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Improving detection sensitivity of biological molecules with low absorption characteristics in the terahertz gap still
remains an important issue in terahertz vibrational resonance spectroscopy. One possible way to increase coupling
of incident terahertz radiation to molecules is to exploit local enhancement of electromagnetic field in periodic
slot arrays. In this work, we show that periodic arrays of rectangular slots with subwavelength width provide for
local electromagnetic field enhancements due to edge effects in our low frequency range of interest, 10−25 cm−1.
Periodic structures of Au, doped Si and InSb were studied. The half power enhancement width is ∼ 500 nm and less
around the slot edges in all cases, thereby possibly bringing terahertz sensing to the nanoscale. InSb is confirmed
to offer the highest results with the local power enhancements of the order of 1100 at frequency 14 cm−1. InSb
and Si have large skin depths in our frequency range of interest and so the analysis of their structures was done
through the Fourier expansion method of field diffracted from gratings. Surface impedance boundary conditions
were employed to model the Au structure. The applications possibly include development of novel biosensors, and
monitoring biophysical processes such as DNA denaturation.

PACS: 41.20.Jb, 78.68.+m, 78.70.Gq,

1. Introduction

The terahertz region (THz) of the electromagnetic spec-
trum, wedged between the infrared and microwave end,
has recently seen a surge in the applications front in
areas not limited to imaging, spectroscopy, submillimeter
wave astronomy, non-destructive testing, airport security
and remote sensing. Vibrational resonance spectroscopy
in the THz or sub-THz gap, a reliable technique for
fingerprinting species of biological molecules [1–3], has a
potential future in broad areas such as biomedicine and
biodetection. The absorption spectra of biological molecules
in the 0.1−10 THz range reflect low frequency internal
molecular vibrations (weakest hydrogen bonds) and/or non-
bonded interactions between different functional groups
within molecules. The resonant frequencies of vibrational
modes, i. e. phonon modes, serve as specific signatures of
species. The low THz end of the spectrum is particularly of
interest since water absorption is considerably less than in
the far-infrared (far-IR) and infrared (IR) region. However
the low absorption characteristics of biological molecules
in this region pose the challenge of increasing detection
sensitivity of molecules. In order for this to be achieved
(and thereby increased reliability), coupling of incident THz
radiation to biological molecules has to be enhanced.

An external way to achieve increased coupling of incident
radiation is to exploit the local electromagnetic field en-
hancement provided by subwavelength periodic slot arrays.
Slot arrays were used in the THz region as bandpass filters
made of lossy metal films and deposited on dielectric
membranes [4]. Metallic rough surfaces and periodic struc-
tures [5–11] have constantly been of interest experimentally
at optical and near-infrared frequencies. It has been recently
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demonstrated that waveguide resonance and diffraction are
the predominant reasons [8] for enhanced transmission
of narrow slot subwavelength (depending on TE or TM
polarization, radiation sees a different effective medium)
gratings. Extraordinary optical transmission (transmission
efficiency exceeding unity when normalized to the surface
of the holes) through subwavelength hole arrays was first
experimentally observed in Ag [9,10] and attributed to
the resonant tunneling of surface plasmons through thin
films [10–15]. The THz range also saw studies in this regard
recently. Hole arrays in films made of metals (Ag-coated
stainless steel [16], Al-coated Si wafers [17]) and doped
semiconductors (Si [18] and InSb [19]) were employed. The
qualitative analysis of observed transmission enhancement in
lossy metallic foils with hole arrays relied on the dispersion
of surface plasmons [20] in an uniform film is inappropriate
in the case of hole arrays. Hence, the observed enhanced
transmission is not well understood. It is to be noted that
the transmission properties of subwavelength slot arrays
are fundamentally different from arrays of holes, since
unlike hole arrays, a slot array can support a propagating
mode [21]. Studies on metallic slots were recently done in
the THz [22] using the perfect conductor approximation.

We have endeavored to study the mechanism of coupling
of TM polarized THz radiation to both metallic and
semiconductor films consisting of rectangular slot arrays.
In this region, interaction between radiation and metals is
quite different from higher frequency regions due to the
change in material dielectric properties. The real part of
permittivity continues to be negative and is large, but the
dissipative imaginary part becomes larger, and hence metals
are very conducting and absorbing. Therefore, to reduce
radiation losses, it is preferable to substitute metals with
doped semiconductors with plasma frequencies in the low
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Figure 1. The periodic rectangular slot array structure. The
axes and the structure parameters (d — spacing, s — slot width,
h — film thickness) are shown.

THz range, in order to mimic metallic behavior at high
frequencies. InSb, with high electron mobility and low
effective mass, is most suited for this purpose. InSb and Si
still have a substantial absorbing imaginary part compared
to the real component. The absorbing component requires
the assumption of a small film thickness, which makes
the semiconductor skin depth at both semiconductor–air
interfaces larger than half the film thickness throughout
our frequency range of interest. This renders the surface
impedance boundary conditions [23,24] for perfect conduc-
tors to be unsuitable for our case. On the other hand, in
contrast with the behavior of metals in short wavelength
ranges, the Fourier expansion method for field diffracted
from gratings [5] can be applied in the THz region for InSb
and Si films, since the imaginary permittivity component
damps the Gibbs oscillations [25]. The Fourier expansion
method is unsuitable in the THz for Au owing to its
dielectric properties. However, since the skin depth in
Au is small compared to thickness, surface impedance
boundary conditions can be used. Even in this case,
thickness is assumed to be very small compared to the
wavelength since we employ the perfectly conducting walls
approximation [26] for fields inside slots as seen later.

We demonstrate that even in the absence of surface
plasmon resonances, increased transmission and local elec-
tric field enhancement for TM incidence can be obtained
through careful choice of materials and design of periodic
slot array structures. We also show that the enhancement of
the THz electromagnetic field extends across the slots and
reaches peak values at the edges because of discontinuity
effects.

2. Theory

We consider a subwavelength array of slots with the
periodicity in the x-direction and extending all the way
in the y-direction. The z-direction is normal to the plane
of incidence. Since the structure is not altered in the
y-direction, it would suffice to analyze a two-dimensional

periodic structure as shown in Fig. 1 with the periodicity
(spacing) denoted by d, the slot width by s, and the
thickness of the film by h. We also consider normal TM
incidence (magnetic field parallel to the slot grooves and
p-polarized). The relative permittivity in the modulated
medium (0 < z < h) can be expressed as e‖(x) and the
fields inside as Hm

y and Em
x .

2.1. Fourier expansion method

Inside the modulated medium (0 < z < h), the propaga-
tion equation [5] is

∂
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again from Maxwell’s equations,
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Substituting Eq. (4) in Eqs (1) and (2) and rearranging,
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Eqs. (5) and (6) constitute a coupled differential equation
system [5]. Now expanding e‖(x) as a Fourier series with
(N + 1) modes

e‖ =
N∑

n=0

en cos(ngx), (7)

where g = 2π/d.
Projecting the coefficients of the pseudo-periodic electric

and magnetic field functions, again on the cos(ngx) basis,
and substituting in Eqs. (5) and (6) for the fields inside the
modulated medium, we obtain

Vn,pκp = − j ε0ω

N∑
m=0

(e‖)n−mWm,p, (8)

Wn,pκp =
(

j
ε0ω

)
ng

N∑
m=0

mg

(
1
e‖

)
n−m

Vm,p−Vn,p. (9)

Coupled set of Eqs. (8) and (9) constitute an eigenvalue
problem, which has 2(N + 1) solutions; κp represents the
eigenvalues i. e. propagation constants, and Vn,p,Wn,p are the
eigenvectors i. e. coefficients associated with the magnetic

Физика и техника полупроводников, 2008, том 42, вып. 8



942 B. Gelmont, R. Parthasarathy, T. Globus

and electric fields respectively. The total electric and
magnetic fields were expressed as linear combinations of
eigenmodes

Hm
y =

2(N+1)∑
p=1

eκpzAp

[ N∑
n=0

Vn,p cos(ngx)
]
, (10)

Em
x =

2(N+1)∑
p=1

eκpzAp

[ N∑
n=0

Wn,p cos(ngx)
]
. (11)

The electric field (Et
x) in the transmitted medium (z < 0)

was written as

Et
x = tE0 exp

(
− j

ω

c
z

)
+

N∑
n=1

Et
n cos(ngx) exp(ηnz), (12)

where ηn =
√

(ng)2 − (ω/c)2, E0 is the amplitude of the
incoming wave, En is the complex mode amplitude of
order n, and t is the transmission coefficient. In the medium
of incidence (z > h), the electric field (Ei

x) was written as
a superposition of forward and reflected components,

Ei
x = E0

(
e− j (ω/c)(z−h) + re j (ω/c)(z−h))

+
N∑

n=1

Ei
n cos(ngx)eηn(h−z), (13)

where r is the reflection coefficient. The magnetic fields
were obtained from the electric fields through Maxwell’s
equations. At the two interfaces, Maxwell’s boundary
conditions, i. e. continuity of Hy and Ex , were applied to
constitute a linear system of equations that can be solved for
the unknown field amplitudes in all the regions as well as t
and r . Furthermore, the field amplitudes were substituted
back into the respective equations to find the electric field
enhancements at desired regions relative to the incidence.

2.2. Surface impedance boundary conditions
method

The assumption in this method is that the height is
very small compared to the spacing and the wavelength.
Since the vertical region of radiation interaction is small
compared to the horizontal region, the vertical walls of
the cavities are assumed to be perfectly conducting while
surface impedance boundary conditions are employed at the
horizontal surfaces.

The perfectly conducting wall assumption [26] allows us
to write the equation for the magnetic field inside the slot
cavities (−s/2 < x < s/2 and 0 < z < h) as

Hm
y =

∞∑
m=0

cos

[
mπ
s

(
x +

s
2

)]
(Ame−iβmz + Bmeiβmz), (14)

where βm =
√

(ω/c)2 − (mπ/s)2 and Am, Bm are the
m-mode amplitudes.

In the medium of incidence (z > h), the normalized
magnetic field (Hi

y) can be expressed as

Hi
y =

∞∑
n=−∞

[
δn,0 e−i (ω/c)(z−h) + ρneiηn(z−h)]eingx. (15)

Here ρn is the amplitude of n-th reflected order (reflection
coefficient r = ρ0). In the transmitted medium, the
normalized magnetic field (Ht

y) is

Ht
y =

∞∑
n=−∞

τn e−iηnz eingx, (16)

τn is the amplitude of the n-th transmitted order, far-field
transmission coefficient t = τ0. The normalized electric
fields (Ei

x and Et
x) can be obtained from the corresponding

magnetic fields.
Boundary condition for the magnetic fields at z = h

implies
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Continuity of (∂Hy/∂z) (z = h) leads to
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At z = 0, the corresponding boundary conditions are

∞∑
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s
2
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(20)

The other set of conditions utilize the concept of a non-
zero tangential component of electric field at the metal
surface, and are known as surface impedance boundary
conditions.

At z = h,

∞∑
n=−∞

[
δn,0

(
ω

c

)
− ρnηn

]
eingx

=
(
ω

c

)
Zs

∞∑
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(δn,0 + ρn)eingx, (21)

where Zs = 1/
√
εm, εm is the relative permittivity of metal.
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At z = 0,

∞∑
n=−∞
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)
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Integrating (17) and (19) and projecting over cosine vectors
in the interval (−s/2, s/2)
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Integrating (18) and (21) over limits of validity after
projecting over exponential vectors,[
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Using (27) it is possible to rewrite (28) as follows
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Similarly integrating (20) and (22) over limits of validity
after projecting over exponential vectors, we obtain
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Substituting (30) in (24), (29) in (23) and rewriting as a
system of equations,{
δm,p−

2
1 + δm,0

[
βp +Zs

(
ω

c

)] ∞∑
n=−∞

I +
n,mĨ−n,p
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2
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(32)
(31) and (32) constitute a matrix system that can be solved
for the mode amplitudes inside the slots, i. e. Am and Bm.
The boundary conditions can be used to find t and r , and
these can be substituted back into the respective equations
to find the electromagnetic field enhancements.

2.3. Drude model for permittivity

For polar materials like InSb, Drude model describes the
frequency dependence of the relative permittivity,

ε(ω) = ε(0) −
ω2

p0

ω(ω + j τ −1)
, (33)

when the frequency is smaller than transverse optical
phonon frequency. Here ε(0) is the static dielectric constant
and is 16.8 for InSb (11.7 for Si), τ is the relaxation time of
the electrons, ωp0 = ωp

√
ε(0)/ε0, ωp =

√
Nde2/ε(0)m∗ is

the plasma frequency, Nd is the charge carrier concentration,
e is the electronic charge, and m∗ is the electron effective
mass. The mobility of the carriers is related to the relaxation
time by

µ =
eτ
m∗

. (34)

For metals, relative permittivity

ε(ω) = 1−
ω2

p0

ω(ω + j τ −1)
. (35)
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3. Choice of parameters

The test frequency was chosen to be 14 cm−1, since
absorption peaks of interest to FTIR transmission spec-
troscopy of biological molecules occur in this region. At
room temperature (300 K), InSb has an electron mo-
bility [27] of 7.7 · 104 cm2 ·V−1 · s−1. The correspon-
ding carrier concentration is 1.1 · 1016 cm−3 (close to
intrinsic). From equations InSb was found to have a
relative permittivity of −242.9 + i 160.5. The plasma
frequency was ∼ 0.5 THz. Si has an electron mobility
of 950 cm2 · V−1 · s−1 [28] and a corresponding carrier
concentration of 1017 cm−3. The relative permittivity is
−9.5 + i 57.3 and the plasma frequency 0.48 THz. For Au,
relative permittivity is huge −5.56 · 104 + i 1.22 · 106 and
plasma frequency 2.17 · 103 THz [29].

Since our region of interest in THz is 10−25 cm−1, we
had to choose a spacing that was less than the smallest
wavelength of the incident radiation i. e. 400 µm. Modeling
was conducted for two different periodicity values, d = 381
and 251 µm. Due to the high absorbing part of InSb, Si
permittivity and the limitation of the perfect conducting wall
approximation for slots in Au, the thickness was chosen to
be small (h < 12µm).

In the case of the Fourier expansion method for InSb
and Si, the discontinuous permittivity function of the
modulated medium theoretically needs an infinite mode
representation. However, convergence of transmission and
the electromagnetic field enhancements was achieved after
a finite Fourier sum of modes (764 for d = 381µm and 504
for d = 251µm). The results were also checked for possible
errors by considering only the real part of the permittivity
function and running the model to satisfy energy conserva-
tion requirements (|t|2 + |r |2 = 1). Convergence with just a
dominant real permittivity is very difficult to achieve. In the
analysis of the Au structure using the surface impedance
boundary conditions method, just 8 modes inside the slit
were more than enough to ensure convergence. 3000
transmitted (reflected) orders were considered.

4. Resuts and discussion

The far-field transmission of the InSb structure, |t|, was
calculated as a function of frequency for the optimum
slot width s = 55µm and two different periodicities, with
h = 4µm. The results at d = 381µm are plotted in Fig. 2.
Since the permittivity of InSb is modulated periodically and
changes substantially across 10−25 cm−1, we notice peaks
in the transmission characteristics. At the high frequency
end, the permittivity approaches closer to the behavior
of metals (closer to the plasma frequency), at optical
frequencies thereby leading to an increase in transmission.
The low level of transmission in the InSb case is due to
the predominantly metallic behavior of the structure in this
frequency range. The overall transmission magnitude is
higher for a s maller periodicity at the same s/d ratio,

Figure 2. Transmittance, |t|, through InSb structure as a function
of wavenumber. d = 381 µm, s = 55 µm and h = 4 µm.

Figure 3. Transmittance, |t|, through Si and Au structures as a
function of wavenumber for optimized parameters: d = 251 µm,
s = 95 µm for Si; d = 251 µm, s = 36 µm for Au; h = 4 µm in
both cases.

thickness and frequency. This increase in transmission
points to the effect of slot interactions since at d = 251µm
the slots are closer to each other.

In the case of Si and Au, the change in permittiv-
ity throughout the frequency range of interest is very
small. This is the reason for the absence of peaks
in the transmission characteristics as shown in Fig. 3.
Optimum parameters for Si (d = 251µm, s = 95µm) and
Au (d = 251µm, s = 36µm) were used. The smaller
absorbing component in Si (when compared to InSb) leads
to larger transmission. Slots in Au offer large transmission
owing to a dominant m = 0 mode. Our assumption of a
small film thickness (h� λ) forbids resonance peaks in the
transmission characteristics in all cases.

The electric field amplitudes at the incident interface,
|Ei

x/E0| (or |Ei
x| in the Au case), were calculated as a

function of the x-coordinate for the optimized structures.
The strong electric field enhancement occurred within
the sub-micrometer region around the slot edges i. e. at
discontinuities. InSb offers the maximum enhancement as
expected (the ratio of the magnitude of the real component
of permittivity to absorbing component is highest). Fig. 4
shows the enhancement, |Ei

x/E0|, as a function of x-coordi-
nate for an InSb structure with s = 55µm and h = 4µm,

Физика и техника полупроводников, 2008, том 42, вып. 8



Edge effects in propagation of terahertz radiation in subwavelength periodic structures 945

Figure 4. Electric field enhancement, |Ei
x/E0|, as a function of x

in InSb structure with d = 381 µm, s = 55 µm and h = 4 µm,
for λ = 714 (1) and 417 µm (2). Note, the majority of the
enhancement takes place at the slot edges i. e. around (−s/2)
and(s/2).

Figure 5. Electric field enhancement, |Ei
x/E0|, as a function of x

in gold structure with d = 251 µm, s = 36 µm and h = 4 µm, for
λ = 714 µm.

for the radiation frequencies of 14 and 24 cm−1. Practically
most of the fields were confined to the edges i. e. sharp
regions of the conducting medium. The enhancement at the
edges was an order of magnitude higher than at other points
within the slot. For the radiation frequency of 14 cm−1,
the maximum field enhancement was 33.3 at the incident
interface and 31.8 at the outgoing interface for h = 4µm.
For h = 6µm, these values were 27.7 and 25 respectively
and for h = 12µm, 20.5 and 14.7 respectively. The half
power width around the slot edges was ∼ 500 nm with
maximum power enhancement ∼ 1100 for the h = 4µm
case. This region did not change much for the other h
values and Si, Au structures. The enhancement also
exists across the entire slot region, slightly decreasing in
the z-direction from the incident interface to the outgoing
interface. It is higher at the radiation frequency of 14 cm−1

compared to 24 cm−1. Si offered a maximum power
enhancement of ∼ 125 and Au ∼ 31.5 for the same
height, frequency (14 cm−1) and the respective optimized
parameters (d = 251µm, s = 95µm for Si, d = 251µm,

s = 36µm for Au — see Fig. 5). These edge effects are
due to evanescent fields and therefore decay very abruptly
in the z-direction of the medium of incidence.

In addition to |Ei
x/E0|, we calculated the distribution

of the z-component of electric field, |Ei
z/E0|, along the

x-coordinate, and found that both components behave
approximately in accordance with edge effects [30] in our
low-frequency range. The z-component is negligibly small
in the entire slot region except around the edges, which
confirms the approximate TEM mode in the slot region. The
enhancement mechanism cannot be attributed to a surface
plasmon mode since the plasmon matching condition [6] is
not appropriate for permittivities with substantial imaginary
parts and for structures with small thickness (h� λ).

5. Summary and conclusions

In this paper, we have modeled subwavelength array of
rectangular slots in semiconductors (InSb, Si) and metals
(Au), compared the results and demonstrated strong electric
field edge effects in propagation of THz radiation through
the periodic structure. The detailed theory for each method
(Fourier expansion and surface impedance boundary condi-
tions) was shown. InSb, owing to the highest ratio of real to
imaginary components of its permittivity, offered the highest
electromagnetic field enhancement at slot edges. Since the
assumed thickness was small, non-anomalous behavior of
far-field transmission was observed in all cases. The strongly
enhanced local electromagnetic fields near slot edges can
potentially be used for the development of novel bio-
photonic sensors with the radiation to bio-material coupling
enhancement factors on the order of 1000, leading to a
substantial increase in detection sensitivity. Another possible
application is in sensing changes of dielectric properties of
biomaterials [31,32] in biophysical processes, for example,
denaturation of DNA. Since Si and Au structures are easier
to fabricate than InSb and offer reasonable enhancement
factors themselves, the realization of a first principle novel
biosensor is not far off.

Part of this work was published in [33].
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