Оптически активные центры в гетероструктурах $Si/Si_{1-x}Ge_x$: Er, связанные с ионами Er^{3+}

© Л.В. Красильникова[¶], М.В. Степихова, Н.А. Байдакова, Ю.Н. Дроздов, З.Ф. Красильник, В.Ю. Чалков*, В.Г. Шенгуров*

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

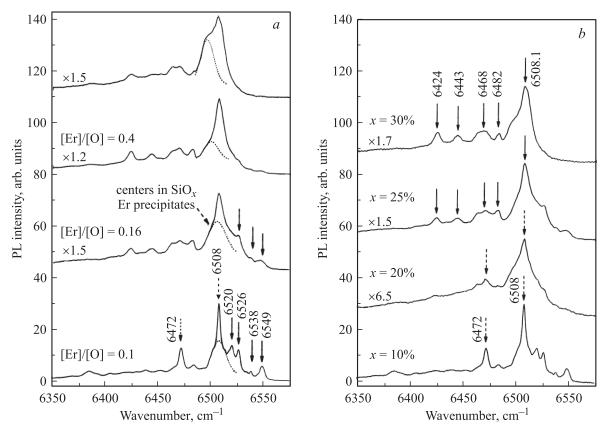
* Научно-исследовательский физико-технический институт Нижегородского государственного университета им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

(Получена 31 октября 2008 г. Принята к печати 17 ноября 2008 г.)

Проведен детальный анализ основных типов оптически активных эрбиевых центров, вносящих преимущественный вклад в сигнал фотолюминесценции гетероструктур $\mathrm{Si/Si}_{1-x}\mathrm{Ge}_x$: Ег с содержанием германия от 10 до 30%. Показана взаимосвязь природы формирующихся оптически активных центров, содержащих ионы Er^{3+} , с молярным составом и концентрацией примеси кислорода в слое $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Ег. Преимущественный вклад в сигнал фотолюминесценции гетероструктур $\mathrm{Si/Si}_{1-x}\mathrm{Ge}_x$: Ег с содержанием германия менее 25% вносят известные кислородсодеожащие оптически активные Ег-центры. Увеличение содержания германия в слое $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Ег ($x \ge 25\%$) приводит к формированию нового типа центров — германийсодержащих оптически активных эрбиевых центров, не наблюдавшихся ранее в структурах на основе кремния.

PACS: 71.55.Ht, 78.55.Ap, 78.55.Hx, 78.66.Db, 78.66.Li

1. Введение


к легированным Интерес эрбием структурам $Si/Si_{1-x}Ge_x$ вызван возможностью создания эффективного источника излучения на их основе. Введение в кремний слоя $Si_{1-x}Ge_x$ в данном случае позволяет формировать эффективный волновод с высокой степенью локализации излучения (более 80%) в активном слое [1]. Ранее нами было показано [2], что внешняя квантовая эффективность фотолюминесценции структур $Si/Si_{1-x}Ge_x$: Ег может достигать $\sim 0.4\%$, что сравнимо с максимальными значениями, полученными для структур Si/Si: Er без специальной обработки поверхности для вывода излучения. Более того, в структурах этого типа впервые была показана возможность достижения инверсной населенности энергетических ионов Er^{3+} при оптической накачке [3].

Несмотря на все вышеперечисленное, структуры $Si/Si_{1-x}Ge_x$: Ег все еще остаются недостаточно исследованными с точки зрения условий формирования, природы и структуры оптически активных центров, связанных с ионами Er³⁺ и вносящих преимущественный вклад в фотолюминесценцию (ФЛ). Не изучено влияние молярного состава твердого раствора и концентрации солегирующих примесей (в частности кислорода) на тип формирующихся оптически активных эрбиевых центров. В данной работе приводятся результаты детального анализа тонкой структуры спектров ФЛ гетероструктур $Si/Si_{1-r}Ge_r$: Er с содержанием германия в гетерослое, варьируемым в диапазоне от 10 до 30%, рассмотрены основные типы оптически активных эрбиевых центров, формирующихся в этих материалах, показана их взаимосвязь с молярным и примесным составом гетерослоя.

2. Методика эксперимента

Исследуемые в работе структуры $Si/Si_{1-x}Ge_x$: Er/Si были выращены методом сублимационной молекулярнолучевой эпитаксии (МЛЭ) в атмосфере германа (GeH₄) при температуре роста 500°C. Особенностью данного метода является поступление германия в растущий слой в результате пиролиза германа. Детально методика роста описана в работе [4]. Как и в случае стандартной методики сублимационной МЛЭ [5], для легирования слоев редкоземельной примесью использовался поликристаллический кремний, легированный эрбием. Образцы выращивались на подложках из монокристаллического кремния (с-Si) марки КЭФ-4.5 с ориентацией (100). Процессу роста легированного эрбием твердого раствора $Si_{1-x}Ge_x$ предшествовало формирование буферного слоя c-Si толщиной ~ 0.2 мкм. Толщина покровного слоя кремния, выращивавшегося поверх активного гетерослоя $Si_{1-x}Ge_x$: Er, составляла 100-200 нм. Для анализа структурных параметров и элементного состава выращенных эпитаксиальных слоев $Si_{1-x}Ge_x$: Er использовались методики рентгеновской дифракции (РД) и вторичной ионной масс-спектрометрии (ВИМС). Результаты анализа элементного состава полученных структур методом ВИМС показали практически однородное (без сегрегации) распределение примеси эрбия в исследуемых структурах. Концентрация примеси эрбия в слоях $Si_{1-x}Ge_x$: Er составляла $\sim (0.7-2) \cdot 10^{18} \, \text{cm}^{-3}$, концентрация кислорода варьировалась в пределах $(2-20) \cdot 10^{18} \, \text{см}^{-3}$. Содержание Ge (x) в структурах варьировалось от 10 до 30%, толщины гетероэпитаксиальных слоев составляли $d(Si_{1-r}Ge_r : Er) = 150-2300$ нм. Величина остаточных упругих напряжений (RES), связанная со степенью

[¶] E-mail: Luda@ipm.sci-nnov.ru

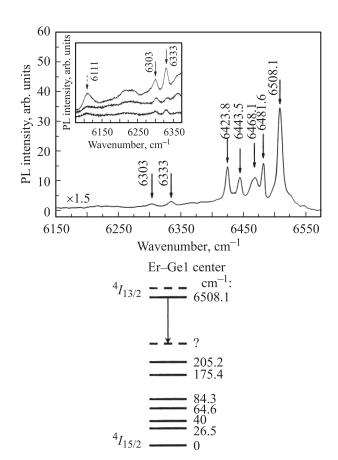
Рис. 1. Спектры фотолюминесценции (PL) структур $Si/Si_{1-x}Ge_x$: Er/Si с различным содержанием примеси кислорода (a) и германия (b) в гетерослое. T=4.2 К. Соотношение концентраций [Er]/[O] и молярный состав гетерослоя (x) указаны. Стрелками показано положение линий $\Phi \Pi$ основных оптически активных Er^{3+} -центров, приведены точные значения волнового числа в см $^{-1}$.

релаксации гетерослоя, изменялась в диапазоне от 100 до 1%.

Люминесцентные исследования и анализ тонкой структуры спектров $\Phi \Pi$ проводились с использованием метода фурье-спектроскопии высокого разрешения. Спектры $\Phi \Pi$ измеряли на фурье-спектрометре BOMEM DA3 с резрешением до $0.1\,{\rm cm}^{-1}$ в диапазоне волновых чисел от 5000 до $10\,000\,{\rm cm}^{-1}$. В качестве источника возбуждения использовался Nd: YAG-лазер, излучающий на длине волны 532 нм с мощностью 200 мВт. Лазерный пучок после прохождения через светофильтр фокусировался при помощи линзы на образец в пятно диаметром $\sim 1\,{\rm mm}$. Детектирование сигнала осуществлялось при помощи охлаждаемого жидким азотом германиевого фотодетектора модели Edinburgh Insturments EO-817A. Исследования $\Phi \Pi$ проводились при температурах $T=4.2-150\,{\rm K}$.

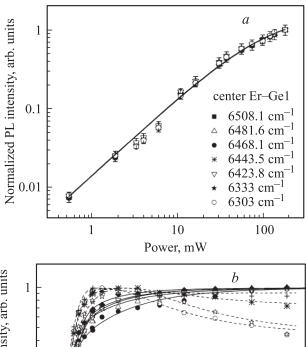
3. Экспериментальные результаты и их обсуждение

Для всех исследованных гетероэпитаксиальных структур $Si/Si_{1-x}Ge_x$: Er/Si наблюдался интенсивный сигнал ФЛ на длине волны 1.54 мкм, связанный с основным излучательным переходом ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ в 4f-оболочке


иона Er³⁺. Ранее нами было показано, что в структурах данного типа с содержанием германия $\sim 10\%$ основной вклад в люминесцентный отклик вносят оптически активные центры и комплексы ионов эрбия с кислородом [6]. В настоящей работе приводится более детальный анализ типов оптически активных центров, содержащих ионы Er³⁺, формирующихся в гетерослоях $Si_{1-x}Ge_x$: Er с содержанием германия от 10 до 30%, рассмотрена их взаимосвязь с молярным и примесным составом гетерослоя, в частности с содержанием примеси кислорода в слое. На рис. 1 представлены спектры ФЛ исследованных структур в диапазоне длин волн, соответствующем внутриатомным переходам иона Er³⁺. Наиболее интенсивные линии фотолюминесценции с волновыми числами 6508 и 6472 см⁻¹, наблюдающиеся в спектрах структур с высоким содержанием кислорода (рис. 1, a), совпадают по энергетическому положению с первыми линиями изолированного центра аксиальной симметрии, содержащего кислород и ион Er³⁺ (Er-O1), обнаруженного ранее в ионно-имплантированных слоях Si: Er [7]. Формирование данного типа центров происходит в том числе и в структурах Si: Er/Si, выращенных методом сублимационной МЛЭ при температурах роста $\sim 500^{\circ} \text{C}$ [8,9]. Ширина линии ФЛ с волновым числом $6508 \, \text{cm}^{-1}$ на уровне 0.5 от ее максималь-

ной интенсивности составляет $1.2\,\mathrm{cm}^{-1}$, что является минимальным значением для линий эрбиевой люминесценции, наблюдавшихся в исследованных структурах $Si/Si_{1-x}Ge_x$: Er/Si. На высокоэнергетическом крыле спектра наблюдаются линии ФЛ (6520, 6526, 6538, $6549 \, \text{cm}^{-1}$), связанные с формированием низкосимметричных комплексов иона эрбия с кислородом, также характерных для структур Si: Er [7,10]. Как показывают результаты исследований, присутствие этих комплексов сильно зависит от содержания кислорода в легированном эрбием гетерослое. В структурах $Si/Si_{1-x}Ge_x$: Er/Si комплексы данного типа формируются при соотношении концентраций [Er]/[O] ≈ 0.1 (рис. 1, a). Существенное уменьшение концентрации кислорода до соотношения $[Er]/[O] \approx 0.4$ резко снижает вероятность образования низкосимметричных комплексов кислорода и иона эрбия, что проявляется в спектрах фотолюминесценции, где высокоэнергетическая часть спектра в области $6520-6550\,\mathrm{cm}^{-1}$ становится слабо выраженной. Следует отметить, что количество германия в гетероэпитаксиальном слое $Si_{1-x}Ge_x$: Еr не влияет на условия формирования низкосимметричных комплексов ионов эрбия с кислородом. При достаточной концентрации кислорода формирование центров подобного типа происходит как в структурах с содержанием германия ~ 10%, так и при увеличении концентрации германия вплоть до 25%. Кроме перечисленных выше особенностей, в люминесцентном отклике структур $Si/Si_{1-x}Ge_x$: Er/Si присутствует также достаточно широкая компонента спектра, связанная, по-видимому, с центрами иона эрбия в SiO_xподобных преципитатах [11]. Пунктирными линиями на рис. 1, а выделены преципитатные компоненты в максимуме спектров ФЛ для каждой из исследованных структур. Видно, что с уменьшением концентрации кислорода в структурах происходит смещение максимума люминесценции оптически активных центров иона эрбия в SiO_x-подобных преципитатах в более низкоэнергетическую область спектра. В структуре с соотношением $[Er]/[O] \approx 0.16$ положение максимума приходится на $6505.5\,\mathrm{cm}^{-1}$, что совпадает с энергией люминесценции ${\rm Er}^{3+}$ -центров в легированных эрбием пленках ${\rm SiO}_2$. При уменьшении концентрации кислорода ($[Er]/[O] \approx 0.4$) максимум сдвигается на $5 \, \text{cm}^{-1}$. В самом верхнем из приведенных на рис. 1, a спектре $\Phi \Pi$ волновое число, соответствующее максимуму люминесценции эрбиевых центров в SiO_x-подобных преципитатах, равно $6496\,\mathrm{cm}^{-1}$, что связано, по-видимому, с еще бо́льшим уменьшением содержания кислорода в данной структуре. Аналогичный сдвиг максимума ФЛ эрбиевых центров в SiO_x-подобных преципитатах наблюдался при формировании центров этого типа в пленках SiO2: Er, а также в ионно-имплантированных слоях *c*-Si: Er и объяснялся различием локальных свойств ближайшего окружения редкоземельного иона [12].

На рис. 1, b приведены низкотемпературные спектры $\Phi \Pi$ структур $\text{Si/Si}_{1-x}\text{Ge}_x$: Er/Si с содержанием германия, варьируемым в диапазоне от 10 до 30%. В структуре с


самой низкой концентрацией германия наблюдаются интенсивные линии люминесценции с волновыми числами 6508 и 6472 см⁻¹, которые, как уже было описано выше, по энергетическому положению соответствуют основным линиям кислородсодержащего центра Er-O1. При увеличении доли германия до 20% положение линий не изменяется. В спектрах $\Phi \Pi$ структур $Si/Si_{1-x}Ge_x$: Er/Si с долей германия, увеличенной до 25%, происходит сдвиг положения основного максимума в область 6508.1 см⁻¹ и одновременно появляются линии люминесценции с волновыми числами 6482, 6468, 6443 и 6424 см⁻¹. Данная серия линий полностью воспроизводится и при дальнейшем увеличении содержания германия вплоть до 30%, что соответствует максимальной концентрации Ge в исследованных структурах. Появление новых линий фотолюминесценции в структурах, содержащих определенное количество германия, и воспроизводимость их положения от образца к образцу говорит об очевидной принадлежности этих линий одному типу оптически активных эрбиевых центров. Насколько нам известно, данная серия линий ФЛ не наблюдалась ранее в исследованных структурах Si: Er.

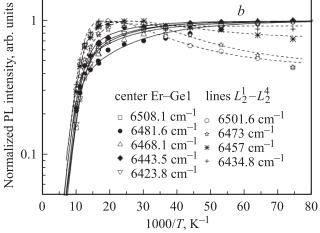

Рассмотрим более детально серию линий, обнаруженную в спектрах $\Phi \Pi$ структур $Si/Si_{1-x}Ge_x : Er/Si$ с долей германия $\geq 25\%$. В качестве примера приведем анализ, выполненный для структуры $Si/Si_{1-x}Ge_x$: Er/Siс x = 28%, $d(Si_{1-x}Ge_x : Er) = 0.75$ мкм и RES = 21%. Анализ спектров низкотемпературной ФЛ, измеренных с разрешением $\geq 0.1 \, \text{cm}^{-1}$, показал, что в выращенной структуре наблюдается выделенная серия из 7 линий ФЛ с волновыми числами 6508.1, 6481.6, 6468.1, 6443.5, $6423.8, 6333, 6303 \,\mathrm{cm}^{-1}$ (рис. 2). Для простоты дальнейшего обсуждения обозначим эти линии $L_1^1, L_1^2, L_1^3, L_1^4, L_1^5,$ L_{1}^{6}, L_{1}^{7} соответственно. Положение и соотношение интенсивностей линий $L_1^1 - L_1^7$ воспроизводится во всех исследованных в работе структурах с $x \ge 25\%$ (низкоэнергетические компоненты спектра для ряда образцов приведены на вставке к рис. 2). Ширина основного максимума люминесценции данной серии линий, L_1^1 , на уровне половины его интенсивности составляет $9 \, \text{cm}^{-1}$. Для всех наблюдаемых в спектре структуры Si/Si_{1-r}Ge_r: Er/Si с x = 28% и $d(\mathrm{Si}_{1-x}\mathrm{Ge}_x : \mathrm{Er}) = 0.75\,\mathrm{мкм}$ линий ФЛ были исследованы зависимости интенсивности сигнала ФЛ от температуры измерений и мощности возбуждающего излучения. На рис. 3, а представлена зависимость интенсивности сигнала $\Phi\Pi$ выделенных линий $L_1^1 - L_1^7$ от мощности возбуждающего излучения. Значения интенсивностей линий в максимуме нормированы на единицу. Видно, что интенсивность сигнала ФЛ линий $L_1^1 - L_1^7$ согласованно изменяется при изменении мощности возбуждающего излучения от 0.5 до 180 мВт. Изучение температурной зависимости исследуемой серии линий $L_1^1 - L_1^7$ проводилось в области температур от 4.2 до 130 К при возбуждении на длине волны $532\,\mathrm{HM}$ с мощностью $\sim 200\,\mathrm{MBT}$. Как показали результаты исследований, линии люминесценции с волновыми числами 6508.1, 6481.6, 6468.1, 6443.5, 6423.8, 6333,

Рис. 2. Серия линий фотолюминесценции, наблюдаемая при $T=4.2\,\mathrm{K}$ в структуре $\mathrm{Si/Si_{1-x}Ge_x:Er/Si}$ с содержанием германия x=28% и толщиной гетерослоя $\mathrm{Si_{1-x}Ge_x:Er}$ $d(\mathrm{Si_{1-x}Ge_x:Er})=0.75\,\mathrm{mkm}$, RES =21%. Приведены волновые числа наблюдаемых линий в см $^{-1}$. На вставке — длинноволновая часть спектров для ряда образцов с $x\geq25\%$. Внизу — энергетическая диаграмма центра $\mathrm{Er-Ge1}$ (переходы с первого уровня мультиплета $^4I_{15/2}$), полученная из данных люминесцентного анализа.

6303 см⁻¹ имеют одинаковую зависимость интенсивности сигнала от температуры. На рис. 3, в приведен ход температурной зависимости нормированных значений интенсивности линий $\Phi \Pi L_1^1 - L_1^5$, являющийся типичным для наблюдаемой серии линий в исследуемой структуре. Зависимость представлена в координатах Аррениуса. Хорошая воспроизводимость в спектрах ФЛ структур $Si/Si_{1-x}Ge_x$: Er/Si с $x \ge 25\%$ положения и относительной интенсивности линий $L_1^1 - L_1^7$, а также согласованное изменение интенсивности линий ФЛ данной серии в зависимости от мощности возбуждающего излучения и температуры, очевидно, свидетельствует о их принадлежности одному типу оптически активных центров, связанных с ионами Er³⁺. Тот факт, что формирование центров происходит в образцах $Si/Si_{1-x}Ge_x$: Er/Si с содержанием германия, большим или равным 25%, говорит о присутствии атомов Ge в микрокристаллической структуре оптически активного центра, центра Er-Ge1. Энергетическая структура такого центра, определенная из спектров фотолюминесценции, приведена на рис. 2. Наличие в спектрах ФЛ оптически активного центра Er-Ge1 более 5 линий, соответствующих переходам между нижним энергетическим уровнем мультиплета ${}^4I_{13/2}$ и энергетическими уровнями расщепленного мультиплета ${}^4I_{15/2}$, говорит о том, что симметрия данного центра ниже кубической. Согласно теории [13], в кристаллическом поле кубической симметрии основное состояние иона Er³⁺ $(^{4}I_{15/2})$ расщепляется на 5 энергетических уровней: два 2-кратно вырожденных уровня (Гб и Г7) и три уровня с 4-кратным вырождением (Г8). При более низкой, например, аксиальной или плоскостной, симметрии кристаллического поля, должно происходить дополнительное расщепление имеющихся в энергетической структуре уровней Г8, что приводит к расщеплению мультиплета $^{4}I_{15/2}$ на восемь 2-кратно вырожденных уровней [13,14]. Вследствие такого расщепления основного состояния иона ${\rm Er}^{3+}$ в спектре $\Phi \Pi$ оптических активных центров

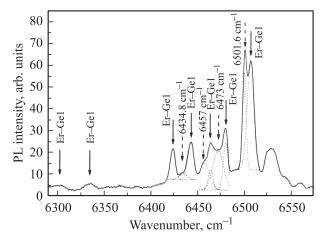


Рис. 3. Нормированные на максимальное значение зависимости интенсивности линий фотолюминесценции (PL) центра Er-Ge1 (линии $L_1^1-L_1^7$) от мощности возбуждающего излучения при $T=4.2\,\mathrm{K}$ (a) и температурные зависимости интенсивности линий фотолюминесценции центра Er-Ge1 ($L_1^1-L_1^5$) и линий $L_2^1-L_2^4$ в координатах Аррениуса (b).

с симметрией ниже кубической должно наблюдаться 8 линий люминесценции. В спектре оптически активных центров Er-Ge1 удалось идентифицировать только 7 из 8 линий. Можно предположить, что недостающей линией в спектре ФЛ является линия с волновым числом 6111 см⁻¹ (обозначена штриховой стрелкой на вставке к рис. 2), обладающая достаточно низкой интенсивностью. Однако, как следует из результатов теоретического анализа [13,14], два последних уровня в энергетическом спектре центров с симметрией кристаллического поля ниже кубической должны соответствовать расщепленному на два дублета квадруплетному состоянию Г8 и расстояние между данными уровнями не должно превышать энергетическое расстояние между уровнями расщепленного мультиплета ${}^4I_{15/2}$ в поле кубической симметрии. Как видно из рис. 2, расстояние между линией L_1^7 и линией с волновым числом $6111\,{\rm cm}^{-1}$ составляет $192\,\mathrm{cm}^{-1}$, что не только больше типичных величин расщепления уровней Г8 в полях аксиальной симметрии [7,15], но и превышает максимальное расстояние между энергетическими уровнями, имеющее место при расщеплении мультиплета ${}^4I_{15/2}$ в поле кубической симметрии [7]. Следовательно, линия ФЛ с волновым числом $6111 \, \text{см}^{-1}$ вряд ли может принадлежать центрам Er-Ge1. Отсутствие одной из линий в спектре ФЛ центров Er-Ge1 может быть объяснено трудностью ее обнаружения, связанной либо с малой интенсивностью, либо с тем, что один из 4 вырожденных энергетических уровней Г8 не полностью отделяется в поле низкой симметрии. Не полное расщепление квадруплетного уровня Г8 может привести, например, к появлению уширенной по сравнению с остальными линии L_1^3 . По результатам предварительного анализа, проведенного на основе сравнения расщепления мультиплета ${}^4I_{15/2}$ в поле кубической симметрии [13] и энергетической структуры центра Er-Ge1, определенной из спектров ФЛ, можно высказать предположение, что наиболее вероятным для центра Er-Ge1 положением иона эрбия в кристаллической решетке является положение внедрения. Учитывая, что в микрокристаллической структуре центра Er-Ge1 присутствуют атомы Ge (предположительно 2 атома Ge, как это следует из соотношения концентраций [Er]/[Ge]), и принимая во внимание первые два ближайших окружения иона Er³⁺, можно проанализировать варианты возможной симметрии наблюдаемого оптически активного центра. Вероятными вариантами симметрии центра Er-Ge1 в данном случае оказываются точечные группы симметрии D_{2d} , C_{2v} и C_s .

Примечательной особенностью спектров ФЛ структур $Si/Si_{1-x}Ge_x$: Er/Si с долей германия $\geq 25\%$ является появление в них еще одной серии линий при повышенных температурах. При температурах измерений $T \geq 8$ К на фоне линий центров Er-Ge1 в спектрах ФЛ появляются компоненты с волновыми числами 6501.6, 6473, 6457, 6434.8 см $^{-1}$ (далее линии L_2^1 , L_2^2 , L_2^3 , L_2^4 соответственно), отмеченные на рис. 4 штриховыми стрелками. Для точного определения положения линий $L_2^1-L_2^4$ использо-

Рис. 4. Серия линий фотолюминесценции, наблюдаемая в структуре $Si/Si_{1-x}Ge_x$: Er/Si с содержанием германия $\geq 25\%$ при температуре 52 К. В диапазоне волновых чисел $6417-6520\,\mathrm{cm}^{-1}$ приведена аппроксимация максимумов спектра $\Phi \Pi$ функциями Гаусса (пунктирные кривые).

валась аппроксимация спектров ФЛ функциями Гаусса. В качестве примера аппроксимация спектра ФЛ, измеренного при $T=52\,\mathrm{K}$, приведена на рис. 4. Заметим, что, как и в случае центра $\mathrm{Er}\mathrm{-Ge1}$, наблюдаемая серия линий $L_2^1-L_2^4$ достаточно хорошо воспроизводится во всех исследованных структурах $\mathrm{Si/Si}_{1-x}\mathrm{Ge}_x$: $\mathrm{Er/Si}$ с долей германия, превышающей 25%.

Обсудим возможные причины появления в спектре ФЛ линий $L_2^1 - L_2^4$ при температурах $T \ge 8$ К. Одной из них может быть так называемая "горячая" люминесценция — переходы с возбужденных уровней мультиплета $^{4}I_{13/2}$ на уровни мультиплета $^{4}I_{15/2}$. Вероятность таких переходов увеличивается при повышении температуры, что связано с увеличением степени заселенности возбужденных уровней мультиплета ${}^4I_{13/2}$. Серия "горячих" линий (HL) ФЛ смещена по сравнению с основными линиями люминесценции оптически активных центров в более высокоэнергетическую область спектра. Величина смещения для всех линий одинакова и соответствует положению возбужденного уровня мультиплета ${}^4I_{13/2}$ относительно основного мультиплетного состояния. Рассматривая возможность принадлежности линий $L_2^1 - L_2^4$ линиям "горячей" люминесценции центра Er-Ge1, мы провели анализ их положения и интенсивностей относительно основных линий центра. Смещение линии L_2^1 относительно линии L_1^2 , для которой она предположительно может являться линией "горячей" люминесценции, составляет $\sim 20\,{\rm cm}^{-1}$, а для других соответствующих пар линий данная величина не превышает $15\,\mathrm{cm}^{-1}$. С другой стороны, присутствие линий "горячей" люминесценции для неосновных, низкоэнергетических линий спектра ФЛ эрбиевого центра (линий L_1^3 , L_1^4 и L_1^5) предполагает их наличие (в силу большей вероятности переходов) и для более высокоэнергетических компонент спектра. Это значит, что линии $L_2^2 - L_2^4$ не могут являться линиями HL для серии $L_1^1 - L_1^7$. Анализируя с данной точки зрения вероятность того, что линия L_2^1 является линией "горячей" люминесценции для второй по интенсивности линии $6481.6\,\mathrm{cm}^{-1}$ оптически активного центра Er-Ge1, можно увидеть (рис. 4), что для более высокоэнергетической линии L_1^1 компонента "горячей" люминесценции может существовать в области $6525\,\mathrm{cm}^{-1}$. Однако здесь следует заметить, что начиная с некоторой температуры, $T \approx 20\,\mathrm{K}$, интенсивность линии L_2^1 превосходит интенсивность линии L_1^2 , что является маловероятным для линий HL вследствие меньших вероятностей переходов. Более того, линия L_2^1 появляется в спектре ФЛ при температуре 8 К, что соответствует $kT = 5.6 \,\mathrm{cm}^{-1}$ (здесь k — постоянная Больцмана). Очевидно, что данного значения энергии тепловых колебаний решетки недостаточно для перехода электронов с основного уровня мультиплета ${}^4I_{13/2}$ на его возбужденный уровень, находящийся на расстоянии $\sim 20\,{\rm cm}^{-1}$ от основного. Из вышесказанного следует, что линии $L_2^1 - L_2^4$ не являются линиями HL центра Er-Ge1. Учитывая хорошую воспроизводимость линий $L_2^1 - L_2^4$ в разных образцах, можно полагать, что наблюдаемая серия принадлежит одному типу оптически активных эрбиевых центров, включающих в свой состав, как и центр Er-Ge1, атомы германия и имеющих несколько отличную структуру.

Как и в случае центров Er-Ge1, обоснованием принадлежности серии линий $L_2^1-L_2^4$ одному типу оптически активных эрбиевых центров является анализ температурных зависимостей ФЛ. Температурные зависимости интенсивности (I) линий ФЛ центров Er-Ge1 и линий $L_2^1-L_2^4$, измеренные в интервале $T=4.5-100\,\mathrm{K}$, приведены на рис. 3,b. Для количественного описания полученных зависимостей можно воспользоваться феноменологической формулой [7]

$$I(T) = I_0 \left[1 + C_1 \exp(-E_1/kT) + C_2 \exp(-E_2/kT) \right]^{-1},$$
(1)

учитывающей наличие двух процессов деактивации с энергиями E_1 и E_2 . Здесь C_1 и C_2 — константы, описывающие эффективность процессов с соответствующими энергиями. Аппроксимация измеренных температурных зависимостей формулой (1) показана на рис. 3, b, где сплошными линиями даны температурные зависимости линий ФЛ центров Er-Ge1, штриховыми — линии $L_2^1 - L_2^4$. Значения соответствующих параметров, описывающих процессы температурного гашения, содержатся в таблице. Как видно из таблицы, для выделенных серий линий ФЛ полученные значения констант и энергий деактивации хорошо согласуются друг с другом в пределах одной серии линий, что, с одной стороны, свидетельствует о принадлежности наблюдаемых линий в каждой серии одному типу оптически активных эрбиевых центров, а с другой, — говорит о различной природе наблюдаемых центров. Для линий ФЛ центров Er-Ge1 типичными являются следующие значения параметров: $E_1 \approx 12$ мэВ, $E_2 \approx 51$ мэВ, $C_1 \approx 2.65$, $C_2 \approx 1236$.

Энергии деактивации и константы взаимодействия, описывающие процесс температурного гашения линий фотолюминесценции центров Er—Ge1 и серии линий $L_2^1 - L_2^4$ в спектрах структур Si/Si $_{1-x}$ Ge $_x$: Er/Si с $_x \ge 25\%$

Линия	<i>E</i> ₁ , мэВ	C_1	Е2, мэВ	C_2
L_1^1	12.2	1.13	50.1	1278
L_1^2	11.1	3.36	50.8	1089
L_1^3	11.7	3.59	50.8	1259
L_1^4	12.6	2.59	51.8	1138
L_1^5	11.3	2.59	51.2	1415
L_2^1	-6.5	4.59	49.1	223
L_2^2	-5.2	9.69	48	252
L_2^3	-5.9	11.12	48	352
L_2^4	-6.27	3.54	48.3	494

Полученное значение энергии деактивации E_1 лежит в диапазоне 4-15 мэВ и является характерным для процессов температурного гашения ФЛ оптически активных центров, содержащих ионы Er³⁺, в кремниевых матрицах [9,16]. В рамках общепринятой модели экситонного возбуждения [17] энергия E_1 может быть расценена как энергия связи экситона на эрбиевом центре. В рамках этой модели энергия деактивации E_1 не зависит от условий получения образцов и определяется только типом оптически активного центра. Коэффициент C_1 в этом случае зависит от наличия конкурирующих каналов захвата экситонов в активном слое и определяется параметрами самого оптически активного центра, а именно эффективным сечением захвата экситона и эффективностью процесса возбуждения [7]. Учитывая экситонный механизм возбуждения ионов Er³⁺, можно понять причину наблюдаемого температурного поведения линий $L_2^1 - L_2^4$, интенсивность которых согласованно возрастает в интервале температур от 8 до 60 К (рис, 3, b). Рост интенсивности сигнала $\Phi \Pi$ линий $L_2^1 - L_2^4$ в этом температурном интервале описывается энергией активации $E_1 \approx 6$ мэВ. Полученное значение близко к известным значениям энергии связи экситонов на мелких примесных центрах в кремниевых матрицах и, таким образом, наблюдаемое увеличение интенсивности сигнала ФЛ можно связать с процессами отрыва экситонов от мелких примесных центров и их последующим захватом на оптически активный центр, связанный с Ег. Последний, очевидно, имеет меньшее сечение возбуждения по сравнению с центром Er-Ge1. Для ряда оптически активных эрбиевых центров аналогичный эффект наблюдался с структурах Si: Er [7]. Как видно из таблицы, константы C_1 , описывающие процессы активации сигнала ФЛ линий $L_2^1 - L_2^4$, превышают аналогичные константы, полученные для линий ФЛ центра Er-Ge1. В высокотемпературной области $(T > 60 \, \mathrm{K})$ значения энергий деактивации E_2 линий $\Phi \Pi$ центра Er-Ge1 и линий $\Phi \Pi \ L_2^1 - L_2^4$ близки по своим значениям, что, очевидно, связано с преобладанием в этом интервале температур процессов оже-девозбуждения редкоземельной примеси. Известный механизм "обратной передачи энергии" [18], также ответственный за процессы гашения сигнала ФЛ в высокотемпературном интервале, очевидно, в данном случае можно исключить из рассмотрения, поскольку энергии деактивации E_2 в этом механизме должны зависеть от типа рассматриваемого оптически активного центра. Полученные для линий $L_2^1 - L_2^4$ значения коэффициентов взаимодействия C_2 примерно в 4 раза меньше значений, полученных для линий ФЛ центров Er-Ge1, что свидетельствует о более высокой температурной стабильности наблюдаемого центра. Здесь следует заметить, что, несмотря на слабую выраженность в спектрах Φ Л линий $L_2^2 - L_2^4$, учет линий этой серии значительно уменьшает разброс энергетических параметров, получаемых при анализе температурных зависимостей сигнала ФЛ. Приводимый выше разброс значений энергий деактивации E_2 центров Er-Ge1 составляет ~ 0.6 мэВ, и исключение из анализа температурных зависимостей хотя бы одной из линий серии L_2 увеличивает эту величину до ~ 3 мэВ.

4. Заключение

Таким образом, в работе проведен детальный анализ основных типов оптически активных эрбиевых центров, вносящих преимущественный вклад в сигнал ФЛ гетероструктур $Si/Si_{1-x}Ge_x$: Ег с содержанием германия в гетерослое $Si_{1-r}Ge_r$: Er, варьируемым в диапазоне от 10 до 30%. Рассмотрена взаимосвязь параметров гетерослоя, в частности его молярного (x) и примесного состава, с типом формируемых оптически активных эрбиевых центров. Показано, что преимущественный вклад в сигнал фотолюминесценции гетероструктур $Si/Si_{1-r}Ge_r$: Er с содержанием германия < 25% вносят центры, содержащие кислород и ион Er³⁺, в частности наблюдавшиеся ранее в слоях Si: Er центры Er-O1, низкосимметричные комплексы иона Er³⁺ с кислородом, и центры иона эрбия в SiO_x -подобных преципитатах в кремнии, вклад которых в сигнал фотолюминесценции непосредственно зависит от содержания кислорода в слое. С увеличением содержания германия в гетерослое $Si_{1-x}Ge_x$: Er $(x \ge 25\%)$ наблюдается формирование нового типа оптически активных эрбиевых центров, представленных в спектрах фотолюминесценции сериями линий 6508.1, 6481.6, 6468.1, 6443.5, 6423.8, 6333, 6303 см⁻¹ и 6501.6, 6473, 6457, 6434.8 см $^{-1}$. Последняя серия проявляется в спектрах фотолюминесценции структур $Si/Si_{1-x}Ge_x$: Er c содержанием германия > 25% при повышенных температурах (T > 8 K). По результатам анализа температурных зависимостей ФЛ, зависимостей от интенсивности возбуждения и анализа воспроизводимости серий линий в разных образцах делается вывод о принадлежности наблюдаемых линий двум германийсодержащим эрбиевым центрам, несколько различающимся по своей микрокристаллической структуре. Высказывается предположение о принадлежности серии линий 6508.1, 6481.6, 6468.1, 6443.5, 6423.8, 6333, 6303 см $^{-1}$ оптически активному центру, в котором редкоземельный ион находится в положении внедрения в кристаллической решетке и который содержит 2 атома германия в ближайшем окружении (центр Er-Ge1); возможные типы симметрии этого центра — D_{2d} , C_{2v} , C_s . Наблюдаемое увеличение сигнала $\Phi \Pi$ второй серии линий при повышенных температурах объясняется особенностями возбуждения редкоземельной примеси.

Работа поддержана грантами РФФИ (проекты № 08-02-01063, 07-02-01304) и NWO (проект № 047.011.2005.003), а также программами РАН.

Авторы выражают благодарность Б.Я. Беру и А.П. Коварскому за проведение ВИМС-исследований.

Список литературы

- M.V. Stepikhova, L.V. Krasil'nikova, Z.F. Krasil'nik, V.G. Shengurov, V.Yu. Chalkov, S.P. Svetlov, D.M. Zhigunov, V.Yu. Timoshenko, O.A. Shalygina, P.K. Kashkarov. J. Cryst. Growth, 288, 65 (2006).
- [2] Z.F. Krasilnik, B.A. Andreev, T. Gregorkievicz, W. Jantsch, D.I. Kryzhkov, L.V. Krasilnikova, V.P. Kuznetsov, H. Przybylinska, D.Yu. Remizov, V.B. Shmagin, M.V. Stepikhova, V.Yu. Timoshenko, N.Q. Vinh, A.N. Yablonskiy, D.M. Zhigunov, J. Mater. Res., 21, 574 (2006).
- [3] М.В. Степихова, Д.М. Жигунов, В.Г. Шенгуров, В.Ю. Тимошенко, Л.В. Красильникова, В.Ю. Чалков, С.П. Светлов, О.А. Шалыгина, П.К. Кашкаров, З.Ф. Красильник. Письма ЖЭТФ, 81, 614 (2005).
- [4] С.П. Светлов, В.Г. Шенгуров, В.Ю. Чалков, З.Ф. Красильник, Б.А. Андреев, Ю.Н. Дроздов. Изв. РАН. Сер. физ., 65 (2), 203 (2001).
- [5] В.П. Кузнецов, Р.А. Рубцова, Т.Н. Сергиевская, В.В. Постников. Кристаллография, 16, 432 (1971).
- [6] M.V. Stepikhova, L.V. Krasil'nikova, Z.F. Krasil'nik, V.G. Shengurov, V.Yu. Chalkov, D.M. Zhigunov, O.A. Shalygina, V.Yu. Timoshenko. J. Opt. Mater., 28 (6–7), 893 (2006).
- [7] H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch, M. Stepikhova, L. Palmetshofer, G. Hendorfer, A. Kozanecki, R.J. Wilson, B.J. Sealy. Phys. Rev. B, 54, 2532 (1996).
- [8] A.Yu. Andreev, B.A. Andreev, H. Ellmer, H. Hutter, Z.F. Krasil'nik, V.P. Kuznetsov, S. Lanzerstorfer, L. Palmetshofer, K. Piplits, R.A. Rubtsova, N.S. Sokolov, V.B. Shmagin, M.V. Stepikhova, E.A. Uskova. J. Cryst. Growth, 201/202, 534 (1999).
- [9] Б.А. Андреев, Т. Грегоркевич, З.Ф. Красильник, В.П. Кузнецов, Д.И. Курицын, М.В. Степихова, В.Г. Шенгуров, В.Б. Шмагин, А.Н. Яблонский, В. Янч. Изв. РАН. Сер. физ., 67 (2), 273 (2003).
- [10] В.Г. Шенгуров, С.П. Светлов, В.Ю. Чалков, Б.А. Андреев, З.Ф. Красильник, Б.Я. Бер, Ю.Н. Дроздов, А.Н. Яблонский. ФТП, 36, 662 (2002).
- [11] W. Jantsch, S. Lanzerstorfer, L. Palmetshofer, M. Stepikhova, H. Preier. J. Luminesc., 80, 9 (1999).
- [12] М.В. Степихова. Автореф. канд. дис. (Нижний Новгород, 2006).

- [13] K.R. Lea, M.J.M. Leask, W.P. Wolf. J. Phys. Chem. Sol., 23, 1381 (1962).
- [14] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов (М., Мир, 1973).
- [15] Б.А. Андреев, А.Ю. Андреев, Д.М. Гапонова, З.Ф. Красильник, В.П. Кузнецов, А.В. Новиков, М.В. Степихова, В.Б. Шмагин, Е.А. Ускова, С. Ланцершторфер. Изв. РАН. Сер. физ., 64 (2), 269 (2000).
- [16] М.С. Бреслер, Т. Грегоркевич, О.Б. Гусев, Н.А. Соболев, Е.И. Теруков, И.Н. Яссиевич, Б.П. Захарченя. ФТТ, 41 (5), 851 (1999).
- [17] O.B. Gusev, M.S. Bresler, P.E. Pak, I.N. Yassievich, M. Forcales, N.Q. Vinh, T. Gregorkiewicz. Phys. Rev. B, 64, 075 3021 (2001).
- [18] J. Palm, F. Gan, B. Zheng, L.C. Kimerling. Phys. Rev. B, 54, 17603 (1996).

Редактор Л.В. Шаронова

Optically active Er^{3+} -containing centers in $Si/Si_{1-x}Ge_x$: Er heterostructures

L.V. Krasilnikova, M.V. Stepikhova, N.A. Baidakova, Yu.N. Drozdov, Z.F. Krasilnik, V.Yu. Chalkov*, V.G. Shengurov*

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia * Physico-Technical Research Institute, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia

Abstract We have performed a detailed analysis of optically active Er^{3+} centers that contribute to the photoluminescence response of $Si/Si_{1-x}Ge_x$: Er/Si structures with Ge content from 10 to 30%. A relationship is established between the origin of optically active Er^{3+} centers and oxygen concentration and Ge content in a $Si_{1-x}Ge_x$: Er heterolayer. Well-known oxygen-related optically active Er^{3+} centers make a major contribution to the photoluminescence response of $Si/Si_{1-x}Ge_x$: Er/Si heterostructures with Ge content less then 25%. Increase of Ge content in $Si_{1-x}Ge_x$: Er layers, $x \geq 25\%$, leads to formation of new type of optically active centers — germanium-containing optically active Er^{3+} centers.