Модель термического окисления кремния на фронте объемной реакции

© О.В. Александров ¶, А.И. Дусь

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", 197376 Санкт-Петербург, Россия

(Получена 14 января 2008 г. Принята к печати 5 февраля 2008 г.)

Разработана модель термического окисления кремния, в которой взаимодействие с окислителем происходит на фронте объемной реакции. Ширина реакционной зоны соответствует ширине переходного слоя с нарушенной стехиометрией ($\delta \approx 7.5\,\text{Å}$). Учитывается релаксация коэффициента диффузии окислителя от значения в напряженном диоксиде кремния до значения в ненапряженном диоксиде кремния, равного коэффициенту диффузии в плавленом кварце. Релаксация связывается со структурной перестройкой аморфного диоксида кремния при удалении от границы реакционной зоны. Модель хорошо описывает кинетику термического окисления кремния в сухом кислороде в широком диапазоне толщин диоксида кремния, включая начальный этап.

PACS: 81.65.Mq, 82.20.Nk, 82.33.Pt

1. Введение

Термический диоксид кремния остается основным диэлектриком в современных кремниевых сверхбольших и ультрабольших интегральных схемах (СБИС и УБИС). С увеличением степени интеграции толщина используемых в технологии СБИС и УБИС пленок диоксида кремния уменьшается до единиц нанометров [1], поэтому разработка адекватной физической модели термического окисления кремния является важной научно-технической задачей.

В классической модели термического окисления кремния Дила–Гроува [2] полагается, что при окислении кремния в среде сухого кислорода окислителем является молекулярный кислород O_2 , который диффундирует с поверхности диоксида кремния к внутренней границе раздела SiO_2 —Si, где вступает в реакцию с кремнием. Скорость окисления при малых временах лимитируется скоростью химической реакции (линейный закон окисления), а при больших временах — скоростью диффузии окислителя в диоксиде (параболический закон окисления). Уравнение для скорости окисления в модели Дила–Гроува [2] имеет вид

$$v_{\rm ox} = \frac{dx_{\rm ox}}{dt} = \frac{k_p}{k_p/k_l + 2x_{\rm ox}},\tag{1}$$

где $x_{\rm ox}$ — толщина диоксида кремния, t — время окисления, k_l и k_p — константы линейного и параболического окисления соответственно: $k_l = kC_s/C_0$, $k_p = 2DC_s/C_0$, k — константа скорости химической реакции окисления, C_s — концентрация окислителя на поверхности оксида, D — коэффициент диффузии окислителя в диоксиде, C_0 — концентрация окислителя в диоксиде ($C_0 = 2.2 \cdot 10^{22} \, {\rm cm}^{-3}$). Из сопоставления с экспериментом были найдены температурные зависимо-

сти k_l и k_p [3]:

$$k_l = 0.103 \exp(-2.0/k_B T) \text{ cm/c},$$

$$k_p = 2.14 \cdot 10^{-9} \exp(-1.23/k_B T) \text{ cm}^2/\text{c},$$

где T — температура, $k_{\rm B}=8.62\cdot 10^{-5}\,{\rm эВ/град}$ — постоянная Больцмана. Модель Дила–Гроува [2,3] позволяет адекватно описать кинетику роста пленки диоксида кремния в сухом кислороде при толщинах свыше $30-40\,{\rm нm}$. При меньших толщинах экспериментальная скорость окисления выше, чем рассчитанная по модели Дила–Гроува.

Для описания ускоренного роста диоксида кремния на начальном этапе термического окисления в сухом кислороде был предложен целый ряд моделей, представляющих собой различные модификации линейнопараболической модели Дила-Гроува (см. обзоры [4,5], монографии [6,7]). Так, в работах Массоуда с соавт. [8,9] в правую часть уравнения (1) были добавлены эмпирические члены, спадающие экспоненциально с толщиной оксида [8] или со временем [9]. В работах Хана и Хелмса [10], а также Вонга и Чена [11] были предложены двухпоточные модели окисления. В качестве второго окислителя помимо нейтрального молекулярного кислорода О2 предлагались кислородные вакансии в структуре диоксида, атомарный кислород [10] или заряженный молекулярный кислород O_2^- [11]. В работах [12–15] привлекались дополнительные механизмы ускорения окисления на начальном этапе, такие как перенос окислителя по микропорам и микроканалам [12], образование пространственного заряда и внутреннего электрического поля в оксиде [13], туннелирование электронов из кремния на поверхность диоксида [14], генерация точечных дефектов на границе оксида с кремнием [15]. Фарже, Гибаудо и Камаринос [16] из анализа обратной скорости окисления показали, что аномальная скорость окисления на начальном участке связана не с ускорением химической реакции окисления или диффузии окислителя, как

[¶] E-mail: Aleksandrov@svs.ru

полагалось ранее, а наоборот, с замедлением диффузии окислителя в тонком слое диоксида кремния вблизи МФГ SiO₂—Si. Замедление диффузии связывалось с внутренними механическими напряжениями сжатия в диоксиде кремния, обнаруженными Соколовым с соавт. [17] и Ерниссе [18], и их релаксацией в процессе окисления [16,19]. Тиллером в работе [20] была предложена двухслойная модель пленки оксида с блокирующим пограничным слоем, имеющим транспортные свойства, отличные от остального объема оксида. Критика выше перечисленных моделей приведена в монографиях [6,7].

Во всех выше упомянутых моделях окисления кремния полагалось, что реакция окисления происходит на плоской межфазной границе диоксида с кремнием SiO_2 —Si. Исследования с помощью различных физических методик показали, что граница термического диоксида кремния с кремнием SiO_2 —Si не является резкой, а имеется переходной слой с нарушенной стехиометрией SiO_y , y < 2, шириной $5-10 \, \text{Å} \, [21-23]$.

Переходный слой образуется естественным образом при объемной реакции двух первоначально пространственно разделенных реагентов A и B:

$$A + B \rightarrow C$$
 (2)

(см., например, [24]). При достаточно больших значениях константы скорости реакции взаимодействие реагентов происходит на фронте реакции — в реакционной зоне, расположенной между этими реагентами. Модели окисления кремния с объемной реакцией типа (2) были предложены Гадияком [25] и Алмейда с соавт. [26]. Окисление описывалось решением диффузионно-реакционных уравнений для окислителя (атомарного [25] или молекулярного [26] кислорода), кремния и продукта их реакции — диоксида кремния. Параметрами моделей [25,26] являлись коэффициент диффузии кислорода в оксиде и константа скорости реакции окисления. В рамках обеих моделей был удовлетворительно описан начальный этап термического окисления кремния без привлечения каких-либо дополнительных механизмов его ускорения. Модель [26] использовалась Кжемински с соавт. [27] для описания кинетики роста нанометровых пленок диоксида кремния. Отметим, однако, что найденные в работах [25-27] коэффициенты диффузии кислорода не соответствовали ни значению, определенному из константы параболического окисления k_p [3], ни экспериментальным значениям коэффициента диффузии кислорода в плавленом кварце [28,29] — как по величине, так и по энергии активации (E=2.03-2.46 эВ в работах [25–27] и E = 0.93 - 1.23 эВ в работах [3,28,29]). В модели [25] температурные зависимости найденных коэффициентов диффузии оказались разными для разных экспериментов, а в модели [26] значения найденных констант скорости реакции вообще не укладывались на одну температурную зависимость (см. табл. 1 в работе [26]). Отметим также, что во всех трех упомянутых работах [25-27] расчетные кинетики соответствовали экспериментальным данным только на самом начальном этапе окисления — при толщинах оксида до 20—30 нм, тогда как при больших значениях толщин наблюдалось расхождение, увеличивающееся по мере увеличения толщины оксида.

Цель данной работы состояла в разработке модели термического окисления кремния в сухом кислороде на основе объемной реакции типа (2) в широком диапазоне толщин диоксида кремния, включая начальный этап.

2. Описание модели

В отличие от модели Дила–Гроува [2,3] и других линейно-параболических моделей [8–15] полагаем, что реакция окисления кремния идет не на плоской границе раздела SiO_2 –Si, а может происходить по всему объему рассматриваемой системы SiO_2 –Si между поверхностью SiO_2 (x=0) и некой плоскостью в глубине подложки Si (x=h), куда могут дойти молекулы окислителя,

$$Si + O_2 \xrightarrow{k} SiO_2, \quad 0 \le x \le h,$$
 (3)

где k — константа скорости объемной реакции окисления. Диффузия кислорода в рассматриваемой системе SiO_2 —Si с учетом реакции его взаимодействия с кремнием (3) описывается следующей системой диффузионнореакционных уравнений:

$$\frac{\partial C_{A}}{\partial t} = \frac{\partial}{\partial x} \left(D_{A} \frac{\partial C_{A}}{\partial x} \right) - k C_{A} C_{B}, \tag{4}$$

$$\frac{\partial C_{\rm B}}{\partial t} = -kC_{\rm A}C_{\rm B},\tag{5}$$

$$\frac{\partial C_{\rm C}}{\partial t} = kC_{\rm A}C_{\rm B},\tag{6}$$

где x — координата, отсчитываемая от поверхности диоксида, t — время окисления, C_A , C_B и C_C — концентрации окислителя, кремния и диоксида кремния соответственно, D_A — коэффициент диффузии кислорода. Коэффициенты диффузии кремния и продукта реакции — диоксида кремния в уравнениях (5), (6) полагались нулевыми. Кислород диффундирует в диоксиде кремния и в кремнии со своими парциальными коэффициентами диффузии. Полагаем, что в области изменения состава (реакционной зоне) коэффициент диффузии кислорода линейно зависит от состава:

$$D_{\mathcal{A}} = \frac{D_{\mathcal{A}\mathcal{C}}C_{\mathcal{C}} + D_{\mathcal{A}\mathcal{B}}C_{\mathcal{B}}}{C_{\mathcal{C}} + C_{\mathcal{B}}},\tag{7}$$

где D_{AB} — коэффициент диффузии кислорода в кремнии $(D_{AB}=0.13\exp(-2.53/k_BT)\exp^2/c$ [30]), D_{AC} — коэффициент диффузии кислорода в диоксиде кремния. Как и в [16,19], полагаем, что коэффициент диффузии кислорода в диоксиде кремния замедляется внутренними механическими напряжениями сжатия. Последние максимальны вблизи границы раздела SiO_2 —Si (в нашем случае — на границе реакционной зоны), а при удалении

от нее падают вследствие вязкоупругой релаксации [31]. В рамках линейной вязкоупругой теории Максвелла релаксация напряжений и соответствующая пластическая деформация происходят по экспоненциальному закону от времени [32]. Полагаем, что по аналогичному закону изменяется и коэффициент диффузии кислорода в каждом элементе диоксида кремния:

$$D_{AC} = D_0 + (D_1 - D_0) \exp\left[-\frac{t(x)}{\tau}\right],$$
 (8)

где D_0 — коэффициент диффузии кислорода в ненапряженном диоксиде кремния вдали от границы с кремниевой подложкой, D_1 — коэффициент диффузии кислорода в напряженном диоксиде кремния на границе реакционной зоны, t(x) — время существования элемента диоксида кремния dx с координатой $x \div (x + dx)$, τ — характеристическое время релаксации коэффициента диффузии. Коэффициент диффузии кислорода в ненапряженном диоксиде кремния D_0 полагаем равным коэффициенту диффузии кислорода в плавленом кварце: $D_0 = 4.5 \cdot 10^{-5} \exp(-0.93/k_{\rm B}T) \, {\rm cm}^2/{\rm c}$ [29]. Константа скорости объемной реакции окисления в диффузионном приближении, характерном для взаимодействия точечных дефектов в твердых телах [33], определяется выражением

$$k = 4\pi R D_{\rm A},\tag{9}$$

где R — радиус взаимодействия молекул окислителя с атомами кремния. При достаточно большой константе скорости реакции к или радиусе взаимодейстия R реакция (3) происходит не по всему рассматриваемому объему $(0 \le x \le h)$, а сосредотачивается на фронте реакции — в реакционной зоне между растущей пленкой диоксида кремния и кремниевой подложкой. В образующейся реакционной зоне происходит изменение концентрации кремния от 0 до 100%, а концентрации продукта реакции соответственно от 100 до 0%. Эта реакционная зона является аналогом переходного слоя между диоксидом кремния и кремнием, наблюдаемого экспериментально с помощью различных физических методик [21–23], в котором происходит изменение стехиометрии SiO_{y} от y=0 на границе с кремниевой подложкой до y=2 на границе со стехиометрическим диоксидом кремния. Начальное распределение оксида задаем в виде гауссиана:

$$C_{\rm C}(x,0) = C_{\rm C0} \exp\left(-\frac{x^2}{2\sigma^2}\right),\tag{10}$$

где $C_{\rm C0}$ — собственная концентрация формульных единиц диоксида кремния ($C_{\rm C0}=2.2\cdot 10^{22}\,{\rm cm^{-3}}$), σ — дисперсия. Величина дисперсии задавалась такой, чтобы начальная толщина диоксида соответствовала толщине естественного оксида на поверхности кремния ($10\,{\rm \AA}$ при

 $\sigma=3.5\,\mathring{\rm A}).$ Соответственно для начального распределения кремния имеем

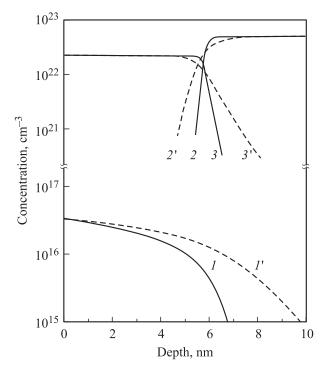
$$C_{\rm B}(x,0) = C_{\rm B0} \left[1 - \exp\left(-\frac{x^2}{2\sigma^2}\right) \right],$$
 (11)

где $C_{\rm B0}$ — собственная концентрация атомов кремния $(C_{\rm B0}=5\cdot 10^{22}\,{\rm cm}^{-3})$. Начальную концентрацию кислорода считаем нулевой

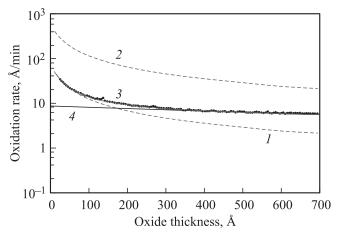
$$C_{\mathbf{A}}(x,0) = 0.$$
 (12)

Концентрация кислорода на поверхности диоксида кремния равна предельной растворимости кислорода в аморфном диоксиде кремния при давлении 1 атм [29]

$$C_{\rm A}(0,t) = 4.8 \cdot 10^{15} \exp(0.18/k_{\rm B}T) \,{\rm cm}^{-3}.$$
 (13)


Толщина диоксида кремния рассчитывалась по соотношению

$$x_{\rm ox}(t) = \int_{0}^{h} C_{\rm C}(x,t) dx / C_{\rm C0}.$$

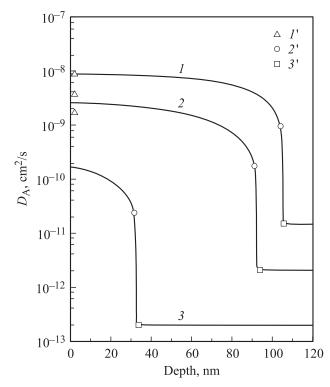

Скорость окисления рассчитывалась как $v_{\text{ох}} = dx_{\text{ох}}(t)/dt$. Решение системы (4)–(6) с начальными условиями (10)–(12) и граничным условием (13) проводилось численными методами по неявной и явной разностным схемам. Определяемыми параметрами модели являлись: D_1 , τ и R. Результаты расчета сравнивались с экспериментальными кинетиками окисления кремния ориентации (100), полученными Массоудом с соавт. в работе [8] методом эллипсометрии пластин непосредственно в термической печи $(in\ situ)$.

3. Результаты расчета

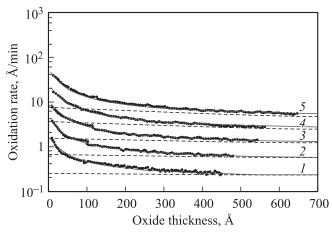
Как отмечалось выше, при достаточно больших значениях радиуса R взаимодействие между кислородом и кремнием происходит на фронте реакции — в реакционной зоне, которая является аналогом переходного слоя. Влияние радиуса взаимодействия на профили компонентов и ширину реакционной зоны показано на рис. 1. Как видно из рисунка, с увеличением радиуса взаимодействия крутизна профилей кремния, оксида и кислорода в реакционной зоне увеличивается, а сама ширина реакционной зоны уменьшается. В качестве ширины реакционной зоны бралась разница глубин, соответствующих концентрациям кремния и оксида на уровне 0.95 от соответствующих максимальных. Ширина реакционной зоны устанавливается на стационарном уровне за время образования диоксида такой же толщины и далее не изменяется. Практически не зависит она и от температуры окисления. Значение радиуса взаимодействия R подбиралось таким образом, чтобы ширина реакционной зоны соответствовала среднему значению ширины переходного слоя $\delta \approx 7.5\,\text{Å}$. По данным работ [21-23] интервал толщин этого слоя составлял $(5-10\,\text{Å})$. При найденной далее величине D_1 получено значение $R = 0.15 \,\text{Å}$.

Рис. 1. Концентрационные профили распределения кислорода (1,1'), кремния (2,2') и диоксида кремния (3,3') при значениях R, Å: I-3 — 0.15, I'-3' — 0.015. Время окисления, мин: I-3 — 215, I'-3' — 370 при $T=800^{\circ}$ С.

Рис. 2. Влияние коэффициента диффузии кислорода в SiO₂ $(D_{\rm AC})$ на скорость окисления кремния $(T=1000^{\circ}{\rm C})$. $I - D_{\rm AC} = D_1 = 9.2 \cdot 10^{-10} \, {\rm cm}^2/{\rm c}, \, 2 - D_{\rm AC} = D_0 = 9.4 \cdot 10^{-9} \, {\rm cm}^2/{\rm c}, \, 3 - D_{\rm AC}$, полученное по выражению (8) при $\tau = 3.2 \, {\rm ч}, \, 4$ — расчет по модели Дила–Гроува [2,3]. Точки — эксперимент [8].


Влияние коэффициента диффузии кислорода в диоксиде кремния на скорость окисления показано на рис. 2. Как видно из рисунка, при малом и постоянном значении коэффициента диффузии $(D_{AC}=D_1)$ (кривая I) модель удовлетворительно описывает только самый начальный участок экспериментальной зависимости. При большом и постоянном значении коэффициента диффузии

 $(D_{\rm AC}=D_0)$ (кривая 2) зависимость идет выше экспериментальной. И только при переменном коэффициенте диффузии кислорода в диоксиде кремния в соответствии с выражением (8) расчетная зависимость (кривая 3) удовлетворительно описывает как начальный участок при малых толщинах диоксида, так и конечный участок при больших толщинах диоксида, где она совпадает с расчетом по модели Дила–Гроува [2,3] (кривая 4).

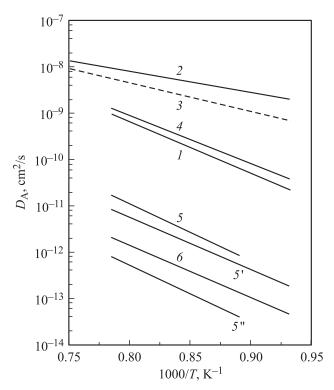

Зависимости коэффициента диффузии кислорода $D_{\rm A}$ от координаты в системе ${\rm SiO_2-Si}$ в соответствии с выражениями (7) и (8) показаны на рис. 3. При температуре $1000^{\circ}{\rm C}$ (кривая I) коэффициент диффузии падает от значения $D_{\rm A}=D_0$ в ненапряженном диоксиде кремния на поверхности диоксида кремния (I') до значения $D_{\rm A}=D_1$ в напряженном диоксиде кремния на границе реакционной зоны (2') и далее до значения коэффициента диффузии кислорода в кремниевой подложке $D_{\rm A}=D_{\rm AB}$ (3').

При уменьшении температуры до 900 (кривая 2) и 800° С (кривая 3) скорость восстановления коэффициента диффузии кислорода в диоксиде кремния от D_1 до D_0 уменьшается из-за возрастания τ , поэтому на поверхности диоксида коэффициент диффузии кислорода D_A не достигает значения D_0 .

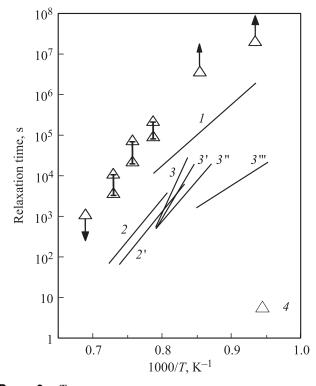
Сопоставление расчетных зависимостей скорости окисления от толщины диоксида кремния с экспери-

Рис. 3. Зависимости коэффициента диффузии кислорода в системе $SiO_2-Si~(D_A)$ от координаты при температурах, °C: $I~=~1000~(\tau=3.2\,\mathrm{y}),~2~=~900~(\tau=33.6\,\mathrm{y}),~3~=~800~(\tau=548\,\mathrm{y})$ и временах окисления, мин: I~=~500,~2~=~1700,~3~=~2500. Значками обозначены значения: $I'~=D_0,~2'~=D_1,~3'~=D_{AB}$.

Рис. 4. Зависимости скорости термического окисления Si (100) от толщины диоксида кремния. Температура окисления, °C: I = 800, 2 = 850, 3 = 900, 4 = 950, 5 = 1000. Сплошные линии — расчет по рассматриваемой модели, штриховые — расчет по модели Дила–Гроува [2,3], точки — эксперимент [8].


ментальными данными для температур в диапазоне $800-1000^{\circ}$ С из работы [8] показано на рис. 4. Как видно из рисунка, хорошее соответствие расчета по рассматриваемой модели (сплошные линии) с экспериментом в отличие от расчета по модели Дила–Гроува [2,3] (штриховые линии) получено во всем интервале толщин диоксида кремния, включая начальный участок, при следующих температурных зависимостях параметров модели (кривые I на рис. 5 и 6):

$$D_1 = 0.34 \exp\left(-\frac{2.17}{k_B T}\right) \text{ cm}^2/\text{c},$$
 (14)


$$\tau = 1.17 \cdot 10^{-8} \exp\left(\frac{3.03}{k_{\rm B}T}\right) \text{ c.}$$
 (15)

4. Обсуждение результатов

В рассматриваемой модели радиус взаимодействия окислителя с кремнием $R = 0.15 \, \text{Å}$ находился по ширине реакционной зоны $\delta \approx 7.5\,\text{Å}$, которая соответствует среднему значению ширины переходного слоя из работ [21-23] (5-10 Å). Найденное значение радиуса взаимодействия составляет 6% от межатомного расстояния в кремнии ($a=2.35\,\text{Å}$) и 9% от длины связи Si-O в диоксиде кремния ($b = 1.62 \,\text{Å}$), что ниже типовых значений радиуса взаимодействия для точечных дефектов в твердых телах ($R \approx a, b$). Таким образом, в предлагаемой модели внутренние механические напряжения в диоксиде кремния оказывают влияние на константу скорости химической реакции окисления не только опосредованно — через уменьшение коэффициента диффузии кислорода в реакционной зоне на границе с кремнием (см. выражения (7)-(9)), но и непосредственно —

Рис. 5. Температурные зависимости коэффициента диффузии кислорода в диоксиде кремния: I — рассматриваемая модель (D_1) , 2 — [29] (D_0) , 3 — [2,3], 4 — [26], 5-5'' — [25], 6 — [27].

Рис. 6. Температурные зависимости времени релаксации коэффициента диффузии: I — рассматриваемая модель; 2, 2' — [38], 3-3''' — [39], 4 — [40].

через радиус взаимодействия окислителя с кремнием. Этот результат объясняется необходимостью свободного объема для протекания твердотельной реакции (3).

Коэффициент диффузии кислорода в ненапряженном диоксиде кремния D_0 в нашей модели соответствует коэффициенту диффузии в плавленом кварце из работы [29] (рис. 5, кривая 2, энергия активации $E = 0.93 \, \mathrm{pB}$), а также близок к коэффициенту диффузии кислорода, определенному из константы параболического окисления в модели Дила-Гроува [2,3] (рис. 5, кривая 3, $E = 1.23 \, \mathrm{эB}$). Найденный в рассматриваемой модели коэффициент диффузии кислорода в напряженном диоксиде кремния на границе реакционной зоны D_1 (14) (рис. 5, кривая $I, E = 2.17 \, \mathrm{эB}$) на $1{-}1.5$ порядка меньше D_0 и близок к коэффициенту диффузии, найденному в работе Алмейда и др. [26] (кривая 4, $E = 2.03 \, \mathrm{pB}$), но значительно выше соответствующих коэффициентов диффузии, найденных в работах Гадияка [25] (кривые 5-5'', E=2.25-2.46 эВ) и Кжемински [27] (кривые 6, E = 2.22 эВ) при близких энергиях активации. Разброс значений коэффициентов диффузии кислорода в напряженном диоксиде кремния в объемных моделях [25-27], описывающих только начальный этап окисления, связан, на наш взгляд, с тем обстоятельством, что константа скорости реакции в этих моделях не фиксировалась, как в нашей модели, а подбиралась вместе с коэффициентом диффузии. Не учитывалась в [25-27] также и релаксация коэффициента диффузии со временем окисления. Отметим, что увеличение энергии активации константы параболического окисления, связанной с коэффициентом диффузии кислорода, на начальном этапе окисления отмечалось и в линейнопараболических моделях [10,34,35]. Увеличение энергии активации диффузии кислорода до 2.0-2.4 эВ в тонких слоях аморфного диоксида кремния повышенной плотности на кремнии наблюдается экспериментально [36], а также следует из расчетов по методу Монте-Карло [37].

Характеристическое время релаксации, найденное в рассматриваемой модели для коэффициента диффузии в диоксиде кремния (15) (рис. 6, кривая I), примерно на порядок выше экспериментальных зависимостей времен релаксации внутренних напряжений в пленках диоксида кремния на кремнии, определенных рентгеновским методом в работах [38,39] (кривые 2, 2' и 3-3'''), но уступает временам релаксации, найденным из коэффициента преломления, определенного эллипсометрическим методом в работе [40] (точки 4 на рис. 5). Поскольку коэффициент преломления связан с плотностью диоксида кремния [40], можно сделать вывод, что релаксация коэффициента диффузии связана не только с релаксацией внутренних механических напряжений, как это полагалось в [16,19], но также и с релаксацией плотности диоксида кремния. Последняя происходит в результате процессов перестройки и полимеризации в структуре аморфного диоксида кремния при удалении от реакционной зоны и кремниевой подложки, оказывающей упорядочивающее влияние на прилегающий к ней новообразованный диоксид кремния [7,41].

Характеристическая длина изменения коэффициента диффузии кислорода в диоксиде кремния, соответствующая толщине диоксида, выросшего за время релаксации коэффициента диффузии τ , изменяется от 450 нм при $T = 800^{\circ}$ С до 110 нм при $T = 1000^{\circ}$ С. Это значительно больше, чем ширина переходного слоя $(5-10\,\text{Å})$, в котором только и полагалось изменение коэффициента диффузии ранее [20,42]. Такое широкодиапазонное изменение коэффициента диффузии коррелирует с результатами экспериментальных работ [43,44] по измерению проницаемости и внутренних напряжений в пленках диоксида кремния в зависимости от их толщины. В работе [43] показано, что проницаемость пленки диоксида кремния на кремнии для водорода увеличивается с толщиной пленки с градиентом, сохраняющимся до толщин диоксида 80-120 нм при температурах окисления кремния 1000-900°C. Градиент внутренних напряжений сохраняется до несколько меньших толщин 40-80 нм при температурах окисления кремния 1000-800°C [44], т. е. характеристическая длина изменения коэффициента диффузии кислорода сопоставима с толщинами пленок термического диоксида кремния на кремнии, в которых имеет место структурная неоднородность.

5. Заключение

Разработана модель термического окисления кремния, в которой взаимодействие окислителя с кремнием происходит на фронте объемной реакции — в реакционной зоне. Ширина реакционной зоны в этой модели $(\delta \approx 7.5 \, \text{Å})$ соответствует средней ширине переходного слоя с нарушенной стехиометрией, наблюдаемого экспериментально [21–23], и определяется радиусом взаимодействия $(R = 0.15 \,\text{Å})$. Коэффициент диффузии кислорода в ненапряженном диоксиде кремния D_0 соответствует коэффициенту диффузии в плавленом кварце [28], а при приближении к реакционной зоне спадает по экспоненциальному закону со временем до значения D_1 в напряженном диоксиде кремния. Энергия активации коэффициента диффузии кислорода в напряженном диоксиде кремния D_1 (2.17 эВ) выше, чем в ненапряженном диоксиде кремния D_0 (0.93 эВ), и соответствует экспериментальным [36] и теоретическим [37] данным по диффузии кислорода в уплотненном диоксиде кремния. Характеристическое время релаксации коэффициента диффузии сопоставимо с временами релаксации внутренних механических напряжений [38,39] и коэффициента преломления или плотности диоксида кремния [40]. Соответствующая характеристическая длина изменения коэффициента диффузии кислорода сопоставима с толщинами пленок термического диоксида кремния на кремнии, в которых имеет место широкодиапазонная структурная неоднородность — изменение проницаемости [43] и внутренних механических напряжений [44].

Модель хорошо описывает кинетику термического окисления кремния в сухом кислороде в широком диапазоне толщин диоксида кремния, включая начальный этап.

Список литературы

- [1] R.L. Opila, D.W. Hess. J. Electrochem. Soc., 150, S1 (2003).
- [2] B.E. Deal, A.S. Grove. J. Appl. Phys., 36, 3770 (1965).
- [3] B.E. Deal. J. Electrochem. Soc., **125**, 576 (1978).
- [4] N.F. Mott, S. Rigo, F. Rochet, A.M. Stoneham. Phil. Mag. B, 60, 189 (1989).
- [5] I.J.R. Boumvol. Surf. Sci. Rep., 36, 1 (1999).
- [6] Н.А. Колобов. В кн.: Математическое моделирование процессов тепло и массопереноса (М., Наука, 1987) с. 280.
- [7] Г.Я. Красников, Н.А. Зайцев. Система кремний-диоксид кремния субмикронных СБИС (М., Техносфера, 2003).
- [8] H.Z. Massoud, J.D. Plummer, E.A. Irene. J. Electrochem. Soc., 132, 2685, 2693 (1985).
- [9] H.Z. Massoud, J.D. Plummer. J. Appl. Phys., **62**, 3416 (1987).
- [10] C.-J. Han, C.R. Helms. J. Electrochem. Soc., 134, 1297 (1987).
- [11] H. Wong, Y.C. Cheng. J. Appl. Phys., 64, 893 (1988).
- [12] E.A. Irene. J. Appl. Phys., 54, 5416 (1983); A.G. Revesz, B.J. Mrstik, H.L. Hughes, D. McCarthy. J. Electrochem. Soc., 133, 587 (1986).
- [13] S.A. Schafer, S.A. Lion. Appl. Phys. Lett., 47, 154 (1985).
- [14] R.B. Beck, B. Majkusiak. Phys. Status Solidi A, 116, 313 (1989).
- [15] В.А. Арсламбеков, А. Сафаров. Микроэлектроника, **6**, 75 (1977).
- [16] A. Fargeix, G. Ghibaudo, G. Kamarinos. J. Appl. Phys., 54, 2878 (1983).
- [17] В.И. Соколов, Н.А. Федорович, В.А. Шеленшкевич. ФТТ, 18, 1794 (1976).
- [18] E.P. Eernisse. Appl. Phys. Lett., 38, 8 (1979).
- [19] A. Fargeix, G. Ghibaudo. J. Appl. Phys., 56, 589 (1984).
- [20] W.A. Tiller. J. Electrochem. Soc., **130**, 501 (1983).
- [21] K.T. Queeney, M.K. Weldon, J.P. Chang, Y.J. Chabal, A.B. Gurevich, J. Sapjeta, R.L. Opila. J. Appl. Phys., 87, 1322 (2000).
- [22] K. Kimura, K. Nakajima. Appl. Surf. Sci., 216, 283 (2003).
- [23] A.R. Chowdhuri, D.-U. Jim, C.G. Takoudis. Thin Sol. Films, 457, 402 (2004).
- [24] H. Larralde, M. Araujo, S. Havlin, H.E. Stanley. Phys. Rev. A, 46, 855 (1992).
- [25] Г.В. Гадияк. Микроэлектроника, 27, 288 (1998).
- [26] R.M.C. de Almeida, S. Goncalves, I.J.R. Baumvol, F.C. Stedile. Phys. Rev. B, 61, 12992 (2000).
- [27] C. Krzeminski, G. Larrieu, J. Penaud, E. Lampin, E. Dubois. J. Appl. Phys., 101, 064 908 (2007).
- [28] F.J. Norton. Nature, **191**, 701 (1961).
- [29] K. Kajihara, M. Hirano, M. Uramoto, Y. Morimoto, L. Skuja, H. Hosono. J. Appl. Phys., 98, 013 527 (2005).
- [30] M. Stavola, J.R. Patel, L.C. Kimerling, P.E. Freeland. Appl. Phys. Lett., 42, 73 (1983).
- [31] E. Kobeda, E.A. Irene. J. Vac. Sci. Technol. B, 6, 574 (1988).
- [32] E.A. Irene, E. Tierney, J. Angilello. J. Electrochem. Soc., 129, 2594 (1982).
- [33] T.R. Waite. Phys. Rev., **107**, 463 (1957).

- [34] E.A. Irene, Y.J. van der Meulen. J. Electrochem. Soc., 123, 1380 (1976).
- [35] S. Kamohara, Y. Kamigaki. J. Appl. Phys., 69, 7871 (1991).
- [36] M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel. J. Appl. Phys., 90, 2057 (2001).
- [37] A. Bongiorno, A. Pasquarello. Phys. Rev. B, 70, 195312 (2004).
- [38] W. Hartman, G. Franz. Appl. Phys. Lett., 37, 1004 (1981).
- [39] Y. Nishino, T. Imura. Phys. Status Solidi A, 74, 193 (1982).
- [40] L.M. Landsberger, W.A. Tiller. Appl. Phys. Lett., 51, 1416 (1987).
- [41] Г.Я. Красников, Н.А. Зайцев, И.В. Матюшкин. ФТП, 37, 44 (2003).
- [42] T. Watanabe, K. Tatsumura, I. Ohdomari. Phys. Rev. Lett., 96, 196 102 (2006).
- [43] K. Taniguchi, M. Tanaka, C. Hamaguchi. J. Appl. Phys., 67, 2195 (1990).
- [44] B.J. Mrstik, P.J. McMarr. Phys. Rev. B, 48, 17 972 (1993).

Редактор Т.А. Полянская

Model of thermal silicon oxidation at the front of volumetric reaction

O.V. Aleksandrov, A.I. Dusj

The St. Petersburg State Electrotechnical University "LETI",

197376 St. Petersburg, Russia

Abstract The model of thermal silicon oxidation has been developed, in which the interaction with an oxidizer occurs at the front of volumetric reaction. Width of a reaction zone corresponds to width of a transition layer with broken stoichiometric ($\delta \approx 7.5\,\text{Å}$). Relaxation of oxidizer diffusion coefficient from meaning in stressed silicon dioxide up to meaning in unstressed silicon dioxide which equal to diffusion coefficient in a fused quartz was taken into account. Relaxation is related with structural reorganization of amorphous silicon dioxide at move away from a reaction zone boundary. The model describes well the thermal silicon oxidation kinetic in dry oxygen in a wide range of silicon dioxide thickness, including an initial stage.