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A new nonlinear expression of Fermi-level variation with two-dimensional electron gas density in a high electron

mobility has been proposed. It was found that our expression has a better fit with the numerical results. And,

an analytical expression for ns in terms of the applied gate voltage is developed. Comparing with other previous

approximations, the solutions of our expression has a better agreement with the exact numerical results over the

entire range of interest. Besides, the solutions of our expression of ns versus VG are compared with the experimental

data and shown to be in good agreement over a wide range of bias conditions.

1. Introduction

The basic structure for a high electron mobility transistor

(HEMT) consists of two layers in which the material with

the wider bandgap energy (in this case AlGAN) is doped

and that with the narrow bandgap energy (in this case GaN)
is undoped. Owing to the difference in the electron affinity

of the two layers, the electrons of the ionized donors will

transfer into the GaN to form a conducting layer. The

potential well formed at the interface is usually narrow

enough to have well defined quantized energy levels in

the direction perpendicular to the heterointerface, and in

many cases the electronic system can be treated as a

two-dimensional electron gas (2DEG). The confinement of

carriers in the 2DEG of the unintentionally doped GaN, and

the spatial isolation from their parent impurity atoms on the

AlGaN side reduce their scattering, increasing their mobility

and enhance other characters of the device [1]. AlGaN/GaN
high electron mobility transistors have shown great potential

for high-voltage and high-power operation at microwave

frequencies, due to their properties of high electron mobility,

saturation velocity, thermal stability and breakdown electric

fields [2]. These enhanced characteristics have prompted

the development of some approximated models in recent

decades.

In 1982, Delagebeaudeuf first suggested that if we want

to model the electron gas charge density at the interface, the

simultaneous solution of the electrostatics equation in the

wide band-gap semiconductor and the Schrodinger equation

for the quantum well at the interface are needed. Through a

triangular well approximation, and assuming two subbands

in the GaAs, it can be show that the carrier density ns

is given by [3]

ns =DkT ln

{[

1+ exp

(

EF−E0

kT

)][

1+ exp

(

EF−E1

kT

)]}

,

(1)

where D = 3.24 · 1013 cm−2V−1 is the interface density

of states, T is the temperature, EF is the Fermi level,

E0 = γ0n2/3
s and E1 = γ1n2/3

s are the positions of the first
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two allowed energy levels in the triangular well with

γ0 = 2.5 · 10−12 and γ1 = 3.2 · 10−12. An important limi-

ting feature of this model was that the accuracy of the model

is not so good because of Fermi-level variation with electron

density in the quantum well was neglected in order to get an

analytical style. From then on, a serious of approximations

for Fermi level EF with sheet carrier density ns were made

and a number of expressions were proposed, and these

expressions were halpful in the development of an improved

analytical model for the HEMT. What’s more, in the present

papers, we can also find that the charge control model is also

playing a very important role in the research of HEMTs.

So, we will pay more attention to the research of charge

control model.

In this paper, we have proposed a new expression of ns

versus EF, valid for work at different temperatures, which

is show to be more accurate than others that proposed

before from subthreshold to high conduction. And we get

a analytical charge control model for AlGaN/GaN HEMT

based on our new expression on ns versus EF. For an

AlGaN/GaN system, the solutions of our expression on ns

versus VG are compared with that experimental data and

shown to be in good agreement over a wide range of

bias conditions. In the heterojunction quantum well of

AlGaN/GaN, for equation (1), D = 4πm∗/h2, m∗ is the

electron effective mass (m∗ = 0.22m0), γ0 = 2.123 · 10−12,

γ1 = 3.734 · 10−12 [4].

2. Our model for Fermi level versus
2DEG density

In this section, a new nonlinear expression of Fermi

level variation with two-dimensional electron gas (2DEG)
density in a high electron mobility is proposed and based

this expression, an analytical expression for ns versus VG

is developed. Many figures will be shown to illustrate the

superiority of our models.

In the area of device modeling, various linear analytical

models as well as nonlinear expressions of Fermi level

versus 2DEG have been proposed since the early 1980’s.

In 1982, Drummond et al.[5] proposed a liner approximation
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for the EF versus ns relation. In 1988, Kola [6] putted

forward a nonlinear approximation and the expression can

be written as

EF = K1 + K2(ns + K3)
1/2. (2)

At 300K, K1 = −0.20829, K2 = 0.3029 · 10−8, and

K3 = 0.9666 · 1015. In 1988, Shey [7] and Ku [8] made

another approximation and gave the nonlinear expression as

EF = EF0 + γn2/3
s , (3)

where EF0 = −0.062 eV and γ = 0.385 · 10−11 eV ·m4/3.

This approximation is appropriate as long as the device is

not operated in the deep subthreshold region, where the

quantization effect is not important because the potential

well broadens notably and the subbands are closely spaced.

Particularly, in 1993, DasGupta [9] propese a good

nonlinear approximation and the expression can be given

by:

EF = k1 + k2n1/2
s + k3ns . (4)

For this expression, the values of k1, k2, and k3, given

by [9], is not appropriate for a wider range of values of ns ,

so, we try to find the best interpolation points and finally

choose ns = 0.05 · 1012, 2.5 · 1012 as well as 10 · 1012 cm−2

to calculate the values again and get the better results:

k1 = −0.108, k2 = 0.1488, k3 = 0.04 at 300K.

k1 = −0.0168, k2 = 0.08, k3 = 0.0532 at 77K.

In 2002, Rashmi [10] deduced some approximate expres-

sion from (1) appropriating for different region respectively.

Obviously, it is not convenient for apply. Although the

approximation has improved a lot, but all of above analytical

expressions for EF versus ns have been proposed so far have

disadvantages more or less, such as can not appropriate for

a large range of values of ns , the results is not accurate

enough for modeling and so on.

In our model, a new approximation for EF versus ns has

been formulated and it can be expressed by the polynomial:

EF = k1 + (k2ns + k3n
2
s )

1/2, (5)

where k1, k2 and k3 are undetermined parameters. It is

evident that EF has to be computed for three different values

on ns to get the values of k1, k2 and k3. Through solving

eq. (1), we can have:

EF = kT ln

{

(A + B)

2

[(

1 +
4AB(C − 1)

(A + B)2

)1/2

− 1

]}

,

(6)
where

A = exp(E0/kT ),

B = exp(E1/kT ),

C = exp(ns/DkT ).

In our formulation, EF was calculated for ns = 0.05 · 1012,
1 · 1012 and 10 · 1012 cm−1, these particular values of ns

were chosen in order to cover the operation of the device

from subthreshold to high conduction. Here, we must notice

that the interpolation point of our model can be chosen

more freely but Gupta’s is limited to some certain points for

getting a better result. For these values of ns , we can get

corresponding values of EF from eq. (6).
After rearranging equation (5), we can get that:

(EF1 − k1)
2 = k2n1 + k3n

2
1, (7)

(EF2 − k1)
2 = k2n2 + k3n

2
2, (8)

(EF3 − k1)
2 = k2n3 + k3n

2
3. (9)

Then, to solve the simultaneous solutions (7)–(9), we can

get that:

W0k2
1 − 2W1k1 + W2 = 0. (10)

Eq. (10) is a standard quadratic equation, and solving this

equation we can have:

k1 = W−1
0

(

W1 +
√

W 2
1 −W0W2

)

, (11)

where

W0 = n2n3(n2 − n3) + n3n1(n3 − n1) + n1n2(n1 − n2),

W1 =n2n3(n2−n3)EF1 +n3n1(n3−n1)EF2 +n1n2(n1−n2)EF3 ,

W2 =n2n3(n2−n3)E
2
F1

+n3n1(n3−n1)E
2
F2

+n1n2(n1−n2)E
2
F3
.

(12)

Then, substituting the values of EF and ns respectively in

eq. (12), we can get the value of k1, later, substituting the

value of k1 into eqs (7) and (8), we can get the values of k2

and k3. In this way, we can get the analytical solutions of

the undetermined parameters. The values of k1, k2 and k3

at different temperatures are given by:

k1 = −0.128, k2 = 0.06189, k3 = 0.00184 at 300K;

k1 = −0.0338, k2 = 0.028, k3 = 0.00363 at 77K.

Finally, we can use eqs (2), (3), (4), (5) to figure the

curves ns versus EF of all the models have been introduced

above.

3. Analysis of charge control

To obtain an exact charge control formulation of the

2DEG channel in HEMT structures, Poisson’s equation and

Schrodinger’s equation would need to be self-consistently

solved. Unfortunately, the physical calculations are too

involved for use in analytic device modeling. However, an

approximation approach based on the linear charge control

can be applied [11].
To take into account of a metal–(Si-doped)AlGaN–(undo-

ped AlGaN)—(undoped CaN) structure, a two-dimensional

electron gas is formed at the interface due to the difference

in the electron affinity of these layers. The amount of charge

transfer across the interface is gotten by equating the charge
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depleted from the AlGaN to the charge accumulated in the

potential well. The charge depleted from the AlGaN is given

by [3]:

ns 0 =

√

2εNd

q
(1Ec − EF2 − EFi ) + N2

dd2
i − Nddi . (13)

If the AlGaN layer is thin enough or a sufficiently large

negative gate voltage is applied, the gate depletion and

junction depletion regions will overlap, in which case (13)
must be replaced by

ns =
ε

qd
(VG −Voff − EF), (14)

where ε is the permittivity, d is the total thickness of the

AlGaN layer and Voff is the threshold voltage of the HEMT,

given by:

Voff = φb − 1Ec −
qNDd2

d

2ε
−

d
ε
σ, (15)

in which φb is the barrier of the Schottky gate, 1Ec is the

conduction band discontinuity at the heterojunction, ND is

the doping concentration, dd is the thickness of the doped

AlGaN layer and σ is the polarization sheet charge density

of heterojunction AlGaN/GaN. In our structures, we use

a Ni Schottky barrier contact at the surface; φb and 1Ec

are considered as the functions of Al concentration and we

used the following formulations for the physical properties

of AlxGa1−xN in our calculations:

Ni Schottky barrier[12]:

φb = 1.3x + 0.84; (16)

band discontinuity [13,14]:

1Ec = 0.7
[

Eg(x) − Eg(0)
]

, (17)

where the band gap of AlxGa1−xN is measured to be [15]

Eg(x) = xEg(AlN) + (1− x)Eg(GaN) − x(1− x)1.0 eV,
(18)

= x6.13 eV + (1− x)3.42 eV− x(1 − x)1.0 eV.
(19)

With the variation of the Al concentration, the amount

of sheet charge density for the undoped AlxGa1−xN/GaN

is calculated by the following set of linear interpolations

between the physical parameters of GaN, and AlN [16]:

σ (x) = |PPE(AlGaN) + PSP(AlGaN) − PSP(GaN)|, (20)

σ (x) =

∣

∣

∣

∣

2
a(0) − a(x)

a(x)

[

e31(x) − e33(x)
c31(x)

c33(x)

]

× PSP(x) − PSP(0)

∣

∣

∣

∣

, (21)

where the lattice constant

a(x) = (−0.077x + 3.189)10−10 m, (22)

the elastic constants

c13(x) = (5x + 103),

c33(x) = (−32x + 405), (23)

the piezoelectric constants

e31(x) = (−0.11x − 0.49)C/m2,

e33(x) = (0.73x + 0.73)C/m2, (24)

the spontaneous polarization

PSP(x) = (−0.124x − 0.034)C/m2
. (25)

Thus, using equations (22)–(25), we can get the values of

equation (21). And, substituting equations (16)–(21) into

equation (15), we can calculate the values of the threshold

voltage (Voff) with the variation of Al concentration. Then,

substituting our expression equation (5) into equation (14),
we can have:

qd
ε

ns + Voff + k1 −VG = −(k2ns + k3n
2
s )

1/2. (26)

Taking square for equation (26) on both sides, we can get:

[(

qd
ε

)2

−k3

]

n2
s +

(

2Voff

qd
ε

+ 2k1

qd
ε

− 2VG

qd
ε

− k2

)

ns

+ 2k1Voff − 2VoffVG + V 2
off + k2

1 − 2k1VG + V 2
G = 0. (27)

Supposing

A =

(

qd
ε

)2

− k3, (28)

B = 2Voff

qd
ε

+ 2k1

qd
ε

− k2, (29)

C = 2k1Voff + V 2
off + k2

1. (30)

Equation (27) can be rewritten by:

An2
s +

(

B − 2
qd
ε

VG

)

ns + C − 2VoffVG − 2k1VG + V 2
G = 0.

(31)

Equation (31) is a standard quadratic equation, and solving

this equation we can have:

ns =

2 qd
ε

VG−B−
[(

B−2 qd
ε

VG

)2
−4A(C−2VoffVG−2k1VG+V 2

G)
]1/2

2A
.

(32)

If we consider VG−Voff as a unity, we can get the

variation of ns with VG−Voff obtained from eq. (26), and

the formulation can be written as:

ns =
2 qd

ε
V −N−

[(

N−2 qd
ε

V
)2

+4M(2k1V −V 2−k2
1)

]1/2

2M
,

(33)
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where

M =

(

qd
ε

)2

− k3,

N = 2k1

qd
ε

− k2,

V = VG −Voff.

In section 2, we find Gupta’s model for 2DEG versus

Fermi level is the best except our model, so we will

make a comparison between our charge control model and

Gupta’s [9]. Both of them are based the expression of Fermi

level versus 2DEG themselves. And, the discussion will be

made in next section.

We must notice that in this section the values of γ0,

γ1 and D in eq. (1) have changed when we consider the

AlGaN/GaN system. So we make interpolation for eqs (4)
and (5) again to calculate the values of coefficients.

Eq. (32) provides an analytical expression for the varia-

tion of the sheet carrier concentration in the 2DEG as

a function of the applied gate voltage. To verify our

model, the 2DEG, with the variation of the applied voltage,

has been computed using the physical data from Lee’s

paper [17] (with dd = 320 · 10−10 m, d = 350 · 10−10m,

25%Al). The comparison of the computed 2DEG with the

experimental data will also be discussed in next section.

4. Results and discussion

Fig. 1, a and b show the variation of ns with EF obtained

from all the approximations proposed previously (2)–(5)
and compare the results with the exact curve of equation (6)
at 300K. We can find that Kola’s approximation (2)
is the best compared with linear approximation and as

well as Shey’s (3) in Fig. 1, a and the error figure also

gave this result. The variation of ns with EF of our

expression is demonstrated by Fig. 1, b, where the curves

of approximations of Gupta (4) and Shey (3) are compared

with the exact curve of equation (6) at 300K. It can be

observed that the curve of our expression has the best

agreement with the exact curve, from subthreshold region

to high conduct region. This result also can be cretificated

by the error figure. So, considering Fig. 1, a and b

simultaneously, we can find that our formulation get the

optimal agreement over a wider range of device operation

compared with the others at 300K. Fig. 2 compares the

curve obtained from our expression with the exact curve of

equation (6) and also the curves of the linear approximation

and Gupta’s approximation (4) at 77K. We must note that

Kola [6] and Shey [7] have not proposed any approximations

valid at 77K. Fig. 2 also certificates that our expression

incorporates the exact relationship for ns versus EF more

accurately and get the optimal agreement over a wider range

of values of ns at 77K. We can find from the error figure

that our expression makes a very good approximation and

the corresponding error curve almost keep pace with the
”
0“

normal line over all the range. Figs 1 and 2 illustrate that

Fig. 1. Variation of the Fermi pootential (EF) with sheet carrier

concentration (ns ) at 300K.

Fig. 2. Variation of the Fermi potential (EF) with sheet carrier

concentration (ns ) at 77K: solid line (exact), dashed line (our
model), dotted line [9], chain-dotted line (linear).
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Fig. 3. Variation of sheet carrier concentration (ns ) with applied

gate voltage (VG−Voff) at 300K: solid line (exact), dashed line (our
model), chain-dotted line Gupta [9].

Fig. 4. Measured and simulated sheet carrier density versus the

gate bias. The barrier thickness d = 35 nm and the threshold

voltage Voff = −6.78V.

the representing of our expression of Fermi level versus

2DEG for exact EF versus ns charecteristics is the best

compared with other approximate functions in all regions

of operation of interest at different temperatures. Especially,

our expression is more accurate than other approximations

in the subthreshold region.

Fig. 3 compares our charge control model (33) with

Gupta’s by substituting eq. (4) into eq. (14) by which

can we get the variation of ns with (VG−Voff) of Gupta’s.

Besides, the exact numerical solution of eqs (6) and (14)
is also shown in Fig. 3. Obviously, our curve has better

agreement with the exact curve in compliance with Gupta’s,

and our curve is essentially coincident with the exact curve

over all the range considered. The good agreement of our

curve establishes that our expression (5) is a very good

approximation for EF versus ns and is very useful and

helpful for developing analytical models of HEMTs.

The calculated ns versus VG from our model (eq. (32)) is

compared with those from the exact formulation (6), (14)
and experimental data [17], as illustrated in Fig. 4. It can be

seen that, our curve almost covers the exact curve and our

results are very accurate from low voltage bias to very high

bias. The comparison of our results with experimental data

certificates the valid of our model and the useful of eq. (32)
strongly. Eq. (32) provides an analytical expression for the

variation of the sheet carrier concentration in the 2DEG

as a function of the applied gate voltage. This analytical

expression is not complicated and will be very useful for

improving the analytical models and helpful for studying of

other characteristics of HEMTs.

5. Conclusions and Summary

In section 2, a simple expression of the Fermi level

variation with the sheet carrier concentration in the two-

dimensional electron gas at the heterojunction of a HEMT

is proposed. Figs 1 and 2 show the comparison of the fitted

results of the linear approximation ([5]), some nonlinear

approximations [6,7,9] and our expression with the exact

numerical results. As the figures show, our expression (5)
has the optimal agreement with the exact EF versus ns

characteristics compared with other approximate functions

in all regions of operation of interest at different temper-

atures. Especially, our expression is more accurate than

other approximations in the subthreshold region. To further

confirm the valid of our expression, the charge control

model for AlGaN/GaN HEMT based on our new nonlinear

expression of EF versus ns is developed in section 3. And,

a comparison between our results and experimental data is

carried, just like Fig. 4 shows. Referring to the schematic

drawing of variation of sheet carrier concentration (ns ) with

applied gate voltage (VG−Voff) of Fig. 3, the curve of our

model has a very good agreement with the exact curve,

which certificated that our expression (5) is valid and the

analytical expression (32) is valid and useful.

In conclusion, a new nonlinear expression for the Fermi-

level variation with sheet carrier concentration of the

two-dimensional electron gas has been presented. The

expression gives a very good fit to the exact numerical

solution at two different temperatures and is much better

than all the conventional approximations. Particularly, our

expression makes a large improvement in the subthreshold

region. Based our expression, a analytical expression for

the variation of the sheet carrier concentration with the

applied gate voltage has been developed. It is found

that our expression is more accurate than others proposed

previously for analytical modeling of HEMTs. Besides,

further certification is made by the comparison of our

results with experimental data. Our expression of Fermi

level versus 2DEG, as well as our analytical charge control
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model, will be very helpful in modeling other characteristics

of HEMTs for theiers higher degree of accuracy.

This work was supported by the Program for Ex-

cellent Talents of Sichuan Province of China under

Grant No. 06ZQ026-010, Program for New Century

Excellent Talents in University of China under Grant

No. NCEN-05-0799, and Program for Excellent Talents of

UESTC under Grant No. 23601008.

References

[1] H. Ahn, M.E. Nokali. IEEE Trans. Electron. Dev., 41, 874

(1994).
[2] S.J. Pearton, J.C. Zolper, R.J. Shul. J. Appl. Phys., 86, 1 (1999).
[3] D. Delagebeaudeuf, N.T. Linh. IEEE Trans. Electron. Dev., 29,

955 (1982).
[4] Rashmi, A. Kranti, S. Haldar, R.S. Gupta. Solid-State Elec-

tron., 46, 621 (2002).
[5] T.J. Drummond, H. Morkoc, K. Lee, M. Shur. IEEE Electron.

Dev. Lett., EDL-3, 338 (1982).
[6] S. Kola, J.M. Golio, G.N. Maracas. Electron. Dev. Lett., 9, 136

(1988).
[7] A.J. Shey, W.H. Ku. Electron. Dev. Lett., 9, 624 (1988).
[8] A.J. Shey, W.H. Ku. IEEE Trans. Electron. Dev., 36, 2299

(1989).
[9] N. DasGupta, A. DasGupta. Solid-State Electron., 36, 201

(1993).
[10] Rashmi, A. Kranti, S. Haldar. Solid-State Electron., 46, 622

(2002).
[11] A.N. Khondker, A.F.M. Anwar, M.A. Islam. IEEE Trans.

Electron. Dev., ED-33, 1825 (1986).
[12] L.S. Yu, D.J. Qiao, Q.J. Xing, S.S. Lau, K.S. Boutros,

J.M. Redwing. Appl. Phys. Lett., 73, 238 (1998).
[13] G. Martin, S. Strite, A. Botchkaev, A. Rockett. Appl. Phys.

Lett., 65, 610 (1994).
[14] G. Martin, A. Botchkarev. Appl. Phys. Lett., 68, 2541 (1996).
[15] D. Brunner, H. Angerer, H. Angerer. Appl. Phys. Lett., 82,

5090 (1997).
[16] O. Ambacher, B. Foutz, J. Smart. J. Appl. Phys., 87, 334

(2000).
[17] J.A. Barrido, J.L. Sanchez-Rojas, A. Jumenez. Appl. Phys.

Lett., 75, 2407 (1999).

Редактор Т.А. Полянская

Физика и техника полупроводников, 2011, том 45, вып. 9


