Магнитные свойства монокристаллов твердых растворов $Fe_xMn_{1-x}In_2S_4$

© И.В. Боднарь[¶], С.В. Труханов⁺

Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск, Беларусь

⁺ Научно-практический центр Национальной академии наук Беларуси по материаловедению, 220072 Минск, Беларусь

(Получена 11 мая 2011 г. Принята к печати 16 мая 2011 г.)

В настоящей работе исследованы магнитные свойства монокристаллов твердых растворов $Fe_xMn_{1-x}In_2S_4$. Установлен преимущественно антиферромагнитный характер косвенных обменных вазимодействий между катионами Fe^{2+} и Mn^{2+} . С увеличением концентрации катионов Fe^{2+} температура магнитного упорядочения возрастает от $\sim 12\,\mathrm{K}$ (x=0) до $\sim 22\,\mathrm{K}$ (x=1). Обнаружено наличие ферромагнитных корреляций ближнего порядка. Основным магнитным фазовым состоянием исследуемых соединений является состояние спинового стекла с возрастающей температурой замерзания от $\sim 5\,\mathrm{K}$ (x=0) до $x=12\,\mathrm{K}$ (x=1). С увеличением внешнего магнитного поля температура магнитного упорядочения незначительно уменьшается. Обсуждаются наиболее вероятные причины и механизмы образования магнитного состояния исследованных твердых растворов.

1. Введение

Тройные соединения FeIn₂S₄ и MnIn₂S₄ относятся к группе магнитных полупроводников типа $MB_2^{\rm III}C_4^{\rm VI}$ $(M - Mn, Fe, Co, Ni; B^{III} - Al, Ga, In; C^{VI} - \bar{S}, Se,$ Те) [1–3]. Соединения этого класса являются перспективными материалами для создания на их основе широкополосных фотопреобразователей оптических излучений, модуляторов света и других функциональных устройств, управляемых магнитным полем [4–8]. Эти соединения привлекают к себе внимание различных групп исследователей также перспективностью их использования для целей спинтроники [9]. Хотя свойства соединений $FeIn_2S_4$ и $MnIn_2S_4$ изучены в достаточной степени, в то же время твердые растворы на основе указанных соединений практически не изучены. В работе [10] нами было показано, что в системе FeIn₂S₄-MnIn₂S₄ образуется непрерывный ряд твердых растворов. Была также определена структура твердых растворов $Fe_x Mn_{1-x} In_2 S_4$ и показано, что параметр элементарной ячейки изменяется линейно в соответствии с законом Вегарда. В настоящей работе представлены результаты исследования магнитных свойств твердых растворов $Fe_xMn_{1-x}In_2S_4$ в интервале температур 4-300 К и магнитных полей 0-140 кЭ.

2. Методика эксперимента

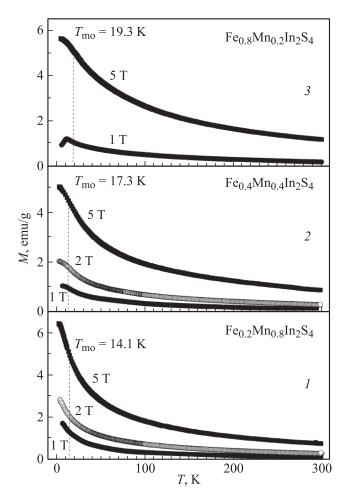
Кристаллы тройных соединений $FeIn_2S_4$, $MnIn_2S_4$ и твердые растворы на их основе $Fe_xMn_{1-x}In_2S_4$ выращивали направленной кристаллизацией расплава (горизонтальный вариант метода Бриджмена). Исходными веществами для синтеза служили элементарные компоненты полупроводниковой степени чистоты. Металлические компоненты (железо, марганец и индий) помещали

в кварцевые лодочки, которые располагали в одном конце кварцевой ампулы. В противоположном ее конце находилась сера, взятая с избытком от стехиометрии, необходимым для создания равновесного давления ее паров над расплавом. Откачанную и запаянную ампулу располагали в горизонтальной двухзонной печи таким образом, что лодочка с металлическими компонентами находилась в "горячей" зоне, где температуру в течение ~ 3 ч устанавливали на уровне $\sim 1400-1440\,\mathrm{K}$. Температуру "холодной" зоны повышали со скоростью $\sim 100 \, \text{K/y}$ до 700 К. В указанных условиях ампулу выдерживали в печи ~ 2 ч для протекания химической реакции между металлическими компонентами и парами серы. Для полноты протекания этой реакции температуру "холодной" зоны с той же скоростью повышали до 950 К и снова выдерживали 1 ч. После указанного времени выдержки проводили направленную кристаллизацию расплава путем понижения температуры "горячей" зоны со скоростью $\sim 2\,\mathrm{K/v}$ до $\sim 1000\,\mathrm{K}$ и при этой температуре осуществляли гомогенизирующий отжиг образовавшихся кристаллов в течение 260 ч. Полученные после отжига слитки были крупноблочными с максимальными размерами отдельных блоков $10-8 \times 5 \times 3$ MM.

Равновесность соединений и гомогенность твердых растворов определяли рентгеновским методом. Угловые положения линий дифракционного спектра записывали на автоматически управляемом с помощью ЭВМ рентгеновском дифрактометре ДРОН-3 М в CuK_{α} -излучении с графитовым монохроматором. Образцы для измерений готовили путем растирания кристаллов и последующей запрессовкой их в специальном держателе. Для снятия механических напряжений в образцах, возникших при растирании кристаллов, проводили их отжиг при 650 К в течение 3 ч.

Исследования удельного магнитного момента были выполнены с помощью универсальной криогенной высокополевой измерительной системы (Liquid Helium

[¶] E-mail: chemzav@bsuir.by


Free High Field Measurement System by Cryogenic Ltd, London, UK) в интервале температур 2-310 K и полей 0-140 Т [11]. Указанные измерения проводились на монокристаллических образцах, вырезанных из полученных слитков средними размерами 2 × 3 × 5 мм. Были выполнены измерения в зависимости от температуры в разных полях в режиме отогрева после охлаждения без поля (ZFC) и в поле (FC). Измерения удельного магнитного момента в режиме полевого охлаждения (FC) были выполнены в прямом и обратном направлении изменения температуры. Температура замерзания магнитных моментов ферромагнитных кластеров $(T_{\rm f})$ определялась как температура, соответствующая максимуму ZFC-кривой. Температуры начала расходимости ZFC- и FC-кривых при возрастании (T_{rev}) и уменьшении (T_x) температуры определялись в точках, для которых различия превышали 3%. Температура магнитного упорядочения $(T_{
m mo})$ определялась по температурной зависимости FC-кривой как точка, эквивалентная точке минимума производной FC-кривой по температуре (min $\{dM_{FC}/dT\}$). Температура магнитного упорядочения является хорошо определяемой величиной, характеризующей, кроме того, начало широкого температурного интервала, в котором осуществляется переход исследуемого образца в парамагнитное состояние [12]. В точке минимума производной меняется характер поведения с температурой FC-кривой от "выгнутой вверх" к "выгнутой вниз", что соответствует переходу от ее быстрого убывания к медленному. Таким образом, температура магнитного упорядочения определяет окончание быстрого убывания магнитного момента с ростом температуры. Спонтанный атомный магнитный момент (σ_{s}) определялся по полевой зависимости линейной экстраполяцией к нулевому полю. Анализ экспериментальных данных и численные расчеты выполнены с помощью компьютерной программы Origin 7.5.

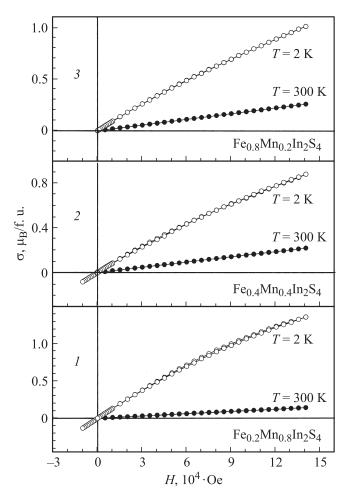
3. Экспериментальные результаты

Данные рентгеновских исследований показали, что на всех снятых дифрактограммах присутствуют индексы отражений, характерные для кубической структуры шпинели. Разрешение высокоугловых линий на указанных дифрактограммах свидетельствует о равновесности соединений и гомогенности твердых растворов. Параметры элементарной ячейки, рассчитанные методом наименьших квадратов, равны $a=10.722\pm0.005\,\text{Å}$ для кристаллов MnIn₂S₄ и $a=10.612\pm0.005\,\text{Å}$ для FeIn₂S₄, что согласуется с данными [13]. Установлено, что изменение указанных параметров с составом x осуществляется в соответствии с законом Вегарда и описывается следующим соотношением:

$$a = 10.612 + 0.110 \cdot x. \tag{1}$$

Состав кристаллов твердых растворов определяли, исходя из выполнения закона Вегарда в системе $MnIn_2S_4-FeIn_2S_4$ [10].

Рис. 1. Температурная зависимость удельного магнитного момента в полях 1 (темные кружки), 2 (светлые кружки), 5 Тл (темные квадратики) для составов: $I - \text{Fe}_{0.2}\text{Mn}_{0.8}\text{In}_2\text{S}_4$, $2 - \text{Fe}_{0.4}\text{Mn}_{0.6}\text{In}_2\text{S}_4$, $3 - \text{Fe}_{0.8}\text{Mn}_{0.2}\text{In}_2\text{S}_4$.


Результаты магнитных измерений показали, что один из исследуемых кристаллов, $FeIn_2S_4$, характеризуется температурой магнитного упорядочения $T_{\rm mo}\approx 22\,{\rm K}$ [14]. С увеличением поля температура магнитного упорядочения $T_{\rm mo}$ смещается в сторону высоких температур. Установлено также отсутствие различий при измерении FC-кривых в прямом и обратном направлении изменения температуры, что наблюдается при классических магнитных переходах II рода [15]. В области 12 K наблюдается уменьшение удельного магнитного момента с уменьшением температуры. Такое поведение характерно для антиферромагнитного состояния [16]. Температура этого перехода составляет $\sim 13\,{\rm K}$ в поле 1 Тл и немного уменьшается до $\sim 12\,{\rm K}$ в поле 5 Тл.

Кристалл MnIn₂S₄ является парамагнетиком, вплоть до $\sim 2~{\rm K}$ [17]. Удельный магнитный момент монотонно возрастает с уменьшением температуры. Во внешнем магнитном поле 1 Тл температура магнитного упорядочения $T_{\rm mo}$ составляет $\sim 12~{\rm K}$. С увеличением поля температура магнитного упорядочения $T_{\rm mo}$ немного возрастает. Различия при измерении FC-кривых в прямом

и обратном направлении изменения температуры также отсутствуют.

При измерении и анализе магнитных свойств монокристаллов твердых растворов $Fe_xMn_{1-x}In_2S_4$ обнаружены следующие интересные особенности. Во-первых, почти все составы являются парамагнетиками, вплоть до самых низких достижимых в настоящей работе температур ~ 2 К (рис. 1). Удельный магнитный момент монотонно возрастает с уменьшением температуры для всех составов, за исключением x = 0.8, для которого в области $\sim 12\,\mathrm{K}$ в поле 1 Тл наблюдается его уменьшение — дополнительный магнитный фазовый переход, характерный для антиферромагнитного упорядочения. Ниже 4 К наблюдается тенденция к насыщению удельного магнитного момента. Во-вторых, температура магнитного упорядочения постепенно возрастает с ростом концентрации катионов железа Fe^{2+} от $\sim 14\,\mathrm{K}$ для x = 0.2 до $\sim 19\,\mathrm{K}$ для x = 0.8. Увеличение магнитного поля от 1 до 5 Тл закономерно увеличивает удельный магнитный момент и немного уменьшает температуру магнитного упорядочения. В-третьих, анализ поведения удельного магнитного момента приводит к убеждению, что температура дополнительного магнитного фазового перехода уменьшается с ростом концентрации катионов ${\rm Mn}^{2+}$ и магнитного поля, и поэтому сам переход не наблюдается в настоящем эксперименте.

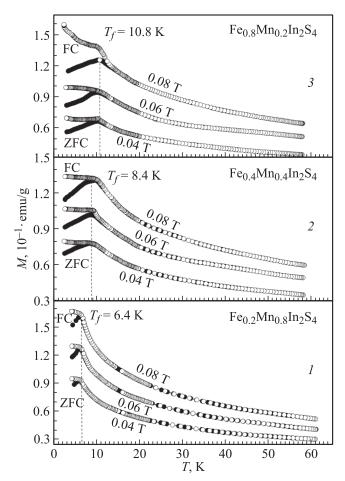
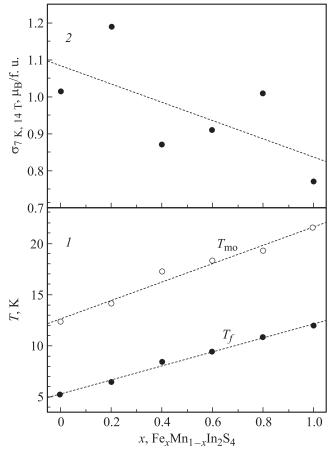

Для выяснения природы низкотемпературного магнитного фазового состояния исследуемых образцов $FeIn_xMn_{1-x}In_2S_4$ были выполнены измерения полевых зависимостей атомного магнитного момента (рис. 2). Видно, что вплоть до температуры 2 К, все полевые зависимости почти линейны, что характерно для антиферромагнитного или парамагнитного состояния. Незначительная величина атомного магнитного момента указывает скорее на антиферромагнитное состояние. С уменьшением температуры от 300 до 2К атомный магнитный момент σ во внешнем магнитном поле для $Fe_2In_2S_4$ возрастает от $0.22\,\mu_B/f.u.$ до $0.77\,\mu_B/f.u.$ Даже в таком большом поле атомный магнитный момент не достигает максимально возможной для катиона Fe^{2+} величины в случае 100%-ой спиновой поляризации, который составляет $\sim 4\,\mu_{\rm B}$. В низкотемпературной области (< 12 К) наблюдаются ненулевые значения спонтанного и остаточного атомного магнитного момента, а также коэрцитивной силы, свойственные для ферромагнитного упорядоченного состояния или наличия ферромагнитных корреляций ближнего порядка [18]. Такое поведение не соответствует однородному антиферромагнитному состоянию. При 4К спонтанный атомный магнитный момент σ_s равен $\sim 0.05 \,\mu_B/\text{f.u.}$ Для соединения MnIn₂S₄ при 2К атомный магнитный момент во внешнем магнитном поле 14 Тл составляет $\sim 0.91 \,\mu_{\rm B}/{\rm f.u.}$ Спонтанный атомный магнитный момент при 2 K равен $\sim 0.11 \, \mu_{\rm B}/{\rm f.u.}$ Аналогичное поведение демонстрируют все образцы из ряда твердых растворов $Fe_xMn_{1-x}In_2S_4$ (рис. 2). Интересным является тот факт, что образцы с большим содержанием катионов Mn²⁺ характеризуются большим значением упорядоченного магнитного момента.

Рис. 2. Полевая зависимость атомного магнитного момента составов. I — $Fe_{0.2}Mn_{0.8}In_2S$, 2 — $Fe_{0.4}Mn_{0.6}In_2S_4$, 3 — $Fe_{0.8}Mn_{0.2}In_2S_4$.

Так для образца $Fe_{0.2}Mn_{0.8}In_2S_4$ при 2 К и 14 Тл наблюдается упорядоченный атомный магнитный момент, равный $\sim 1.35\,\mu_B/\mathrm{fu}$., тогда как для $Fe_{0.8}Mn_{0.2}In_2S_4$ упорядоченный атомный магнитный момент составляет $\sim 1.01\,\mu_B/\mathrm{fu}$. Даже в таком большом поле атомный магнитный момент не достигает максимально возможной для катионов Fe^{2+} ($\mu_{max}\approx 4\,\mu_B$) и Mn^{2+} ($\mu_{max}\approx 5\,\mu_B$) величины в случае 100%-ой спиновой поляризации [19].

Результаты измерения ZFC и FC зависимостей удельного магнитного момента в слабых полях представлены на рис. 3. Установлено, что в низкотемпературной области (< 12 K) ZFC-кривые убывают с уменьшением температуры, тогда как FC-кривые могут как убывать, так и возрастать. При этом ZFC-кривые убывают более резко. На ZFC-кривых наблюдается пик, характерный для магнитного фазового состояния типа спинового стекла [20]. Температура замерзания $T_{\rm f}$ возрастает с ростом концентрации катионов ${\rm Fe}^{2+}$. Так для состава ${\rm Fe}_{0.2}{\rm Mn}_{0.8}{\rm In}_2{\rm S}_4$ $T_{\rm f}$ равна \approx 6 K, а для ${\rm Fe}_{0.8}{\rm Mn}_{0.2}{\rm In}_2{\rm S}_4$ $T_{\rm f}$ равна \approx 11 К. Для каждого отдельного состава температура замерзания $T_{\rm f}$ почти постоянная в слабых полях.


Рис. 3. Температурная зависимость ZFC (темные символы) и FC-кривых (светлые символы) удельного магнитного момента в полях 0.04, 0.06 и 0.08 $\rm Tл$ для составов: $\it I$ — $\rm Fe_{0.2}Mn_{0.8}In_2S_4$, $\it 2$ — $\rm Fe_{0.4}Mn_{0.6}In_2S_4$, $\it 3$ — $\rm Fe_{0.8}Mn_{0.2}In_2S_4$.

На рис. 4 представлены обобщенные концентрационные зависимости температур замерзания и магнитного упорядочения, а также упорядоченного атомного магнитного момента. Критические температуры уменьшаются с уменьшением содержания катионов Fe^{2+} почти линейно и с одинаковой скоростью. Это свидетельствует о более высокой интенсивности обменных взаимодействий $Fe^{2+}-S^{2-}-Fe^{2+}$, нежели взаимодействия $Fe^{2+}-S^{2-}-Mn^{2+}$ и $Mn^{2+}-S^{2-}-Mn^{2+}$. Факт немонотонного уменьшения упорядоченного атомного магнитного момента с уменьшением содержания катионов Fe^{2+} может указывать на различную жесткость и упорядоченное расположение катионов Fe^{2+} и Mn^{2+} при формировании различных конфигураций обменных взаимодействий $Fe(Mn)^{2+}-S^{2-}-Fe(Mn)^{2+}$.

Магнитные полупроводники характеризуются, как правило, наличием так называемого косвенного обменного взаимодействия между d-ионами. В кристаллической решетке магнитного полупроводника d-катионы разделены немагнитными катионами, и поэтому волновые функции d-электронов непосредственно не перекрываются. Прямое обменное взаимодействие между

ними отсутствует. Однако возникает косвенное взаимодействие, обусловленное тем, что волновые функции *d*-катионов перекрываются через волновые функции немагнитных катионов. Как правило, для вырожденных магнитных полупроводников косвенное 90-градусное обменное взаимодействие является антиферромагнитным [21].

Согласно эмпирическим правилам Гуденафа—Канамори [22], косвенные 180-градусные обменные взаимодействия между магнитными моментами электронов, находящихся на частично заполненных, а также полностью незаполненных энергетических уровнях, являются отрицательными. Таким образом, косвенные обменные взаимодействия $Fe^{2+} - S^{2-} - Fe^{2+}$ между катионами Fe^{2+} и $Mn^{2+} - S^{2-} - Mn^{2+}$ между катионами Mn^{2+} , находящимися в A-подрешетке структуры шпинели, должны быть антиферромагнитными. Антиферромагнитное состояние в соединениях $FeIn_2S_4$ и $MnIn_2S_4$ ранее было обнаружено другими авторами [23,24]. Это в случае нормальной шпинели. Если наблюдается некоторая сте-

Рис. 4. Концентрационная зависимость экспериментальных значений: 1 — температура замерзания магнитных моментов (темные кружки) и магнитного упорядочения (светлые кружки), а также 2 — упорядоченного магнитного момента (темные кружки) при $7 \, \mathrm{K}$ и в поле $14 \, \mathrm{Tn}$ для твердых растворов $\mathrm{Fe_x} \, \mathrm{Mn_{1-x} In_2 S_4}$. Штриховые линии обозначают линейную зависимость экспериментальных значений.

пень обращенности структуры шпинели, т.е. частичное заполнение А-подрешетки катионами индия, происходит обрыв протяженных обменносвязанных цепочек $Fe(Mn)^{2+} - S^{2-} - Fe(Mn)^{2+}$. Это так называемое диамагнитное разбавление, которое может приводить к формированию неоднородного магнитного состояния. Косвенные 180-градусные обменные взаимодействия между магнитными моментами электронов, находящихся на полностью и частично заполненных энергетических уровнях, а также полностью заполненных энергетических уровнях, являются положительными. Таким образом, в разбавленной магнитной подсистеме могут появляться ферромагнитные корреляции ближнего порядка [25]. Конкуренция антиферромагнитных и ферромагнитных взаимодействий между катионами железа приводит к фрустрации обменных связей и образованию однородного магнитного фазового состояния спинового стекла. Обменная связь называется фрустрированной, если взаимная ориентация соответствующих магнитных моментов не совпадает со знаком их обменных взаимодействий [26]. Состояние спинового стекла наблюдалось ранее другими авторами в соединениях FeIn₂S₄ и MnIn₂S₄ в работах [27,28].

Среди многих типов магнитоупорядоченных веществ особое место принадлежит так называемым спиновым стеклам. Ориентация магнитных моментов спинового стекла в области температур ниже некоторой критической $T_{\rm f}$ не имеет никакой пространственной периодичности. Она меняется в пространстве случайным образом подобно расположению атомов в обычном стекле. Для спинового стекла наблюдаются ферромагнитные корреляции ближнего порядка. В отличие от парамагнетиков, где магнитные моменты флуктуируют во времени, спиновые стекла характеризуются "замороженными" магнитными моментами, т.е. ненулевыми средними по времени векторными величинами. Состояние типа кластерного спинового стекла часто наблюдается в неоднородных магнитных системах, таких как сплавы Со-Си и Со-Ад [29,30]. В них ферромагнитные кластеры внедрены в неферромагнитную матрицу. Уменьшение температуры замерзания $T_{\rm f}$ свидетельствует об уменьшении среднего размера ферромагнитноупорядоченных кластеров. Можно выполнить количественную оценку среднего размера ферромагнитных кластеров. С этой целью необходимо использовать формулу Бина-Ливингстона [31], связывающую средний размер ферромагнитных кластеров с константой магнитной кристаллографической анизотропии, представляющей собой ни что иное, как объемную плотность энергии магнитной кристаллографической анизотропии, и критической температурой $T_{\rm f}$:

$$\langle \mathbf{K} \rangle \langle \mathbf{V} \rangle = k_{\mathrm{B}} T_{\mathrm{f}},$$

где $\langle {\rm K} \rangle$ — среднее значение константы магнитной кристаллографической анизотропии ферромагнитного кластера, $\langle {\rm V} \rangle$ — его средний объем, $k_{\rm B}$ — постоянная Больцмана, $T_{\rm f}$ — температура замерзания (максимум на

ZFC-кривой). Константы анизотропии можно получить из уравнения для энергии магнитной кристаллографической анизотропии в плоскости (100):

$$E_a = K_1 \sin^2(\theta) + K_2 \sin^4(\theta),$$

где K_1 , K_2 — константы магнитной кристаллографической анизотропии, θ — угол между намагниченностью и осью [010]. Энергия магнитной кристаллографической анизотропии определяется площадью между кривыми $\sigma(H)$, измеренными для монокристаллов вдоль направлений [010] и [001]. Так для анион-дефицитного манганита $La_{0.70}Sr_{0.30}MnO_{2.85}$ средний размер ферромагнитных включений составляет $\sim 10\,\mathrm{hm}$ [20]. Температура расходимости ZFC- и FC-кривых, измеренных в одинаковом режиме изменения температуры T_{rev} , определяет максимальный размер ферромагнитного кластера [32], который в данном случае почти совпадает со средним размером.

Свойства спинового стекла поняты далеко не полностью. Понимание природы магнитного состояния спинового стекла важно для развития фундаментальной физики. Это понимание может привести к новым применениям спиновых стекол. Ранее была установлена аналогия между набором почти вырожденных метастабильных низколежащих состояний, охлажденных спиновых стекол и функцией человеческой памяти [33]. Поэтому, возможно, что изучение спиновых стекол будет способствовать созданию более совершенных принципов компьютерной памяти [34].

4. Заключение

Таким образом, в настоящей работе исследованы магнитные свойства монокристаллов тройных соединений $FeIn_2S_4$, $MnIn_2S_4$ и твердых растворов на их основе $Fe_xMn_{1-x}In_2S_4$. Установлен преимущественно антиферромагнитный характер косвенных обменных взаимодействий в основном состоянии между катионами Fe^{2+} и Mn^{2+} . Обнаружено наличие ферромагнитных корреляций ближнего порядка. Основным магнитным фазовым состоянием исследуемых составов является состояние спинового стекла с температурой замерзания, монотонно возрастающей с ростом концентрации катионов Fe^{2+} . Обсуждаются наиболее вероятные причины и механизм образования магнитного состояния кристаллов $Fe_xMn_{1-x}In_2S_4$.

Работа выполнена при финансовой поддержке Белорусского Республикансвого фонда фундаментальных исследований (проект № Ф10МЛД-001).

Список литературы

- [1] Р.Н. Бекимбетов, Ю.В. Рудь, М.А. Таиров. ФТП, **21**, 1051 (1987).
- [2] Р.Н. Бекимбетов, Н.Н. Константинова, Ю.В. Рудь, М.А. Таиров. Изв. АН СССР; Неорг. Матер., 24, 1969 (1988).

- [3] Н.Н. Нифтиев, О.Б. Тагиев, А.Г. Рустамов. ФТП, **24**, 758 (1990).
- [4] Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom. Nature, 402, 790 (1999).
- [5] Н.Н. Нифтиев. ФТП. 36, 836 (2002).
- [6] Н.Н. Нифтиев, О.Б. Тагиев. ФТП, 38, 164 (2003).
- [7] И.В. Боднарь. В.Ю. Рудь, Ю.В. Рудь. ФТП, 43, 1549 (2009).
- [8] И.В. Боднарь, С.А. Павлюковец, В.Ю. Рудь, Ю.В. Рудь. ФТП, 43, 1553 (2009).
- [9] А.В. Огнев, А. Самардак. Вест. ДВО РАН, № 4, 70 (2006).
- [10] I.V. Bodnar, I.A. Victorov, D.V. Lozhkin. 5th Intern. Conf. Mater. Sci. Cond. Matt. Phys. Chisinau (2010) p. 74.
- [11] С.В. Труханов. Письма ЖТФ, 37, 13 (2011).
- [12] С.В. Труханов, И.О. Троянчук, Н.В. Пшукарев, Г. Шимчак. ЖЭТФ, 122, 356 (2002).
- [13] H.D. Lutz, M. Feher. Spectrochimica Acta, 27A, 357 (1971).
- [14] И.В. Боднарь, С.В. Труханов. ФТП, 45, 890 (2011).
- [15] С.В. Труханов, А.В. Труханов, А.Н. Васильев, А. Maignan, H. Szymczak. Письма ЖТФ, **85**, 615 (2007).
- [16] Ч. Киттель. Введение в физику твердого тела. (М., Наука, 1978).
- [17] C.I. Hsu, J.J. Steger, E.A. Demeo, A. Wold, G.S. Heller. J. Sol. St. Chem., 13, 304 (1975).
- [18] С.В. Труханов, И.О. Троянчук, А.В. Труханов, И.М. Фита, А.Н. Васильев, А. Maignan, Н. Szymczak. Письма ЖЭТФ, 83, 36 (2006).
- [19] С.В. Труханов. ЖЭТФ, 128, 597 (2005).
- [20] С.В. Труханов, А.В. Труханов, А.Н. Васильев, Н. Szymczak. ЖЭТФ, 138, 236 (2010).
- [21] S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran. J. Phys. Condens. Matter., 17, 6495 (2005).
- [22] J.B. Goodenough. Phys. Rev., 100, 564 (1955).
- [23] T. Kanomata, H. Ido, T. Kaneko. J. Phys. Soc. Jpn., 34, 554 (1973).
- [24] B.S. Son, S.J. Kim, C.S. Kim, M.H. Jung, Y. Jo. J. Korean Phys. Soc., 52, 1077 (2008).
- [25] S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khom-chenko, N.V. Pushkarev, I.O. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak. The Eur. Phys. J. B, 42, 51 (2004).
- [26] S.V. Trukhanov, A.V. Trukhanov, H. Szymczak. J. Phys. Chem. Sol., 67, 675 (2006).
- [27] J.L. Dormann, M. Seqqat, D. Fiorani, M. Nogues, J.L. Soubeyroux, S.C. Bhargava, P. Renaudin. Hyperfine Interactions, **54**, 503 (1990).
- [28] V. Sagredo, M.C. Mororón, L. Betancourt, G.E. Delgado. J. Magn. Magn. Mater., 312, 294 (2007).
- [29] S. Nafis, J.A. Woollam, Z.S. Shan, D.J. Sellmyer. J. Appl. Phys., 70, 6050 (1991).
- [30] F. Conde, C. Gomez-Polo, A. Hernando. J. Magn. Magn. Mater., 138, 123 (1994).
- [31] C.P. Bean, J.D. Livingstone. J. Appl. Phys., 30, S120 (1959).
- [32] С.В. Труханов. ЖЭТФ, 127, 107 (2005).
- [33] В.Кинцель. УФН, **152**, 123 (1987).
- [34] M.H. Kruder, A.B. Bortz. Phys. Today, 37, 20 (1984).

Редактор Л.В. Беляков

Magnetic properties of $Fe_x Mn_{1-x} In_2 S_4$ solid solutions single crystals

I.V. Bodnar*, S.V. Trukhanov+

* Belarusian State University of Informatics and Radioelectronics,
220027, Minsk, Belarus
+ Scientific-Practical Materials Research Center of National Academy of Sciences,
220072 Minsk, Belarus

Abstract The magnetic properties of the solid solutions $Fe_xMn_{1-x}In_2S_4$ single crystals are investigated. The mainly antiferromagnetic character of the indirect exchange interactions between the Fe^{2+} and Mn^{2+} cations is established. The magnetic ordering temperature increases from $\sim 12\,\mathrm{K}$ (x=0) to $\sim 22\,\mathrm{K}$ (x=1) with the rise of the Fe^{2+} cation concentration. The presence of the ferromagnetic short-range order is revealed. The main magnetic phase state of the investigated compounds is a spin glass state with increasing freezing temperature from $\sim 5\,\mathrm{K}$ (x=0) to $\sim 12\,\mathrm{K}$ (x=1). The magnetic ordering temperature is slightly decreased with incrasing of the external magnetic field. The most likely reasons and mechanism of magnetic formation for investigated solid solutions are discussed.