## Исследование влияния аморфизации на локальную структуру халькогенидов мышьяка

© Г.А. Бордовский, А.В. Марченко, П.П. Серегин , Е.И. Теруков\*

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия

\* Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 20 февраля 2008 г. Принята к печати 3 марта 2008 г.)

PACS: 61.43.Fs, 76.80.+y, 78.66.Jg

Дискуссия о соотношении структур ближнего и дальнего порядка в кристаллической и аморфной фазах полупроводниковых соединений ведется длительное время, однако и в настоящее время эта проблема далека от решения [1]. Объясняется это тем, что возможности рентгеноструктурного анализа, как прямого метода исследования структуры аморфных тел, ограничены. Поэтому представляется целесообразным привлечение к исследованиям структуры аморфных материалов методов, которые были бы столь же чувствительны к ближнему окружению, как и дифракционные методы, но не так сильно зависели от наличия (или отсутствия) дальнего порядка. Одним из таких методов является мёссбауэровская спектроскопия, параметры спектров которой определяются в основном природой локального окружения мёссбауэровского атома [2].

Впервые возможности мёссбауэровской спектроскопии для исследования влияния аморфизации на симметрию локального окружения атомов в полупроводниках были продемонстрированы на примере соединения As<sub>2</sub>Te<sub>3</sub> (использовался эмиссионный вариант спектроскопии на изотопе <sup>129</sup> I, см. обзорную статью [3]). При подобных исследованиях в качестве материнских изотопов возможно использование либо 129mTe (период полураспада  $T_{1/2}=33\,\mathrm{cyr})$ , либо  $^{129}\mathrm{Te}~(T_{1/2}\approx70\,\mathrm{мин})$ . Источник  $^{129m}$ Те, использованный в работах, описанных в обзоре [3], кроме интенсивного рентгеновского излучения, возникающего от конвертированного 106 кэВ-перехода в <sup>129m</sup>Те и понижающего экспериментальную величину искомого эффекта, обладает существенным недостатком его невозможно получить с достаточно высокой удельной активностью для исследования соединений As<sub>2</sub>S<sub>3</sub> и  $As_2Se_3$  в области малых концентраций изоэлектронной примеси теллура.

Все эти недостатки могут быть устранены при использовании в качестве материнского изотопа  $^{129}$ Те. В данной работе методом эмиссионной мёссбауэровской спектроскопии на ядрах  $^{129}$ Те( $^{129}$ I) изучено влияние аморфизации на локальную симметрию атомов халькогенов в халькогенидах мышьяка  $As_2S_3$ ,  $As_2Se_3$  и  $As_2Te_3$ .

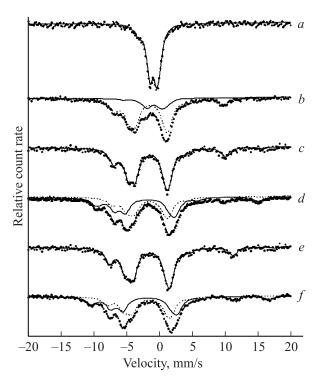
Для приготовления мёссбауэровских источников нами использовался безносительный  $^{129}$ Те (т. е. препарат теллура, содержащий практически только изотоп  $^{129}$ Те без примеси других стабильных и радиоактивных изотопов теллура), который выделялся из равновесной смеси  $^{129m}$ Те +  $^{129}$ Те. С этой целью обогащенный до 98% изотоп  $^{128}$ Те облучался потоком нейтронов  $\sim 2 \cdot 10^{20}$  см $^{-2}$ . Облученный препарат растворялся в  $H_2O_2$  и затем проводилось хроматографическое выделение  $^{129}$ Те.

Мёссбауэровские источники на основе стеклообразных соединений  $As_2Te_3$ ,  $As_2S_3$  и  $As_2Se_3$  изготовлялись путем плавления готовых соединений, причем в шихту добавлялся солянокислый раствор безносительного препарата  $^{129}$ Te. Для перевода  $As_2Te_3$  в стеклообразное состояние расплав выливался на полированную металлическую плиту, охлажденную жидким азотом. Стеклообразные  $As_2S_3$  и  $As_2Se_3$  получали закалкой расплава на воздухе. Рентгенофазовый анализ не показал в стеклообразных образцах присутствия кристаллической фазы.

Кристаллическое соединение  $As_2Te_3$  получали путем плавления готового соединения (в шихту добавлялся солянокислый раствор безносительного препарата  $^{129}Te$ ) с последующим охлаждением расплава на воздухе. Кристаллический  $As_2S_3$  был получен методом газотранспортных реакций, а кристаллический  $As_2Se_3$  — путем отжига стекла. Проводилось диффузионное легирова-

<sup>¶</sup> E-mail: ppseregin@hotmail.ru

| Соединение | Состояние | Узлы трехкоординированного халькогена в цепочках — As — X — As — |         |         |            | Узлы двухкоординированного халькогена в цепочках — As — X — As — |         |           |            | Узлы двухкоординированного халькогена в цепочках — As—X—X-As— |         |         |            |
|------------|-----------|------------------------------------------------------------------|---------|---------|------------|------------------------------------------------------------------|---------|-----------|------------|---------------------------------------------------------------|---------|---------|------------|
|            |           | <i>IS</i> , мм/с                                                 | C, MM/c | G, mm/c | S, отн.ед. | <i>IS</i> , мм/с                                                 | C, MM/c | G, $mm/c$ | S, отн.ед. | <i>IS</i> , мм/с                                              | C, MM/c | G, MM/c | S, отн.ед. |
| $As_2S_3$  | Кристалл  | _                                                                | _       | _       | _          | 1.15                                                             | -44.5   | 1.52      | 1.0        | _                                                             | _       | _       | _          |
| $As_2S_3$  | Стекло    | _                                                                | _       | _       | _          | 1.18                                                             | -45.8   | 1.77      | 0.33       | 1.33                                                          | -65.1   | 1.76    | 0.67       |
| $As_2Se_3$ | Кристалл  | _                                                                | _       | _       | _          | 1.16                                                             | -40.2   | 1.55      | 1.0        | _                                                             | _       | _       | _          |
| $As_2Se_3$ | Стекло    | _                                                                | _       | _       | _          | 1.19                                                             | -40.7   | 1.79      | 0.30       | 1.28                                                          | -59.2   | 1.79    | 0.70       |
| $As_2Te_3$ | Кристалл  | 1.15                                                             | +7.8    | 1.10    | 1.0        | _                                                                | _       | _         | _          | _                                                             | _       | _       | _          |
| $As_2Te_3$ | Стекло    | 1.14                                                             | +16.7   | 1.70    | 0.20       | 1.13                                                             | -39.2   | 1.70      | 0.80       | _                                                             | _       | _       | _          |


Параметры мёссбауэровских спектров  $^{129}$ Te( $^{129}$ I)

*Примечание.* IS — изомерный сдвиг, погрешность  $\pm 0.03$  мм/с; C — постоянная квадрупольного взаимодействия, погрешность  $\pm 0.07$  мм/с; G — ширина спектральной линии на полувысоте, погрешность  $\pm 0.05$  мм/с; S — площадь под нормированным спектром, погрешность  $\pm 0.05$ .

ние кристаллических  $As_2S_3$  и  $As_2Se_3$  при температурах  $550\,\mathrm{K}$  (для  $As_2S_3$ ) и  $630\,\mathrm{K}$  (для  $As_2Se_3$ ).

Оценочная концентрация  $^{129}$ Те во всех образцах была  $10^{16}-10^{17}$  см $^{-3}$ .

Мёссбауэровские спектры измерялись при  $80\,\mathrm{K}$  на промышленном спектрометре MC-2201. Поглотителем служил  $\mathrm{K}^{129}\mathrm{I}$  с поверхностной плотностью  $15\,\mathrm{mr/cm^2}$  по  $^{129}\mathrm{I}$ . Изомерные сдвиги приводятся относительно спектра KI. Типичные мёссбауэровские спектры представлены на рисунке.



Эмиссионные мёссбауэровские спектры  $^{129}$ Te( $^{129}$ I) соединений As<sub>2</sub>Te<sub>3</sub> (a,b), As<sub>2</sub>Se<sub>3</sub> (c,d) и As<sub>2</sub>S<sub>3</sub> (e,f) в кристаллическом (a,c,e) и аморфном (b,d,f) состояниях. Показано разложение экспериментальных спектров аморфных материалов на компоненты I (пунктирные кривые) и II (сплошные кривые), соответствующие либо двух-, либо трехкоординированным атомам халькогенов.

При интерпретации эмиссионных мёссбауэровских спектров  $^{129}{\rm Te}(^{129}{\rm I})$  следует иметь в виду, что материнский изотоп  $^{129}{\rm Te}$  занимает положения атомов халькогенов. В исследуемых образцах происходит распад изомера  $^{129}{\rm Te}$  и образование 27.8 кэВ-уровня  $^{129}{\rm I}$ , время жизни которого  $\sim 1.63 \cdot 10^{-8}$  с. Электронная оболочка образовавшегося атома йода успевает перестроиться в стационарное состояние за время  $\sim 10^{-12}$  с. Однако его ближайшее окружение релаксирует за время  $\sim 10^{-8}$  с и за время жизни мёссбауэровского уровня  $^{129}{\rm I}$  не успевает измениться [2]. Следовательно, изомерный сдвиг эмиссионных мёссбауэровских спектров  $^{129}{\rm Te}(^{129}{\rm I})$  несет информацию о зарядовом состоянии атомов йода, а квадрупольное расщепление — о симметрии локального окружения атомов халькогенов.

Мёссбауэровский спектр  $^{129}{\rm Te}(^{129}{\rm I})$  кристаллического As<sub>2</sub>Te<sub>3</sub> представляет собой плохо разрешенный квадрупольный мультиплет (рис. а). Его параметры приведены в таблице. Согласно рентгеноструктурным данным [4], в структуре кристаллического As<sub>2</sub>Te<sub>3</sub> имеется три неэквивалентных равнозаселенных положения атомов теллура с координационным числом 3. Последнее обстоятельство объясняет причину появления квадрупольного расщепления с положительным значением постоянной квадрупольного взаимодействия C для мёссбауэровского спектра  $^{129}\text{Te}(^{129}\text{I})$  кристаллического As<sub>2</sub>Te<sub>3</sub>. Однако различие в локальной симметрии трехкоординированных атомов теллура незначительно и именно поэтому в экспериментальном спектре не различаются указанные 3 состояния. Изомерный сдвиг спектра кристаллического As<sub>2</sub>Te<sub>3</sub> близок к изомерному сдвигу спектра <sup>129</sup>I соединения AsI<sub>3</sub> [5], что указывает на то, что в структуре кристаллического As<sub>2</sub>Te<sub>3</sub> атомы йода, образовавшиеся после радиоактивного распада 129 Те, образуют химические связи с атомами мышьяка в своем ближайшем окружении.

Аморфизация соединения  $As_2Te_3$  приводит к резкому изменению тонкой структуры мёссбауэровского спектра  $^{129}Te(^{129}I)$  — он представляет собой наложение двух спектров квадрупольных мультиплетов, различающихся знаком постоянной квадрупольного взаимодействия C

(рис. b). Параметры этих спектров приведены в таблице. Спектр с меньшим значением (по модулю) постоянной квадрупольного взаимодействия отвечает атомам <sup>129</sup>I, которые образуют химические связи с атомами мышьяка в своем ближайшем окружении. Для этого спектра наблюдается положительная величина C, и, следовательно, он относится к атомам <sup>129</sup>I, замещающим атомы трехкоординированного теллура. Аналогичные структурные единицы имеют место в кристаллическом As<sub>2</sub>Te<sub>3</sub>, однако степень искажения для них в стекле значительно больше, что и приводит к большей величине С. Спектр с большим значением (по модулю) постоянной квадрупольного взаимодействия следует отнести к атомам <sup>129</sup>I, которые образуют химические связи с атомами мышьяка в своем ближайшем окружении. Для этого спектра наблюдается отрицательная величина C, и, следовательно, он относится к атомам  $^{129}$ I, замещающим атомы двухкоординированного теллура в цепочках типа -As-Te-As-. Очевидно, что после радиоактивного превращения  $^{129}$ Те дочерний атом йода в таких цепочках может образовать химическую связь только с атомами мышьяка. Таким образом, аморфизация As<sub>2</sub>Te<sub>3</sub> сопровождается понижением локальной симметрии атомов теллура с координационным числом 3 и переходом значительной части атомов теллура в двухкоординированное состояние в цепочках типа -As-Te-As-.

Мёссбауэровские спектры <sup>129</sup>Te(<sup>129</sup>I) кристаллических As<sub>2</sub>S<sub>3</sub> и As<sub>2</sub>Se<sub>3</sub> представляют собой хорошо разрешенный квадрупольный мультиплет (рис. е и с). Параметры спектров приведены в таблице. Изомерный сдвиг спектров отвечает атомам <sup>129</sup>I, образующим химические связи с атомами мышьяка в своем ближайшем окружении. Поскольку для этих спектров наблюдается отрицательная величина C, то они относятся к атомам <sup>129</sup>I, замещающим атомы двухкоординированного халькогена X в цепочках типа -As-X-As-. Согласно рентгеноструктурным данным [4], в структуре кристаллических  $As_2S_3$  и  $As_2Se_3$  имеются 2 неэквивалентных положения двухкоординированных атомов халькогена, но поскольку различие в локальной симметрии двух сортов атомов халькогена оказывается незначительным, существование двух состояний проявляется лишь в уширении экспериментальных спектров.

Аморфизация соединений  $As_2Se_3$  и  $As_2S_3$  приводит к изменению тонкой структуры мёссбауэровских спектров  $^{129}\mathrm{Te}(^{129}\mathrm{I})$  — они представляют собой наложение двух квадрупольных мультиплетов (рис. d и f). Параметры этих спектров приведены в таблице. Спектры с меньшим значением изомерного сдвига отвечают атомам  $^{129}\mathrm{I}$ , которые образуют химические связи с атомами мышьяка в своем ближайшем окружении. Для этих спектров наблюдается отрицательная величина C, и, следовательно, они относятся к атомам  $^{129}\mathrm{I}$ , замещающим атомы двухкоординированного халькогена в цепочках типа -As-X-As-. Аналогичные структурные единицы имеют место в кристаллических  $As_2Se_3$  и  $As_2S_3$ , причем степень искажения для них в кристалле и в стекле

одинакова, что и приводит к близости величин C для кристаллов и стекол. Спектры с большим значением изомерного сдвига следует отнести к атомам <sup>129</sup>I, которые образуют химические связи с атомами халькогена в своем ближайшем окружении (аналогичный изомерный сдвиг наблюдается для эмиссионных мёссбауэровских спектров  $^{129}$ Te( $^{129}$ I) в сере и селене [2]). Для этих спектров также наблюдается отрицательная величина C, и, следовательно, они относятся к атомам  $^{129}$ I, замещающим атомы двухкоординированного халькогена в цепочках типа -As-X-X-As-. Очевидно, что после радиоактивного превращения 129 Те дочерний атом йода в таких цепочках образует химическую связь только с атомами халькогена. Следовательно, аморфизация As<sub>2</sub>Se<sub>3</sub> и As<sub>2</sub>S<sub>3</sub> не приводит к понижению локальной симметрии двухкоординированного халькогена в цепочках типа -As-X-As-, однако аморфизация сопровождается переходом значительной части атомов халькогена в координированное состояние в цепочках типа -As-X-X-As-.

Таким образом, в структуре кристаллического As<sub>2</sub>Te<sub>3</sub> различные состояния трехкоординированных атомов теллура не различаются в мёссбауэровских спектрах  $^{129}$ Te( $^{129}$ I). Аморфизация As<sub>2</sub>Te<sub>3</sub> приводит к понижению локальной симметрии трехкоординированных состояний атомов теллура и к появлению двухкоординированных состояний теллура в цепочках типа -As-Te-As-. В мёссбауэровских спектрах оказывается возможной идентификация обоих состояний атомов теллура. В структуре кристаллических As<sub>2</sub>Se<sub>3</sub> и As<sub>2</sub>S<sub>3</sub> 2 состояния двухкоординированных атомов халькогенов в цепочках типа -As-X-As- проявляются в уширении мёссбауэровских спектров, а аморфизация этих соединений не сопровождается понижением локальной симметрии таких атомов халькогенов. Однако в структуре аморфного материала реализуются двухкоординированные состояния атомов серы и селена в цепочках типа -As-X-X-As-.

## Список литературы

- [1] Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (СПб., Наука, 1996)
- [2] П.П. Серегин. Физические основы мёссбауэровской спектроскопии (СПб., СПбГПУ, 2002).
- [3] П.П. Серегин, А.А. Андреев. В кн.: Мёссбауэровская спектроскопия замороженных растворов (М., Мир, 1998).
- [4] А. Фельц. Аморфные и стеклообразные неорганические твердые тела (М., Мир, 1986).
- [5] Г.А. Бордовский, Р.А. Кастро, А.В. Марченко, П.П. Серегин. Физика и химия стекла, **33** (5), 641 (2007).

Редактор Т.А. Полянская

## Studied of influence amorphycity on local structure chalcogenides of arsenic

G.A. Bordovsky, A.V. Marchenko, P.P. Seregin, E.I. Terukov\*

Alexander Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia \* Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Influence amorphycity on symmetry of a local environment of atoms chalcogenide in compounds As<sub>2</sub>S<sub>3</sub>, As<sub>2</sub>Se<sub>3</sub> and As<sub>2</sub>Te<sub>3</sub> has been studied by a method Mossbauer spectroscopy on an isotope <sup>129</sup>Te(<sup>129</sup>I). In Mossbauer spectra crystal As<sub>2</sub>Te<sub>3</sub> three states of 3-co-ordinated atoms of tellurium do not differ. Amorphycity As<sub>2</sub>Te<sub>3</sub> results in reduction of local symmetry of 3-co-ordinated states of atoms of tellurium and to occurrence of 2-co-ordinated states in chains of type -As-Te-Te-As-. In structure crystal As<sub>2</sub>S<sub>3</sub> and As<sub>2</sub>Se<sub>3</sub> two states of 2-co-ordinated atoms chalcogenide X in chains of type -As-X-Asit is shown in broadening Mossbauer spectrum. Amorphycity As<sub>2</sub>S<sub>3</sub> and As<sub>2</sub>Se<sub>3</sub> it is not accompanied by change of local symmetry of 2-co-ordinated atoms chalcogenide in chains of type -As-X-As-, however in structure of an amorphous material 2-co-ordinated states of atoms of sulfur and selenium in chains of type -As-X-X-As- are formed.