19

Высокотемпературная теплоемкость Ві₂СиО₄

© В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, С.Д. Кирик, Л.Г. Чумилина

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 1 февраля 2012 г.)

Получены данные по теплоемкости Bi₂CuO₄ в широком диапазоне температур. По экспериментальным данным рассчитаны термодинамические функции твердого оксидного соединения.

1. Введение

В течение длительного времени не ослабевает интерес исследователей к купрату висмута. Это соединение Bi₂CuO₄ рассматривается как исходное при синтезе высокотемпературных сверхпроводников типа $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$ из бинарных и тройных оксидов, а также как антиферромагнетик (ниже 50 K) [1-6]. Есть мнение, что приводимые в литературе данные как по физико-химическим свойствам, так и по количеству фазовых переходов Ві₂СиО₄ плохо согласуются между собой [1]. Такое различие экспериментальных данных было объяснено разной чистотой исходных оксидов и различными режимами синтеза, вследствие чего конечный продукт мог содержать какое-то количество примесей или непрореагировавших фаз. Сложность получения Ві₂СиО₄ связана с особенностями диаграммы состояния системы Bi₂O₃-CuO [2,7]. Соединение Bi₂CuO₄ плавится инконгруэнтно и может быть получено либо твердофазным синтезом, либо из раствора-расплава. При этом нужно учитывать, что диаграмма состояния данной системы зависит от парциального давления кислорода; T_m на воздухе равна 1118 К, а в атмосфере чистого кислорода — 1130 К [2]. Термодинамические свойства Ві₂СиО₄ исследованы в работах [2,5]. В первой работе проведена термодинамическая оценка системы Ві-Си-О, а во второй — измерены теплоемкость и энтальпия с помощью калориметра Кальве (300-570 К) и дроп-калориметрии (670-970 К) соответственно. На основании полученных значений энтальпии рассчитывалась теплоемкость при высоких температурах. Используя литературные данные по C_p при низких температурах и свои данные, авторы [5] аппроксимировали зависимость $C_p = f(T)$ следующим уравнением (J/mol · K):

$$C_p = 185.249 + 1.453 \cdot 10^{-3} T$$

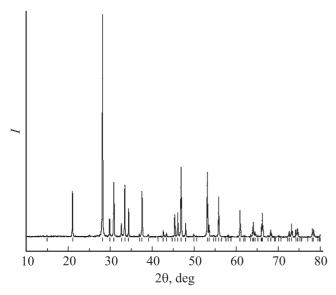
- $4.730 \cdot 10^6 T^{-2} + 4.620 \cdot 10^8 T^{-3}$. (1)

На полученной зависимости C_p от температуры нет различного рода экстремумов. С одной стороны, это несколько неожиданный результат, так как авторы работы [1] установили, что до температуры плавления ${\rm Bi}_2{\rm CuO}_4$ претерпевает два фазовых перехода при температурах 763 и 873 К. Замечено, что структурные

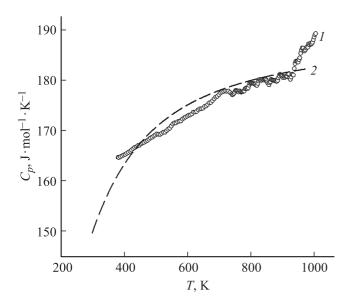
изменения при этих фазовых переходах незначительны и предположительно протекают в кислородной подрешетке соединения. С другой стороны, имеются факты, свидетельствующие о том, что при дроп-калориметрии подобные структурные изменения могут быть не зафиксированы. Так, например, для мультиферроика $\operatorname{BiFeO_3}$ на зависимости $C_p = f(T)$ в области температуры магнитного упорядочения (T_N) отмечен [8] четкий максимум, которого при использовании дроп-калориметрии в [9] не обнаружено. В связи с отмеченным выше возникла необходимость прямого измерения высокотемпературной теплоемкости $\operatorname{Bi}_2\mathrm{CuO_4}$, особенно в области температур, где обнаружены фазовые превращения.

Целью настоящей работы является исследование высокотемпературной теплоемкости Bi_2CuO_4 в интервале температур $380-1000\,K$.

2. Эксперимент


Соединение Ві₂СиО₄ синтезировалось по керамической технологии из Bi₂O₃ и CuO (осч). После перемешивания исходных оксидов в агатовой ступке прессовались цилиндрические образцы, которые затем отжигались при температуре 1073 K в течение 30 h с шестью промежуточными перемолами с последующим прессованием. Запись рентгенограмм проводилась на дифрактометре X'Pert Pro (PANalytical, Нидерланды) с использованием излучения $CuK\alpha_{1,2}$. Регистрация выполнялась высокоскоростным детектором PIXcel с графитовым монохроматором в интервале углов $2\theta = 5-80^{\circ}$ с шагом 0.026° и накоплением в точке в течение 35 s. Идентификация проведена по картотеке дифракционных стандартов PDF-ICDD (Powder diffraction file, sets 1-58. JCPDS-ICDD, Pennsylvania, USA). Отметим, что на дифрактограммах присутствовали только рефлексы, отвечающие соединению Bi₂CuO₄ (рис. 1).

Параметры решетки уточнены методом подгонки профиля без ссылки на структуру (метод Ле Бейла) и составляют $a=0.84999\,\mathrm{nm},$ $c=0.58174\,\mathrm{nm},$ пр. гр. P4/ncc. По данным разных авторов эти параметры равны (в nm): a=0.851, c=0.582 и a=0.8510, c=0.5814 [1]; a=0.8499, c=0.5816 [5]; a=0.84996, c=0.58172 [3]. Это позволяет сделать заключение о хорошем согласии наших результатов с литературными данными.


Теплоемкость C_p измерялась в платиновых тиглях методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter (NETZSCH). Методика измерений описана нами в [10,11].

3. Результаты и их обсуждение

На рис. 2 показано влияние температуры на теплоемкость $\mathrm{Bi_2CuO_4}$. Видно, что в исследованном интервале температур происходит увеличение C_p . Кроме того, при температуре 673 К наблюдается отклонение C_p от общего монотонного роста, т.е., как и по данным [1], в этой области температур действительно происходит изменение структуры $\mathrm{Bi_2CuO_4}$.

Рис. 1. Дифрактограмма Bi₂CuO₄ при комнатной температуре.

Рис. 2. Влияние температуры на теплоемкость Bi_2CuO_4 . 1 — наши данные, 2 — данные [5].

Сглаженные величины теплоемкости (C_p) и рассчитанные по ним значения энтальпии $(H^0_T-H^0_{298})$ и энтропии $(S^0_T-S^0_{298})$ для ${\rm Bi}_2{\rm CuO}_4$

<i>T</i> , K	C_p , J/(mol·K)	$H_T^0 - H_{298}^0$, J/mol	$S_T^0 - S_{298}^0$, J/(mol·K)
298	160.37	_	_
300	160.49	338.09	1.0731
350	163.13	8797.6	26.02
400	165.37	17286	47.95
450	167.38	25820	67.58
500	169.25	34407	85.28
550	171.02	43055	101.50
600	172.73	51765	116.45
650	174.39	60542	130.34
700	176.02	69387	143.33
750	177.63	78302	155.53
800	179.22	87288	167.94
850	180.79	96345	177.95
900	182.35	105474	188.33
950	183.91	114675	198.23

Определить наличие обсуждаемого в [1] фазового превращения в области 873 K по нашим данным не представляется возможным из-за значительного разброса экспериментальных точек в этой области (рис. 2). Можно лишь заметить, что значения C_p достаточно сильно увеличиваются при $T=930~\rm K$. Кроме того, согласно [1], фазовые превращения в $\rm Bi_2CuO_4$ протекают без существенных тепловых эффектов. Это подтверждено также результатами высокотемпературного рентгенофазового анализа, которые показывают, что структурные изменения в этом соединении незначительны и не приводят к резкому изменению структуры. Все это накладывает свои особенности на ход $C_p=f(T)$.

Сравнение абсолютных значений C_p , полученных нами и [5], представлено на рис. 2. Из этих результатов следует, что наблюдается их удовлетворительное согласие. По нашим данным температурную зависимость можно представить в виде следующего уравнения (J/mol · K):

$$C_p = 155.74 + 30.1 \cdot 10^{-3} T - 3.85 \cdot 10^5 T^{-2}.$$
 (2)

Используя уравнение (2), по известным термодинамическим соотношениям мы определили $H_T^0-H_{298}^0$ и $S_T^0-S_{298}^0$. Эти данные приведены в таблице.

Из таблицы следует, что при температурах выше 650 К теплоемкость C_p превышает классический предел Дюлонга–Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице $\mathrm{Bi}_2\mathrm{CuO}_4$ (s=7).

4. Заключение

Исследована температурная зависимость теплоемкости соединения Bi_2CuO_4 (380—1000 K). Установлено, что при 673 K происходит изменение структуры этого соединения.

Список литературы

- [1] А.И. Клындюк, Г.С. Петров, Л.А. Башкиров, А.И. Акимов, А.Ф. Полуян. ЖНХ **44**, *1*, 5 (1999).
- [2] B. Hallstedt, D. Risold, L.J. Gauckler. J. Am. Ceram. Soc. 79, 2, 353 (1996).
- [3] X.L. Chen, J.K. Liang, Y. Liu, Y.C. Lan, Y.L. Zhang, Y. Ma, G.C. Che, G.D. Liu, X.Y. Xing, X.Y. Qiao. J. Appl. Phys. 85, 6, 3155 (1999).
- [4] D. Sreenivasu, V. Chandramouli. Bull. Mater. Sci. 23, 4, 281 (2000).
- [5] A. Strejc, D. Sedmidubsky, K. Ruzicka, J. Leitner. Thermochem. Acta. 402, 69 (2003).
- [6] O. Janson, H. Rosner. Physica C 460-462, 458 (2007).
- [7] Ю.Ф. Каргин, В.И. Бурков, А.А. Марьин, А.В. Егорышева. Кристаллы $\mathrm{Bi}_{12}M_x\mathrm{O}_{20+\delta}$ со структурой силленита. Синтез, строение, свойства. ИОНХ, М. (2004). 316 с.
- [8] А.А. Амиров, А.Б. Батдалов, С.Н. Каллаев, З.М. Омаров, И.Ф. Вербенко, О.Н. Разумовская, Л.Ф. Резниченко, Л.А. Шилкина. ФТТ 51, 6, 1123 (2009).
- [9] S. Phapale, R. Mishra, D. Das. J. Nucl. Mater. 373, 137 (2008).
- [10] В.М. Денисов. Л.А. Иртюго, Л.Т. Денисова. ФТТ **53**, *4*, 642 (2011).
- [11] Л.Т. Денисова, Л.А. Иртюго, В.М. Денисов, В.С. Биронт. Журн. СФУ. Техника и технологии **3**, *2*, 214 (2010).