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Numerical simulation of optical feedback on a quantum dot lasers
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We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model

takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain

spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence

of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models,

is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which

evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly

to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not

using simple rate equation models to express quantum dots working at excited state transition.

1. Introduction

Quantum dot (QD) semiconductor lasers and amplifiers

get an increasing interest in the last and this decades due to

their interesting properties adequate for telecommunication

applications. These properties includes low sensitivity to

optical feedback resulting from
”
relatively low“ linewidth

enhancement factor (LEF) and strong damping of relaxation

oscillations [1,2]. Although the low sensitivity is required for

some applications, the high sensitivity is required in others

like chaos communications where many types of dynamic

behavior are possible [3,4]. Thus, the demand property is the

controllable sensitivity to optical feedback. A strong optical

feedback induces an instabilities in QDs very different

from those commonly observed in quantum well lasers and

cannot be explained in the frame of the conventional Lang

and Kobayashi theory [5] because experimental conditions

include high pumping current, strong optical feedback, and

a relatively long external cavity. Analysis of rate equation

models for external cavity lasers has shown that the LEF, the

laser relaxation oscillations, and the external cavity round-

trip time are important parameters for the appearance of

these instabilities [3]. All the analysis of feedback in QD

lasers is done depending of the simple rate equation (SRE)
models to formulate processes of carriers into the dots. This

results in a deviations from experimental data since the

measured LEF in QD lasers depends significantly on the

measurement procedure: the above threshold measured LEF

depends on the carrier filling and on the dynamics in the

QD states that don’t contribute to the stimulated emission

process but it increases with the unjection current [6].
Consequently the measured LEF above threshold is different

from the one measured at threshold and depends on

the operation conditions. This behavior is the direct

consequence of the complexity of the QD material: the

non uniformity of QD dimensions, presence of the wetting

layer (WL), in addition to several confined states in the
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QDs determined by the self assembling growth process

causes an inhomogeneous broadening, asymmetry of the

gain spectrum and affects the chirp. This makes the carrier

and photon dynamics cannot be approximated, as in bulk or

quantum well case, with a standard SREs system. According

to this, QD layer must be sub-grouped according to the

homogenous broadening. This is done through the multi-

population rate equations (MPRE) model as introduced

in [7].
Regarding the SRE models, the inclusion of special

characteristics of QDs in the rate equation models to study

optical feedback is still missing. Here we use MPRE

model coupled with the field equation to simulate QD laser

with optical feedback. Attention is paid to parameters like

injection current and external cavity round-trip time. This

paper is organized as follows: in section 2, the MPRE model

with optical feedback is introduced. Choice of operating

point and then feedback behavior using MPRE model is

calculated and discussed in section 3 before concluding in

section 4.

2. MPRE model with optical feedback

In the MPRE model the effects of many QD groups

including ground- and excited states (GS and ES), WL

states and the separate confinement heterostructure (SCH)
barrier layer, the carrier processes in and out of the dots,

the refractive index variation expressed by the linewidth

enhancement factor, LEF, and the chirp results from the

contributions of QD and plasma effects are taken into

account. The effect of size fluctuation of QDs is included

by dividing the QD ensemble into several sub-groups each

characterized by an average energy of the excited state,

EESm, and of the ground state, EGSm, respectively. The

temporal evolution due to the round-trip in the external

cavity is included in the equation of the electric field which

is coupled to MPRE. Then, the MPRE model with optical
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feedback is as follows:
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In the system Eqs (1)–(5), Ns and Nwl are not total
number of carriers in the SCH and the WL, NESm and
NGSm are the carrier number in the mth-ES and mth-GS,
respectively; eGS is the complex amplitude of the electric
field due to the GS transition. Since the behavior analyzed

here is for a single longitudinal mode laser, so only one rate
equation for the electric field is considered. It is assumed
here that the laser emits with average GS mode. This
is possible since the laser is a distributed Bragg reflector
(DBR) laser. The laser mode of DBR chosen at the GS
transition of QD. M is the total number of QD groups
in the sheet and is divided according to the full-width

at half maximum of the spectrum. M = 15 is assumed
which results in a system with 33 rate equations. NGS

represents GS with transition energy closer to the lasing
energy E j . In Eq. (1), β is the spontaneous emission factor,
γ is the feedback level (γ =

√

R f /τactiv), R f is the external
feedback level (the fraction of emitted power couple back
to the laser). The round-trip time in the activ region is

τactiv = 2L/vg with L is the active region length and vg is
the group velocity; τdelayed is the round-trip delay time in
the external cavity. The recombination time is τr and the
photon life-time is τpGS taken at the ground state transition;
nr is the refractive index of the QD, c is the speed of light in
free space, Ŵ is the optical confinement factor of the active
layer. I is the injection current, q is the elementary charge.

The frequency fluctuations are calculated from the structure
parameters with the inclusion of plasma effect, which has a
considerable contribution. Plasma effects is not included in
other models, see [3] for example. The fluctuation of laser
frequency (δw) is given by [7]

δw(t, E j) = −
Em

2π~ng
1neff(t, E j). (6)

1neff is the total effective refractive index variation which

have a plasma and QD contributions, (1neff = 1nQD

+ 1nplasma). The plasma contribution is a sum of two terms:

the term due to the free carrier accumulation in the two

dimensional WL and three dimensional SCH layer, i. e.
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Nwl

E2
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]
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and the term due to the QD gain variation, which is given

by
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2
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Note that the homogenous broadening function of the

refractive index spectrum is

Dcv(E j − Ekm) =
(E j − Ekm)/π

(E j − Ekm)2 + (~Ŵhom)2
.

In Eqs (2)–(4), the diffusion and recombination times in

the barrier (SCH) layer are τs and τsr , respectively. The

average capture times from the WL to the ES is τc0 and

from the ES to the GS is τd0 supposing that the final state

is empty. The Pauli blocking terms for GS and ES are

(1− PGSm) and (1− PESm), respectively. PGSm and PESm

are the filling probability of the GS and ES, respectively.

Pauli blocking terms for the escape from the WL to the

SCH is neglected because we assume the WL and SCH

states are always weekly occupied. Furthermore, at room

temperature and without stimulated emission the system

must converge to a quasi-thermal equilibrium characterized

by a Fermy distribution of the carriers in all the states.

To ensure this comvergence the carrier escape times are

related to the carrier capture times by:

τeGSm = τd0
µGS

µES
e([EESm−EGSm]/kBT )

and

τeESm = τc0
µESND

ρweff
e([Ew l−EES]/kBT ),

where τeGSm and τeESm are the escape times from the mth

GS or ES, respectively. Note that ND is the density of

QDs per unit area, µGS = 2 and µES = 4 are the degeneracy

of the GS and ES levels, respectively, including the spin.

For the excape time from the WL in the SCH we use

τwe = τs
ρweffNQD

ρSCHHb
exp(1ESCH,wl/kBT )

with ρweff is the density of states per unit area in the

WL and ρSCH is the density of states per unit volume

in the SCH. They are given by ρweff = (mewlkBT/π~
2)

and ρSCH = 2(2meSCHπkBT/~2)3/2. NQD is the number
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Parameters for the quantum dot material and laser [6]

QD material prameter Laser parameter

Diffusion time in SCH τs = 6 ps Active region length 600 µm

SCH recombination time τsr = 4.5 ns SCH thickness 90 nm

WL recombination time τwr = 3 ns WL thickness 1 nm

Capture time from WL to ES τc0 = 1 ps Active region width 10 µm

Capture time from ES to GS τd0 = 7 ps Number of QD layers 3

ES and GS recombination time τr = 2.8 ns Active region volume 2.2 · 10−16 m3

Energy separation SCH and WL = 84meV Density of QDs per layer ND = 6.3 · 1022 m−3

Average energy separation WL and ES = 100meV SCH confinement factor ŴSCH = 0.1

Average energy separation ES and GS = 80meV WL confinement factor Ŵwl = 0.1

Average recombination energy from GS EGS0 = 0.96 eV QD optical confinement factor Ŵ = 0.06

FWHM of homogeneous broadening 2ηŴk = 20meV Internal modal loss α = 0.7336 cm−1

FWHM of inhomogeneous (Gaussian) broadening 40 eV Spontaneous emission factor β = 10−4

Number of QD sub-groups M = 15

of QD layers and Hb is the total thickness of the SCH.

The laser is assumed here to be work at GS transition

only (which is possible with the type of laser studied

here, distributed Bragg reflector (DBR)). The contribution

of various QD populations at the mode energy E j is also

included. Therefore, gain for GS is written as [6]

g jmGS = µGSCgND
|Pσ

GS|
2

EGSm
(2PGSm − 1)GmBcv(E j − EGSm),

(7)
where

Cg =
πe2

nb cε0m2
0w

2
GSm

,

with wGSm is the angular frequency at the mth ground state

transition, |Pσ
GS|

2 is the transition matrix elements of the

GS recombination, Gm is the existence probability of the

mth QD subgroup assuming that
∑

m
Gm = 1 is satisfied,

Bcv(E − EGS) is the Lorentzian homogeneous broadening

function with width ~Ŵhom.

Figure 1. Power–current characteristic for ground-state transition.

Figure 2. a — gain and b — linewidth enhancement factor (LEF)
at threshold current of ground-state transition.

3. Calculations and discussion

3.1. Choice of the operating point

The simulation is done here for a DBR QD laser diode
(LD). Table reports the parameters of the QD material
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Figure 3. Temporal behavior for distributed Bragg reflector-laser diode at I = 3.1I th for: a — Lext = 15mm

(τdelayed = 100 ps), b — Lext = 60mm (τdelayed = 400 ps), c — Lext = 21mm (τdelayed = 500 ps), d — Lext = 42mm (τdelayed = 1000 ps)
and e — Lext = 210mm (τdelayed = 5000 ps). Note that R f = 0.01.

under study. The QD material system chosen here is

InAs–GaAs. To study feedback dynamics, we need first

to specify the operating point that laser works on. So,

power–current (P−I) characteristic of this QD laser is

shown in Fig. 1 where the threshold current for the GS

transition is found to be 1.6mA. A kink is shown at ∼ 5mA

of the P−I characteristics in Fig. 1. It is demonstrated

experimentally that a kink appears near threshold due to
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Figure 4. Phase portraits for distributed Bragg reflector-laserdiode

with external cavity length Lext = 15mm (τdelayed = 100 ps) at

5mA for the barrier, WL, 1st, 8th and 15th groups of the QD

GS and ES.

Figure 5. Temporal behavior for distributed Bragg reflector-laser diode with Lext = 75mm (τdelayed = 500 ps), R f = 0.01 at: a — I = 6I th,
b — I = 9.7I th and c — I = 12.51I th .

feedback in semiconductor lasers [8]. Note that the kink

cannot be explained by nonlinearity or multi-mode behavior.

Nonlinearity is neglected here in the rate equations (REs)
model as it is done by a most of the articles dealing with QD

behavior. Including nonlinearity in the REs model of QDs

is still as a work to be done in the near future. By using

DBR the multi-mode behavior is neglected. Gain and LEF

at these threshold values are shown in Fig. 2, a and b. It is

shown that GS transition is taken at 0.957 eV, λ = 1.31µm

where we choose it as the operating point for DBR-LD

studied here. For this DBR-LD operating point the LEF

value is 1.96, see Fig. 2, b.

3.2. Feedback

Feedback is studied in DBR-LD at different external

cavities and pumping currents. Fig. 3 shows the temporal

behavior at 5mA pumping current (I = 3.1I th) and different

external cavities. For an external cavity length Lext = 15mm

(τdelayed = 100 ps), Fig. 3, a, the laser delays (7 ns) before
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the inversion takes place. After this, the oscillations are

completely damped. When the external cavity length

increases to Lext = 60mm (τdelayed = 400 ps), a periodic

oscillations appear. The corresponding time series can be

shown in Fig. 3, b. For longer external cavity, the time

series shows the development of these oscillations to a

periodic orders (doubling, tripling . . . ) as in Fig. 3, c,d.

At longer ones it developed to chaos as in Fig. 3, e, where an

irregular pulse-like shape can be seen in the earlier periods

of oscillation. The long external cavity is dominant since

the relaxation oscillation frequency, and then the damping

rate, is known to increase [1] with longer cavity length.

In Fig. 4, projections of the trajectories onto the (Nph, NGS),
(Nph, NES), (Nph, Nwl), (Nph, Ns ) planes show motions of

stable limit cycle, where Nph is the photon number. Here

we plot the states in the same Nph-carrier number plane

for comparison. For Lext = 15mm, no trace of relaxation

oscillations is seen for all trajectories. To examine the

effect of the injection current, Fig. 5 shows the spectra of

DBR-LD at external cavity Lext = 75mm (τdelayed = 500 ps).
At 10mA (I = 6I th), Fig. 5, a, a less sensitivity to feedback

is obtained but at higher current value, 15mA (I = 9.7I th),
feedback oscillations are attained, as in Fig. 5, b, and

a lager amplitude of feedback oscillations is appear. With

increasing current to 20mA (I = 12.5I th) the oscillations

are developed from frequency periods to irregular pulse-

like shape. This is seen in Fig. 5, c. The phase portraits

of Fig. 5, b are displayed in Fig. 6 for WL, barrier layer

states, QD GS and ES (1, 8 and 15 groups). While

group 15th QD ES has an obvious contribution, the main

contribution to feedback oscillations is shown to be comes

from the WL which is work as a common reservoir. This

observation coincides with earlier results [1] as the fre-

quency fluctuation in QDs is controlled by LEF which have

a plasma contribution comes from WL. The contribution

of QD groups can only be followed with MPRE model

since the simple RE models uses only one or two QD

groups [9]. According to these figures, one cannot neglect

the contribution of groups other than the resonant group (8th

group here). This can view the importance of using MPRE

in the QD simulation since all groups are contributes in the

behavior. More view can be seen by plotting occupation

probability for different QD groups of DBR-LD without

feedback as seen in Fig. 7 where the main contributions

are seen from the 1st GS group. This is also with main

conclusion of [9] where the occupation probability of GS

above that of the ES in QDs. A hole appears in the

occupation probability curves. As we see earlier, the QDs

are divided into groups depending on the homogenous

broadening. So, there is an existence probability for each

group [7]. These groups have different contributions to

the QD response. Each group can be effected by another

groups. This behaviour can be represented by a wave

propagation which can be accompanied by carrier depletion

in this group. This behavior is not shown with ordinary RE

models. But it can be shown when a pulse
”
Gaussian“ is

applied to the system [9]. Curves arrangement in Fig. 7

Figure 6. Phase portraits for distributed Bragg reflector-laser

diode with external cavity length Lext = 75mm (τdelayed = 500 ps)
at 15mA for the barrier, wetting layer, 1st, 8th, and 15th groups of

the quantum dot ground- and exited states. The 1st ground states

group of quantum dot disappears since it is completely under the

15th ground states group.

Figure 7. Temporal behavior for the 1st, 8th and 15th occupation

probabilities of ground and exited states groups of distributed

Bragg reflector-laser diode.

depends on the escape times τeGSm and τeESm of the groups

where the state with longer time gets occupation higher

than the latter. For example, GS(1) group with an escape

time (τeGS1 = 0.116 ns) have occupation probability higher

than GS(8) group (τeGS8 = 0.0773 ns) while ES(15) group

have the lowest occupation probability due to its shorter

escape time (τeGS15 = 0.00876 ns). This can explains why

the SRE models, which uses a single group to represents

QDs, success in elucidate experimental observations. This

is because most of RE models takes GS as the lasing states.

While the difference between the 1st and last QD groups

in the GS is too much, according to Fig. 7, these groups
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Figure 8. Bifurcation diagram for distributed Bragg reflector-laser

diode at higher feedback level (R f = 0.1) and 20mA current.

have observable difference for ES case — their occupation

probabilities differ by ∼ 0.4. So, one can expect simple RE

model fails in explaining the behavior of a QD laser works

at ES.

One can also refers to the turn-on delay time seen in

Fig. 3 at I = 3.1I th, (I = 5mA) which equals 6.5 ns while

in Fig. 5, a at I = 6I th (10mA) it is 4 ns, in Fig. 5, b

I = 9.7I th (15mA) it is 3.5 ns and in Fig. 5, c I = 12.5I th
(20mA) it is 3.4 ns. Thus, the turn-on delay time is

reduced with increasing current. The turn-on delay is the

time needed to reach threshold which is important for laser

performance. Our results demonstrates the inverse relation

between turn-on delay with pumping current which is also

fulfilled theoretically and experimentally in [10]. It is found

that the turn-on delay time is reduced with higher optical

confinement factor or gain [11]. Since optical confinement

factor is constant in our simulation, so the factor affecting

here is the gain which increases with injection current, thus

reduces the turn-on time.

Finally we plot the bifurcation diagram for DBR-LD at

higher feedback level (R f = 0.1) and 20mA current for

different external cavity lengths as seen in Fig. 8. This

figure shows the chaotic behavior at longer external cavity

(≥ 350 ps). Because the bifurcation diagram in Fig. 8

is done along range of external cavity time (τdelayed) and

obtained using a long integration time period, so it can

contain also points from the beginning of oscillations where

the photon density is high. The chaotic behavior in Fig. 8 is

expected since it is well known that [12] as the feedback

level increased, a sequence of periodic oscillations was

observed at increasing multiples of the round-trip frequency

until the chaotic behavior is appear. This is probably

related [1] to multiple lasing modes in the experiment which

is not taken in MPRE system here.

4. Conclusions

We proposed a model based on the MPRE to simulate

feedback in QD lasers. The model illustrates the behavior

in the form of feedback oscillations, periodic oscillations

and the chaos at higher feedback levels. It is shown

that feedback oscillations reasoned mainly to WL states.

The model shows the contribution of QD groups in the

oscillations and expects that because of the observable

differences between QD groups in the excited state the

simple rate equation models cannot explain the behavior

of a QD laser working at excited state transition.
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