обработки немногочисленны. Слои CdTe могут быть осаждены парофазной эпитаксией из металлорганических соединений или методом молекулярно-лучевой эпитаксии (МЛЭ) непосредственно в едином процессе роста при сравнительно низких температурах. Гетероструктуры CdTe/ $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$, выращенные в едином технологическом процессе, должны обеспечивать более качественные поверхности раздела и более стабильные параметры приборов на их основе.

Во многих публикациях, посвященных пассивации $Hg_{1-x}Cd_x$ Те, высказано предположение, что варизонные слои этого соединения с повышенным содержанием CdTe или слои чистого CdTe, а также слои CdZnTe можно использовать для пассивации поверхности. Увеличение ширины запрещенной зоны со стороны пассивирующего слоя на гетерогранице с эпитаксиальной пленкой узкозонного полупроводника создает встроенное поле, которое уменьшает сток неравновесных носителей заряда (HH3) к поверхности с повышенной скоростью рекомбинации. Таким образом, можно увеличить эффективное время жизни HH3 в активной (рабочей) зоне структуры.

Цель данной работы заключается в исследовании влияния структуры пассивирующих слоев CdTe, осаждаемых в едином процессе МЛЭ, на электрофизические, фотоэлектрические и механические свойства эпитаксиальных пленок $Hg_{1-x}Cd_x$ Te.

2. Эксперимент

Эпитаксиальные пленки $Hg_{1-x}Cd_x$ Те были получены методом МЛЭ на подложках GaAs (013) на установке "Обь-М". Предварительно для согласования параметров решетки подложки и $Hg_{1-x}Cd_x$ Те в отдельной камере на подложку последовательно наращивали буферные слои ZnTe и CdTe толщиной 0.3 и 6.3 мкм соответственно. На буферный слой наращивали варизонный слой $Hg_{1-x}Cd_x$ Те толщиной 1.5 мкм с плавно изменяющимся содержанием Cd от x=0.45 до 0.22. Толщина рабочего слоя узкозонного $Hg_{1-x}Cd_x$ Те составляла 7–8 мкм. На поверхности рабочего слоя наращивали также варизонный слой толщиной 0.5 мкм до состава, соответствующего x=0.45 [2,3].

[†] Дрогобычский государственный педагогический университет им. И. Франко, 82100 Дрогобыч, Украина

^{*} Национальный университет "Львовская политехника",

[‡] Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

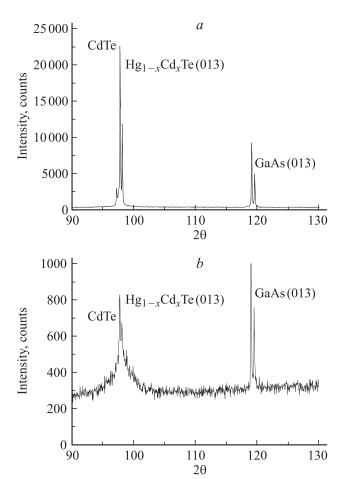
Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

Номер образца	x	$n, \text{ cm}^{-3}$	μ_n , cm ² /B · c	Структура пассивирующего слоя	H_{ν} , МПа $(P=0.20{ m H})$	au , MKC
1 2	0.22 0.22	$5.1 \cdot 10^{14} \\ 9.0 \cdot 10^{13}$	69000 66000	Поликристалл Монокристалл	520 550	7-8 0.6-0.8

Таблица 1. Параметры пленок $Hg_{1-x}Cd_x$ Те с пассивирующими слоями CdTe

Примечание. Концентрация носителей n и их подвижность μ_n приведены для 77 К.

Далее на таких эпитаксиальных структурах наращивали в одном случае монокристаллический поверхностный слой CdTe толщиной ~ 0.3 мкм, а во втором случае поликристаллический слой CdTe такой же толщины. Выращивание поверхностного слоя проводилось непосредственно в камере роста $Hg_{1-x}Cd_x$ Те на установке МЛЭ. Толщина поверхностного слоя СdТе контролировалась in situ эллипсометрическими измерениями, состав поверхностного слоя после роста — по спектрам отражения. Рентгенодифракционные исследования полученных гетероструктур выполняли на дифрактометре ДРОН-3.0 (излучение CuK_{α}) по схеме $\theta-2\theta$. Структуру приповерхностных слоев исследовали методом дифракции электронов высоких энергий на отражение (ДЭВЭО) на электронографе ЭГ-100 А в интервале ускорительных напряжений 60-80 кВ. Микромеханические свойства гетероструктур исследовали методом измерения микротвердости (H_{ν}) . Нагрузка на индентор составляла $P = (2-20) \cdot 10^{-2} \,\mathrm{H}$, время статистического действия нагрузки — 10 c.


Температурные зависимости коэффициента Холла измеряли шестизондовым методом в магнитных полях $0.1-1\,\mathrm{Tr}$ в интервале температур $T=40-300\,\mathrm{K}$, температурные зависимости времени жизни HH3 τ в интервале $T=40-300\,\mathrm{K}$ — методом релаксации фотопроводимости, возбуждаемой излучением светодиода (длина волны $\lambda=900\,\mathrm{hm}$) при длительности импульса $\Delta t=5\,\mathrm{mkc}$.

3. Результаты и обсуждение

Исследованы структурные, механические и электрофизические свойства эпитаксиальных пленок. Некоторые из этих параметров приведены в табл. 1.

На рентгенодифрактограммах (рис. 1) видно характерные пики структуры цинковой обманки, в которую кристаллизуются твердые растворы $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$ и CdTe. Ориентация пленки полностью повторяет ориентацию подложки GaAs (013). Пики от рабочего слоя пленки $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$ состава с x=0.22 и поверхностного слоя CdTe накладываются один на другой. В случае поверхностного слоя со структурой монокристалла (рис. 1, a) их удалось разделить и вычислить постоянную решетку рабочего слоя пленки $a_{\mathrm{HgCdTe}}=6.4661\,\mathrm{\mathring{A}}$. В случае слоя CdTe со структурой поликристалла (рис. 1, b) имеем дело с очень размытым пиком от CdTe, который на-

кладывается на пик рабочего слоя пленки. Электронографические исследования, проведенные по методике ДЭВЭО, показали, что поликристаллическая структура сформирована кристаллитами с размерами $40-70\,\text{Å}$. Постоянная решетки a_{HgCdTe} рабочего слоя пленки $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$, расположенного под поликристаллическим поверхностным слоем, рассчитанная из рентгенодифрактограмм, составляет $6.4658\,\text{Å}$. Это значение близко к табличному значению постоянной решетки объемного материала $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$ состава с x=0.22. Так, согласно табличным данным для монокристаллических образцов $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$ (x=0.22) в виде порошка, отожженных продолжительное время в парах ртути, постоянная ре-

Рис. 1. Рентгенодифрактограммы гетероструктур GaAs/ $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}/\mathrm{Cd}\mathrm{Te}$: пассивирующий слой CdTe со структурой монокристалла (a) и поликристалла (b).

Номер образца	Подложка	Пленка $Hg_{1-x}Cd_xTe$	Пассивирующий слой
1	$a_{\rm GaAs} = 5.6530\text{Å}$	$a_{ m HgCdTe} = 6.4658{ m \AA} \ (x = 0.22)$	Поликристаллический СdТe, величина a_{CdTe} не установлена в связи с высокой дисперсностью
2	$a_{\rm GaAs} = 5.6530\text{Å}$	$a_{ m HgCdTe} = 6.4661{ m \AA} \ (x = 0.22)$	Монокристаллический CdTe, $a_{\mathrm{CdTe}} = 6.4882\mathrm{\mathring{A}}$

Таблица 2. Результаты рентгенофракционных исследований

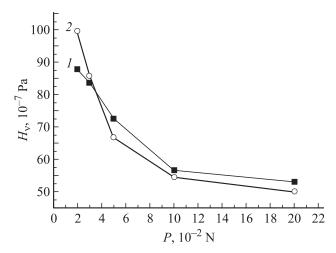
шетки составляет $a_{\rm HgCdTe} = 6.4641\,{\rm Å}\,$ [4,5]. Результаты наших рентгенодифракционных исследований представлены в табл. 2.

По нашему мнению, пассивирующий монокристаллический слой CdTe больше влияет на рабочую пленку $Hg_{1-x}Cd_x$ Te, чем поликристаллический слой CdTe — наблюдаем небольшое растяжение решетки в плоскости (013). Напряжения на гетерогранице действуют в одном направлении: рабочая пленка растягивается, а пассивирующий слой сжимается.

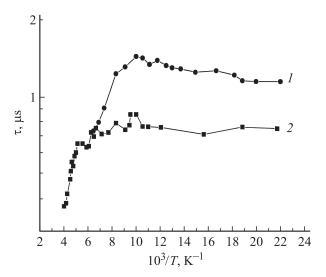
Поликристаллические слои, как и эпитаксиальные, возникают в макронапряженном состоянии. Однако в связи с тем, что ориентационная связь между подложкой и пленкой слабая или отсутствует, несоответствие постоянных решеток не оказывает существенного влияния на возникновение микронапряжений. Основную роль может играть различие коэффициентов термического расширения контактирующих материалов $\Delta \alpha$, в особенности это проявляется в пленках анизотропных материалов. На величину напряжений может влиять наличие и неоднородное распределение по толщине пленки легирующих и неконтролируемых примесей [6].

Для сравнения исследовали эпитаксиальные пленки $Hg_{1-x}Cd_xTe$, выращенные методом МЛЭ, с пассивирующими слоями, полученными анодным окислением. Следует отметить, что химический состав и структура анодных окислов довольно сложны. Состав окислов меняется монотонно от подложки (рабочий слой пленки $Hg_{1-x}Cd_xTe$) к поверхности [7]. Технология получения пассивирующих анодных окислов с аморфной или поликристаллической структурой предусматривает, по нашему мнению, довольно сильную химическую связь анодного окисла с рабочим слоем пленки. Значение микротвердости эпитаксиальной пленки с анодным окислом составляет $H_{\nu}=900\,\mathrm{M}\Pi$ а. Это соответствует относительному увеличению микротвердости эпитаксиальной пленки с анодным окислом на 55% по сравнению с пленкой без окисла.

На основании электронографических исследований экспериментально установлено усредненное значение постоянной решетки анодного окисла ($a_{AO}=5.34\,\text{Å}$). Это позволило рассчитать напряжение несоответствия в гетероструктуре окисел/ $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$: $\sigma_{\Delta a}\approx \approx 14.159\,\Gamma\Pi a$ [7].


Различие постоянных решетки исходных материалов гетероструктуры CdTe/Hg $_{1-x}$ Cd $_x$ Te характеризуется параметром несоответствия $f=3\cdot 10^{-3}$, что более чем на порядок превышает этот параметр для условий гомоэпитаксии [8]. Это обстоятельство необходимо учитывать при анализе физико-механических свойств границ раздела. Рассчитанное напряжение несоответствия $\sigma_{\Delta a}$, обусловленное различием постоянных решетки компонент гетеропары, возникает непосредственно во время роста эпитаксиальной пленки и составляет 222 МПа.

Термическое напряжение $\sigma_{\Delta\alpha}$, вызванное различием коэффициентов термического расширения контактирующих материалов при условии линейной температурной зависимости постоянных решетки, составляет ~ 36 МПа (для реальных технологических условий выращивания). Следует отметить, что $\sigma_{\Delta a}$ существенно (в 6 раз больше) превышает $\sigma_{\Delta\alpha}$ [9,10].


При наращивании однородного слоя CdTe сетка дислокаций несоответствия должна возникать на поверхности раздела уже на начальных стадиях роста. Поскольку в структуре цинковой обманки, в которой кристаллизуются CdTe и твердые растворы $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$, существуют дислокации α - и β -типа, такая сетка получается из параллельно размещенных совокупностей дислокаций α -типа и направленных под углом к ним дислокаций β -типа. Физико-механические и электронные свойства α - и β -дислокаций различаются, поэтому возможна анизотропия свойств гетеросистемы [11].

По нашему мнению, поликристаллический слой слабо связан с рабочим слоем пленки, поэтому сетка дислокаций несоответствия не вводится и соответственно имеется меньшее количество дислокаций в рабочем слое, чем для случая монокристаллического покрытия. Меньше и несрелаксированная компонента упругого состояния, которая также вносит вклад в изменения электрофизических параметров.

Вопрос относительно электрической активности дислокаций и точечных дефектов деформационного происхождения в кристаллах HgCdTe рассматривали в работе [12]. Показано, что основную роль здесь играют не непосредственно дислокации, а точечные дефекты, образованные в процессе движения дислокаций. Следует учитывать, что, кроме некоторой пластической деформации нанесенных на подложку слоев, существует также упруго напряженное состояние, которое вносит

Рис. 2. Зависимость микротвердости от нагрузки для эпитаксиальных пленок HgCdTe с разными пассивирующими слоями: 1 — образец 1 с поликристаллическим CdTe; 2 — образец 2 с монокристаллическим CdTe.

Рис. 3. Температурная зависимость времени жизни неравновесных носителей заряда для пленок $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$ с поликристаллическим (1) и монокристаллическим (2) пассивирующим слоем CdTe.

вклад в изменение физических свойств материала эпитаксиальной пленки. Упругая деформация приводит к изменению зонной структуры полупроводника, ширины запрещенной зоны, концентрации неравновесных носителей заряда, а также и их подвижности.

Известно, что чувствительной характеристикой структурного состояния поверхности образца является микротвердость H_{ν} [13]. По зависимости микротвердости от глубины внедрения индентора (с изменением нагрузки) можно проследить влияние структуры различных подслоев на механические свойства эпитаксиальной пленки. Такие зависимости для пленок, полученных методом МЛЭ, с пассивирующими слоями показаны на рис. 2.

Видно, что поликристаллический слой при малых нагрузках ($P=2\cdot 10^{-2}\,\mathrm{H}$) имеет меньшую микротвердость ($H_{\nu}=870\,\mathrm{M}\Pi\mathrm{a}$) по сравнению с монокристаллическим слоем CdTe ($H_{\nu}=1000\,\mathrm{M}\Pi\mathrm{a}$). Это можно объяснить высокой дисперсностью поликристаллического слоя. Для величины нагрузки $P=20\cdot 10^{-2}\,\mathrm{H}$ (глубина внедрения индентора $d=3\,\mathrm{mkm}$) микротвердости двухслойных структур CdTe/Hg_{1-x}Cd_xTe практически равны ($H_{\nu}=500-550\,\mathrm{M}\Pi\mathrm{a}$) и близки к значению микротвердости эпитаксиальной пленки состава с x=0.22. Необходимо отметить, что микротвердость эпитаксиальной пленки больше, чем микротвердость массивного материала такого же состава.

В температурных зависимостях времени жизни ННЗ τ для пленок $Hg_{1-x}Cd_x$ Те с пассивирующими слоями CdTe разной структуры наблюдалось существенное различие (рис. 3). Мы предполагаем, что это может быть связано с внутренними напряжениями и дислокациями несоответствия в гетероструктурах.

4. Заключение

На основании исследований, проведенных методом рентгеновской дифрактометрии, установлено, что пассивирующий слой CdTe со структурой поликристалла ориентационно слабо связан с эпитаксиальной пленкой $Hg_{1-x}Cd_x$ Те. Это не приводит, по нашему мнению, к образованию такого количества дислокаций несоответствия и остаточных напряжений, как в случае монокристаллического слоя CdTe. Следовательно, в случае поликристаллического слоя CdTe не происходит существенных изменений дефектной структуры рабочего слоя пленки $Hg_{1-x}Cd_x$ Te, а также ширины запрещенной зоны, концентрации ННЗ и их подвижности. Кроме этого, ослабляются генерационно-рекомбинационные процессы на гетерогранице CdTe/Hg_{1-r}Cd_rTe, что в свою очередь увеличивает время жизни ННЗ в рабочем слое эпитаксиальной пленки $Hg_{1-x}Cd_x$ Те. Установлен факт зависимости времени жизни ННЗ в рабочем слое эпитаксиальной пленки $Hg_{1-x}Cd_x$ Те от структуры пассивирующего слоя CdTe.

Список литературы

- [1] В.Г. Средин, Ю.С. Мезин, В.М. Укроженко. ФТП, **35**, 1335 (2001).
- [2] V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Yu.G. Sidorov, A.O. Suslyakov, M.V. Yakushev, A.L. Aseev. Proc. SPIE, 5136, 381 (2003).
- [3] Yu.G. Sidorov, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, V.S. Varavin, V.V. Vasiliev, A.O. Suslyakov, V.N. Ovsyuk. Proc. SPIE, 4355, 228 (2001).
- [4] Y. Nemirovski, N. Mainzer, E. Weiss. Properties of Narrow Gap Cadmium-Based Compounds, ed. by P. Capper (Gec-Marconi, Infra-Red Ltd, Southampton, London, INSPEC, 1994) p. 284.

- [5] Н.Н. Берченко, В.Э. Кревс, В.Г. Средин. Полупроводниковые твердые растворы и их применение (М., Воениздат, 1982) с. 103.
- [6] С.С. Горелик, М.Я. Дашевский. Материаловедение полупроводников и диэлектриков (М., Металургия, 1988) с. 432.
- [7] И.С. Вирт, А.В. Войцеховский, А.П. Коханенко, И.В. Курило, И.А. Рудый, И.Е. Лопатинский, М.С. Фружинский. Вестник НУ "Львовская политехника", сер. Электроника (Львов, 2003) № 482, с. 3.
- [8] М.Г. Мильвидский, В.Б. Освенский. Структурные дефекты в эпитаксиальных слоях полупроводников (М., Металлургия, 1985) с. 8.
- [9] И.В. Курило, И.А. Рудый, А.И. Власенко. УФЖ, 43, 207 (1998).
- [10] I.V. Kurilo, I.O. Rudyj, O.I. Vlasenko. J. Cryst. Growth, 204, 447 (1999).
- [11] А.И. Власенко, З.К. Власенко, И.В. Курило, И.А. Рудый. ФТТ, 48, 436 (2006).
- [12] С.Г. Гасан-заде, С.В. Старый, М.В. Стриха, Г.А. Шепельский. ФТП, 37, 8 (2003).
- [13] Ю. А. Концевой, Ю.М. Литвинов, Э.А. Фаттахов. Пластичность и прочность полупроводниковых материалов и структур (М., Радио и связь, 1982) с. 52.

Редактор Л.В. Шаронова

CdTe as passivating layer in a CdTe/HgCdTe heterostructure

I.S. Virt[†], I.V. Kurilo*, I.O. Rudyi*, F.F. Sizov[‡], N.N. Mikhailov•, R.N. Smirnov•

- Drogobych State Pedagogical University, 82100 Drogobych, Ukraine
- * National University "Lviv Polytechnic",

79013 Lviv, Ukraine

- [‡] V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kviv, Ukraine
- Institute of Semiconductor Physics,
 Russian Academy of Sciences, Siberian Branch,
 630090 Novosibirsk, Russia

Abstract In the present work, we investigated heterostructures consisting of molecular-beam epitaxy grown monocrystalline $Hg_{1-x}Cd_x$ Te active film with either monocrystalline or polycrystalline CdTe passivating layer. The structural properties and surface morphology of passivating layers were studied by the reflection high-energy electron diffraction method. The influence of passivating layer structure on the properties of the active film was studied by means of *X*-ray diffraction technique. The mechanical properties of heterostructures were investigated by the microhardness method. Electrophysical and photoelectric parameters of epitaxial $Hg_{1-x}Cd_x$ Te films were measured.