02

Влияние низкотемпературного отжига на критические параметры высокотекстурированного YBa₂Cu₃O_y

© И.Б. Бобылев, Е.Г. Герасимов, Н.А. Зюзева

Институт физики металлов УрО РАН, Екатеринбург, Россия

E-mail: bobylev@imp.uran.ru

(Поступила в Редакцию 11 января 2012 г. В окончательной редакции 23 января 2012 г.)

Исследовано влияние обработки при температуре 200° С, а также естественного старения на критические параметры высокотекстурированного $YBa_2Cu_3O_{6,9}$. Показано, что выделяющиеся при фазовом распаде данного соединения несверхпроводящие при $T=77\,\mathrm{K}$ частицы являются эффективными центрами пиннинга. При температуре 200° С $YBa_2Cu_3O_y$ взаимодействует с атмосферной влагой, вследствие чего образуются дефекты упаковки, которые также осуществляют пиннинг магнитных вихрей. Происходящие в ходе низкотемпературного отжига и при старении изменения структуры приводят к увеличению значений критической плотности тока и первого критического поля. Наличие центров пиннинга различной природы создает синергический эффект, который существенно увеличивает токонесущую способность материалов, в том числе в высоких магнитных полях.

1. Введение

Известно, что введение микровключений посторонних несверхпроводящих фаз или создание структурных нанонеоднородностей, отличающихся по химическому составу и свойствам от матричной сверхпроводящей фазы, способствует улучшению токонесущей способности ВТСП-материалов [1–4]. Центры пиннинга можно создавать различными путями, в частности методом термической обработки, в ходе которой повышается плотность дефектов структуры [5,6].

В теоретических работах [7,8] было предсказано, что нестехиометрический по кислороду $YBa_2Cu_3O_y$ при $t<400^{\circ}C$ неустойчив, т.е. происходит распад на фазы с различным содержанием кислорода. В [9,10] методом просвечивающей электронной микроскопии распад был обнаружен экспериментально. При исследовании монокристаллов $YBa_2Cu_3O_y$ с кислородным индексом $\sim6.5-6.8$ было показано, что после обработки при температуре $200^{\circ}C$ наблюдается выделение частиц размером 5-10 nm, а после обработки при температуре $300^{\circ}C$ выделялись частицы до 50 nm. Естественное старение в нормальных условиях также приводит к распаду нестехиометрических по кислороду монокристаллов [11].

С другой стороны, в [12] установлено, что при температурах, близких к комнатной, $YBa_2Cu_3O_y$ вза-имодействует с атмосферной влагой, вследствие чего в нем образуются дефекты упаковки, представляющие собой дополнительные слои Cu-O длиной ~ 20 nm и толщиной 1.2-2.4 nm. В [13] методом ПЭМ просвечивающей электронной микроскопии исследована высокотекстурированная керамика, было обнаружено, что после обработки при температуре $200^{\circ}C$ в ней также образуются аналогичные дефекты.

В [14] нами изучено влияние распада на электрофизические свойства керамических образцов $YBa_2Cu_3O_{6.9}$,

было показано, что после непродолжительного отжига в атмосфере кислорода при температуре 200° С критическая плотность тока существенно увеличивается. Кроме того, наблюдалось небольшое повышение критической температуры (T_c), что свидетельствует об обогащении в процессе распада матричной фазы кислородом. Аналогичная термообработка в атмосфере аргона приводила к ухудшению критических характеристик.

Согласно диаграмме состояния [15], в процессе распада $YBa_2Cu_3O_y$ с y>6.5 при температуре $200^\circ C$, выделяющиеся частицы имеют низкий кислородный индекс $(y\sim6.1)$. Такие частицы не обладают сверхпроводимостью при $T=77\,\mathrm{K}$. Поэтому было сделано предположение, что несверхпроводящие частицы, а также дефекты упаковки с размером, близким к длине когерентности $(\xi\sim1.2\,\mathrm{nm}~[16])$, могут осуществлять пиннинг магнитных вихрей. При этом матричная фаза в процессе распада обогащается кислородом, что также должно приводить к улучшению токонесущей способности материалов.

В настоящей работе исследовано влияние низкотемпературной обработки в окислительной и инертной атмосфере, а также естественного старения на критические характеристики высокотекстурированного $YBa_2Cu_3O_{6.9}$ с целью изучения возможности образования в ходе этих процессов эффективных центров пиннинга, способных существенно улучшить токонесущую способность, в том числе в высоких магнитных полях.

2. Методика

Материалом для исследования являлась керамика $YBa_2Cu_3O_{6.9}$, синтезированная методом MTG (melt-textured growth) [17] в ВНИИНМ им. А.А. Бочвара. Согласно данным измерений магнитной восприимчивости,

1 1633

 T_c равнялась 90 К. Рентгенографический анализ показал, что от плоскости ab отражаются только линии типа 00l, что свидетельствует о высокой текстуре материала. Образцы содержали 30 mass% Y_2 BaCuO $_5$ (фаза 211) и были легированы CeO_2 (2 mass%). Оксид церия был добавлен с целью уменьшения размера включений фазы 211 [18]. Содержание CeO_2 близко к пределу растворимости в $YBa_2Cu_3O_{7-\delta}$ [19], поэтому значительная его часть, вероятно, замещает иттрий [20]. Однако по данным рентгенофазового анализа в образцах отмечено наличие небольших количеств фазы CeO_2 . Кроме того, были исследованы монокристаллы с кислородным индексом $y \sim 6.9$, полученные нами методом раствора в расплаве.

Отжиги проводились при температуре $200^{\circ}\mathrm{C}$ в проточной атмосфере кислорода или аргона в течение $5-40\,\mathrm{h}$. При проведении термообработок относительная влажность составляла $\sim 10\%$. Также был исследован образец, состаренный в нормальных условиях при естественной влажности в течение $\sim 10\,\mathrm{net}$.

Измерения намагниченности осуществлялись в двухполярных импульсных магнитных полях при $T=77\,\mathrm{K}$. Длительность импульса составляла $\sim 7.5\,\mathrm{ms}$. Максимальная амплитуда импульса магнитной индукции равнялась $35\,\mathrm{T}$ при напряжении заряда на конденсаторной батарее, равном $2500\,\mathrm{V}$. Путем изменения напряжения заряда на конденсаторной батарее можно было регулировать амплитуду импульса и соответственно скорость изменения магнитного поля со временем.

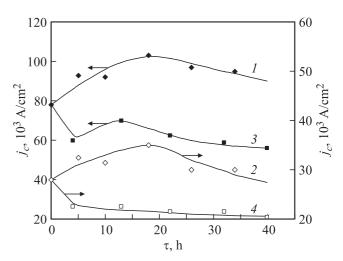
Намагниченность некоторых образцов была также исследована с помощью вибрационного магнитометра в квазистатических магнитных полях с индукцией до $\sim 1.5\,\mathrm{T}$. Величины намагниченности, полученные на вибромагнитометре, были близки к соответствующим значениям, определенным в импульсных магнитных полях при амплитуде импульса $B=3-4\,\mathrm{T}$.

Для определения первого критического поля B_{c1} и критической плотности тока использовались петли гистерезиса, измеренные с одинаковой средней скоростью изменения магнитного поля ($\sim 2 \cdot 10^3 \, \text{T/s}$) и максимальной амплитудой индукции магнитного поля $B=3-4 \, \text{T}$.

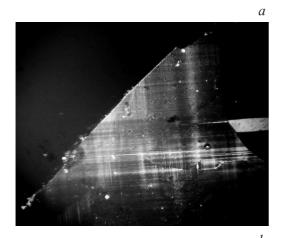
Петли гистерезиса регистрировались в поле, приложенном как параллельно оси ${\bf c}$, так и перпендикулярно ей. Образцы имели размеры $\cong 2.5 \times 2.5 \times 1.5$ mm. Критическая плотность тока рассчитывалась по формуле Бина [21]

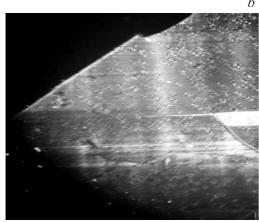
$$j_c = 20\Delta M/a(1 - a/3b),$$

где ΔM — ширина петли намагничивания $(G \cdot cm^3/g)$; a и b — размеры (в cm) прямоугольного образца (a < b). При максимальной индукции магнитного поля 35 Т ширина петли намагничивания заметно увеличивалась по сравнению с шириной, получаемой при измерениях с максимальной индукцией B=4 Т. Поэтому при расчете критической плотности тока в полях величины M были приведены к соответствующим значениям M в полях < 4 Т, что позволяло построить зависимости $j_c = f(B)$


во всем исследованном диапазоне магнитных полей. Значения нижнего критического поля определялись по отклонению от линейной зависимости начального участка кривой M=f(B). Оптическое исследование монокристаллов проводилось в поляризованном свете с помощью микроскопа типа Neofot-32.

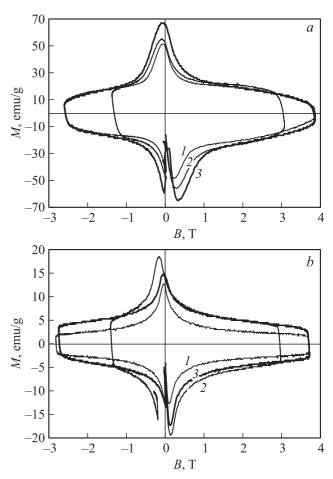
3. Результаты и обсуждение


На рис. 1 представлены зависимости критической плотности тока в нулевом поле от времени отжига. Видно, что после обработки при температуре $200^{\circ}\mathrm{C}$ в атмосфере кислорода наблюдается максимум j_c при $\tau=18\,\mathrm{h}$. Дальнейшее продолжение отжига приводило к падению критической плотности тока. В [10] было показано, что вокруг выделившихся в ходе распада частиц возникают напряжения разного знака, которые, вероятно, и являются причиной уменьшения j_c после отжигов, превышающих $18\,\mathrm{h}$.

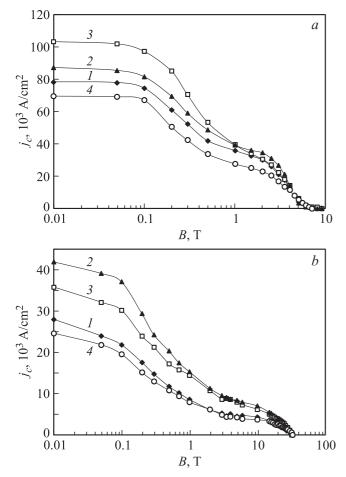

В качестве иллюстрации на рис. 2 показаны монокристалл, находящийся в исходном состоянии, и образец после термообработки в окислительной атмосфере при $t=200^{\circ}$ С. Из рисунка видно, что после 18 h отжига, как и в [10], в матричной фазе образуются напряжения вокруг обедненных кислородом выделившихся частиц (фигуры из четырех лепестков). При этом размывается двойниковая структура, характерная для исходного состояния, что свидетельствует о разупорядочении кислорода в матричной фазе.

В отличие от термообработки в окислительной атмосфере аналогичная обработка в атмосфере аргона в согласии с [14] приводит к немонотонному снижению j_c . В [15] было показано, что в инертной атмосфере $YBa_2Cu_3O_y$ гораздо сильнее взаимодействует с атмосферной влагой, чем в окислительной. Взаимодействие

Рис. 1. Зависимости критической плотности тока в нулевом поле от времени обработки в атмосфере кислорода (1,2) и в атмосфере аргона (3,4). 1,3 — поле параллельно $\mathbf{c},\ 2,4$ — поле перпендикулярно \mathbf{c} .


Рис. 2. Микрофотографии исходного (a) и обработанного при температуре 200° С в атмосфере кислорода в течение $18\,\mathrm{h}\ (b)$ образцов. Увеличение 400^x .

с парами воды приводит к переходу матричной фазы вследствие разупорядочения атомов из орторомбической сингонии в псевдокубическую. Вероятно, это наряду с напряжениями в матричной фазе и является причиной ухудшения критических характеристик после отжигов в атмосфере аргона.


На рис. 3 представлены зависимости намагниченности от приложенного внешнего магнитного поля для состаренного и термически обработанного в атмосфере кислорода образцов. Из рис. 3, а видно, что для обоих образцов значения ΔM увеличились по сравнению с исходным состоянием. Наиболее сильные изменения ΔM имеют место в полях < 2 Т.

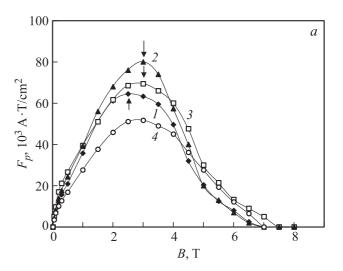
При другой ориентации внешнего поля (перпендикулярно c) как отжиг в атмосфере кислорода, так и старение приводят к существенному увеличению ΔM и в области более сильных полей (> 2 T) (рис. 3, b). Это свидетельствует о том, что в случае, когда поле приложено перпендикулярно с, наблюдается более эффективный пиннинг магнитных вихрей по сравнению с полем, приложенным параллельно с. По-видимому, образующиеся в процессе распада частицы формируются в плоскостях Си-О вследствие аномально высокой подвижности кислорода в данном направлении [22], что должно приводить к выделению плоских частиц именно в базисной плоскости [23].

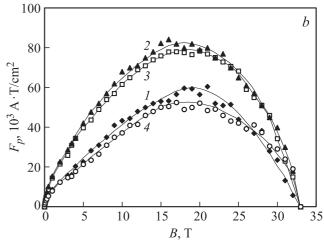
На рис. 4 приведены зависимости $j_c = f(B)$ для состаренного и обработанных при температуре 200°C образцов в сравнении с исходным состоянием. При поле, перпендикулярном c, в отличие от поля параллельного c, для образцов, обработанных в атмосфере кислорода, и для состаренного образца увеличение критической плотности тока имеет место вплоть до значений поля необратимости ($\sim 32\,\mathrm{T}$). При этом в малых и средних полях состаренный образец в поле, приложенном параллельно с, имеет меньшую критическую плотность тока по сравнению с образцом, отожженным в атмосфере кислорода, а в случае поля, приложенного перпендикулярно с, наоборот. После аналогичной обработки в атмосфере аргона j_c ниже значений, характерных для исходного состояния во всем интервале полей. Повидимому, все эти особенности обусловлены различиями в степени распада и влияния паров воды, связанными с условиями обработки (старения). Из рис. 4 также

Рис. 3. Зависимости намагниченности от внешнего поля. 1 исходное состояние, 2 — после старения, 3 — обработка при температуре 200° в атмосфере кислорода в течение $18\,h$. a — поле параллельно ${f c}, b$ — поле перпендикулярно ${f c}.$

Рис. 4. Зависимости критической плотности тока от внешнего поля для исходного образца (I), состаренного (2), обработанного при температуре 200° в атмосфере кислорода в течение $18\,\mathrm{h}\ (3)$ и обработанного при температуре $200^{\circ}\mathrm{C}$ в атмосфере аргона в течение $13\,\mathrm{h}\ (4)$; $a-\mathrm{B}\ \mathrm{none}\ \|\ \mathbf{c},\ b-\mathrm{B}\ \mathrm{none}\ \bot\ \mathbf{c}$.

видно, что полученные значения полей необратимости независимо от условий обработки остаются практически постоянными и хорошо согласуются с литературными данными [4,24,25].


На рис. 5 представлены зависимости силы пиннинга (F_p) от величины магнитной индукции. Расчет силы пиннинга проводился с помощью уравнения [26]


$$F_p(B) = j_c(B)B$$
.

Из рис. 5, a видно, что как для состаренного, так и для термически обработанного в атмосфере кислорода образца сила пиннинга при $B>2\,\mathrm{T}$ заметно превышает значения, характерные для исходного состояния. Однако максимальная сила пиннинга для состаренного образца приходится на область средних полей ($B=2-4\,\mathrm{T}$), а для отожженного в атмосфере кислорода усиление пиннинга имеет место в более высоких полях ($B>3\,\mathrm{T}$). При этом в поле, приложенном параллельно \mathbf{c} , для обоих образцов наблюдается смещение максимума силы пиннинга в сторону более высоких значений магнитной индукции

(показано стрелками). Смещение максимума свидетельствует о наличии в материале нанообластей с подавленной сверхпроводимостью в повышенных полях [25,27], которые и проявляют себя в качестве эффективных центров пиннинга. Значения F_p в поле, приложенном параллельно ${\bf c}$, после обработки при температуре $200^{\circ}{\rm C}$ в атмосфере кислорода заметно выше, чем для исходного и состаренного образцов в полях $> 4{\rm T}$. Если же внешнее поле направлено перпендикулярно ${\bf c}$, то уже во всех полях как термически обработанные в атмосфере кислорода, так и состаренные образцы имеют существенно бо́льшую силу пиннинга по сравнению с исходным состоянием (рис. 5,b). В случае термообработки в атмосфере аргона сила пиннинга в малых и средних полях заметно меньше, чем у исходного образца.

Из полученных результатов следует, что возникающие в ходе распада $YBa_2Cu_3O_{6.9}$ несверхпроводящие частицы, а также дефекты упаковки являются более

Рис. 5. Зависимости силы пиннинга от внешнего поля для различных образцов: исходного (1), состаренного (2), обработанного атмосфере кислорода при температуре 200° в течение $18\ h\ (3)$, обработанного в атмосфере аргона при температуре 200° в течение $13\ h\ (4)$. a — поле параллельно ${\bf c}$, b — поле перпендикулярно ${\bf c}$.

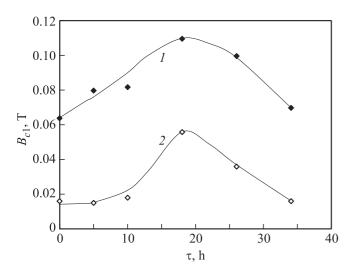


Рис. 6. Зависимости первого критического поля от времени отжига при температуре 200° в атмосфере кислорода. 1 поле параллельно \mathbf{c} , 2 — поле перпендикулярно \mathbf{c} .

эффективными центрами пиннинга в том случае, когда направление тока перпендикулярно плоскостям Cu-O. Вследствие этого возникает значительная анизотропия пиннинга, связанная с плоским характером образующихся структурных дефектов и с их ориентацией вдоль плоскостей Cu-O. Увеличение силы пиннинга, когда внешнее поле направлено перпендикулярно с, свидетельствует о том, что имеет место коррелированный пиннинг, который обычно связывают с образованием множества параллельных плоских дефектов [25,27].

Кроме того, результаты показывают, что присутствие в обрацах нескольких типов центров пиннинга различной приороды (частицы фазы 211, включения СеО, планарные дефекты) приводит к синергическому эффекту, который улучшает токонесущую способность материала за счет комбинации вкладов в силу пиннинга от каждого из них [4].

Состаренный образец имеет пониженную анизотропию критической плотности тока в нулевом поле по сравнению с исходным состоянием за счет того, что в процессе вылеживания критическая плотность тока в поле, параллельном с, увеличивается значительно меньше, чем в случае поля, приложенного перпендикулярно с. Противоположным образом ведут себя образцы, обработанные при температуре 200°С. Однако при $B \ge 1 \, {\rm T}$ их критическая плотность тока в поле, приложенном перпендикулярно с, возрастает сильнее, чем в поле, параллельном с, что приводит к значительному снижению анизотропии j_c в высоких полях.

Таким образом, в образцах, претерпевших естественное старение или обработку при температуре 200°C в атмосфере кислорода, анизотропия критической плотности тока уменьшается за счет образования дефектов структуры, являющихся центрами пиннинга, в основном в направлении внешнего поля, приложенного перпендикулярно с. Уменьшение анизотропии критической плотности тока является положительным эффектом, так как при практическом применении ВТСП-материал должен обладать одинаково высокой токонесущей способностью при любых ориентациях магнитного поля.

На рис. 6 приведены зависимости первого критического поля от продолжительности термообработки. Зависимости $B_{c1} = f(\tau)$ для образцов, обработанных в атмосфере кислорода, имеют максимум при $\tau = 18\,\mathrm{h}.$ По-видимому, увеличение первого поля является следствием обогащения в процессе распада матричной фазы кислородом, так же как это имеет место для j_c в слабых полях. Дальнейшее снижение значений первого поля может быть связано с развитием напряжений вокруг выделившихся в ходе распада частиц.

Заключение

В настоящей работе показано, что повышение критической плотности тока и значений первого критического поля после обработки при температуре 200°C связано с выделением малых несверхпроводящих при $T = 77 \, \mathrm{K}$ частиц, которые осуществляют пиннинг магнитных вихрей. Кроме того, эффективными центрами пиннинга, особенно в высоких полях, являются образующиеся при взаимодействии с водой дефекты упаковки. Образование при низкотемпературном отжиге дефектов структуры практически не влияет на значения полей необратимости. В зависимости от условий обработки (температура, время, атмосфера) возникают разные структурные состояния, которые в большей или меньшей мере способствуют пиннингу магнитных вихрей. Поэтому требуются дальнейшие исследования с целью оптимизации условий термообработки.

В сочетании с другими центрами пиннинга (частицы фазы 211, включения СеО2, частичное замещение $Y \to Ce)$ низкотемпературный отжиг приводит к синергическому эффекту и существенно улучшает токонесущую способность материалов на основе соединения 123. Кроме того, имеет место уменьшение анизотропии электрофизических свойств. Оптимальное сочетание планарных и столбчатых дефектов с микровключениями посторонних фаз может являться необходимым условием, которое позволит получить практически изотропный текстурированный ВТСП-материал, обладающий высокими критическими характеристиками.

Список литературы

- [1] P.J. Kung, M.E. Mcttenry, M.P. Malley, P.H. Kes, D.E. Laughlin, W.W. Mullins. Physica C 249, 53 (1995).
- M.R. Koblischka, M. Murakami. Supercond. Sci. Technol. 13, 738 (2000).
- Yu.D. Tretyakov, E.A. Goodilin. Physica B 321, 249 (2002).
- B. Maiorov, S.A. Baily, H. Zhou, O. Ugurli, J.A. Kennison, P.C. Dowden, T.G. Holesinger, S.R. Foltyn, L. Civale. Nature Mater. 8, 398 (2009).

- [5] H.K. Kupfer, R. Kresse, R. Meier-Hirmer, W. Jahn, T. Wolf, A.A. Zhukov, T. Matsushita, K. Kimura, K. Salama. Phys. Rev. B 52, 7698 (1995).
- [6] M. Daeumling, J.M. Seuntjens, D.C. Labalestier. Nature 346, 332 (1990).
- [7] A.G. Khachaturyan, J.W. Morris. Phys. Rev. Lett. **59**, 2776 (1987).
- [8] S. Semenovskaj, A.G. Khachaturyan. Phys. Rev. B 46, 6511 (1992).
- [9] С.В. Сударева, Е.И. Кузнецова, Т.П. Криницина, И.Б. Бобылев, В.Н. Морычева, Л.В. Жердева, Е.П. Романов. ФММ 75, 125 (1993).
- [10] S.V. Sudareva, E.I. Kuznetsova, T.P. Krinitsina, I.B. Bobylev, E.P. Romanov. Physica C 331, 263 (2000).
- [11] Е.И.Кузнецова, Ю.В. Блинова, С.В. Сударева, Т.П. Криницина, И.Б. Бобылев, Е.П. Романов. ФММ 102, 229 (2006).
- [12] Z. Rupeng, M.J. Goringe, S. Myhra, P.S.Turner. Phil. Mag. A 66, 491 (1992).
- [13] С.В. Сударева, Е.П. Романов, Т.П. Криницина, Е.И. Кузнецова, Ю.В. Блинова, И.Б. Бобылев, Н.А. Зюзева, А.М. Бурханов. ФММ 106, 378 (2008).
- [14] И.Б. Бобылев, Н.А. Зюзева, А.О. Ташлыков, А.И. Пономарев, Е.П. Романов. ФММ 103, 599 (2007).
- [15] И.Б. Бобылев, Н.А. Зюзева. ФММ 112, 134 (2011).
- [16] Ю.Д. Третьяков, Е.А. Гудилин. Успехи химии 69, 3 (2000).
- [17] M. Murakami, N. Sakai, T. Higuchi, S.I. Yoo. Supercond. Sci. Technol. 9, 1015 (1996).
- [18] S. Nariki, S.J. Seo, N. Sakai, M. Murakami. Supercond. Sci. Technol. 13, 778 (2000).
- [19] М.И. Петров, Д.А. Балоев, Ю.С. Гохфельд, А.А. Дубровский, К.А. Шайхутдинов. ФТТ 49, 1953 (2007).
- [20] S. Mazinel, I. Monot, J. Provost, G. Desgardin. Supercond. Sci. Technol. 11, 563 (1998).
- [21] C.P. Bean. Rev. Mod. Phys. 36, 2489 (1964).
- [22] В.Б. Выходец, Т.Е. Куренных, К.В. Трифонов А.Я. Фишман, А.А. Фотиев. ЖЭТФ 106, 648 (1994).
- [23] И.Б. Бобылев, Е.И. Кузнецова, Н.А. Зюзева, Т.П. Криницина, С.В. Сударева, Е.П. Романов. ФММ 110, 396 (2010).
- [24] Yu. Skourski, G. Fuchs, P. Kerschl, N. Kozlova, D. Eckert, K. Nenkov, K-H. Muller. Physica B 346–347, 325 (2004).
- [25] M. Muralidhar, M. Murakami. Phys. Rev. B 62, 13 911 (2000).
- [26] T. Mochida, N. Chikumoto, M. Murakami. Phys. Rev. B 62, 1352 (2000).
- [27] S.R. Foltyn, L. Civale, J.L. Mac Manus-Driscoll, Q.X. Jia, B.Maiorov, H. Wang, M. Maley. Nature Mater. 6, 631 (2007).