Роль собственных дефектов при расщеплении энергетических спектров носителей заряда в Ag₂Te

© М.Б. Джафаров [¶], Ф.Ф. Алиев ^{*¶¶}, Р.А. Гасанова ^{*}, А.А. Саддинова ^{*}

Азербайджанский государственный аграрный университет, Az-2000 Гянджа, Азербайджан

* Институт физики Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан

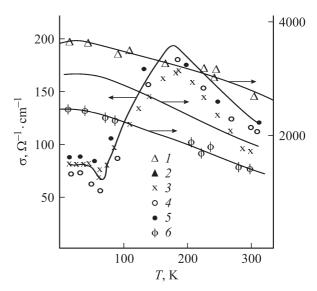
(Получена 30 ноября 2011 г. Принята к печати 7 декабря 2011 г.)

Проведен расчет ширины запрещенной зоны и ее температурного коэффициента в зависимости от концентрации дефектов в теллуриде серебра с избытком Те и Ag. На основе полученных данных проанализирована корреляция между энергетическим спектром носителей заряда и дефектностью теллурида серебра. Установлено, что корреляция является отражением более общих фундаментальных связей между энергетической структурой и концентрацией дефектов в Ag_2 Te, обусловленных ионами и вакансиями атомов серебра в подрешетке.

1. Введение

Теллурид серебра обладает аномально высокой униполярной ионной проводимостью [1], что существенно ускоряет диффузионные процессы, связанные с изменением состава в соответствующей подрешетке, т.е. важной особенностью Ag_2 Те является собственная дефектность, которая существенно влияет на электронные и ионные процессы. С ростом температуры увеличивается число таких дефектов, что при определенной температуре приводит к структурному фазовому переходу. При фазовом переходе скачкообразно изменяются все физические свойства Ag_2 Те.

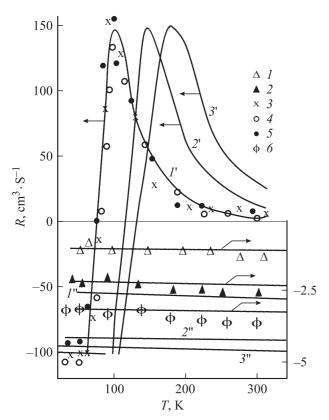
В работах [2-7] исследованы электрические и термоэлектрические свойства Ад₂Те, обусловленные поведением носителей заряда. В работе [8] показано, что в области гомогенности избыток Те в Ад2Те приводит к р-типу, а избыток Ад — к п-типу проводимости. В работе [7] сообщалось, что атомы Ag в Ag₂Te создают мелкие донорные, а атомы Те — акцепторные уровни, расположенные от дна зоны проводимости на расстоянии $(0.002-7\cdot 10^{-5}\,\mathrm{T}\pi)\,$ эВ и $(0.030-7\cdot 10^{-5}\,\mathrm{T}\pi)\,$ эВ соответственно. В литературе приводятся различные значения ширины запрещенной зоны (E_{g_0}) : 0.006 [5], 0.035 [6], 0.058 [2], 0.113 [4], 0.19 [3], 0.7 эВ [9]. Поэтому возникает вопрос — чем обусловлен такой разброс E_{g_0} в Ад2Те. Для этого, в первую очередь, надо выяснить, за счет чего происходит расщепление энергетического спектра носителей заряда в кристалле. По теории это может происходить либо за счет спин-орбитального взаимодействия, либо за счет деформационного потенциала (дефекта) кристалла [10]. Первый аспект обсуждался в работе [11], где авторы провели расчет зонной структуры Ад2Те и сделали вывод, что он является полуметаллом с перекрытием E_{g_0} около $0.1-0.2\,\mathrm{pB}$. В Ад₂Те предполагается интенсивное взаимодействие уровней 4d Ag с уровнями 5p Te. Существует небольшое

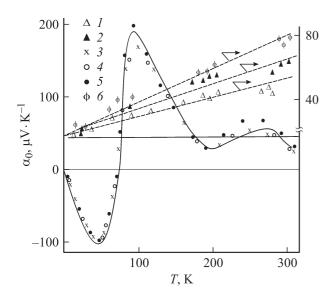

перекрытие между зонами проводимости и валентной для Ag_2Te . В энергетическом диапазоне от уровня ниже уровня Ферми до 0.5-1.0 эВ плотность состояний очень низка. Взаимодействие между Ag и Te имеет ковалентный характер [11].

Второй аспект мало исследован. Для изучения этой проблемы нами были получены образцы Ag_2 Te по единой технологии [12] с избытком Ag до ~ 0.25 ат% и Te до ~ 1 ат%.

2. Экспериментальная часть

Нами были исследованы температурные зависимости электропроводности σ , коэффициента Холла R и термоэдс α_0 в n- и p-Ag₂Te (рис. 1—3).


Как видно, для n-Ag₂Te σ до $\approx T \le 10$ K не зависит от температуры (рис. 1), затем с ростом T σ плавно


Рис. 1. Температурные зависимости электропроводности в Ag_2Te . Избыток Ag, at%: 1-0.02, 2-0.05, избыток Te, at%: 3-0.5, 4-0.6, 5-0.75, 6-0 (стехиометрический состав).

[¶] E-mail: степtiq@box.az ¶¶ E-mail: farzali@physics.ab.az

уменьшается, а R во всей области температур остается постоянным (рис 2). В отличие от зависимостей $\sigma(T)$ и R(T), термоэдс α_0 с ростом температуры линейно увеличивается (рис. 3). Из рис. 1-3 видно, что при раз-

Рис. 2. Температурные зависимости коэффициента Холла в Ag₂Te. Обозначения те же, что на рис. 1. Сплошные линии — расчет при разных значениях E_{g_0} . Избыток 0.02 ат% Ag, значения E_{g_0} , эВ: I' — 0.054, 2' — 0.113, 3' — 0.035. Избыток 0.75 ат% Te, значения E_{g_0} , эВ: I'' — 0.035, 2'' — 0.054, 3''' — 0.113.

Рис. 3. Температурные зависимости термоэдс в Ag_2 Те. Обозначения те же, что на рис. 1.

личном содержании Ag температурные зависимости σ , R и α_0 отличаются только количественно.

Там же представлены температурные зависимости $\sigma(T)$, R(T) и $\alpha_0(T)$ в p-Ag2Te. Видно, что при $T \leq 40\,\mathrm{K}$ не зависит от T, а при $T \approx 65\,\mathrm{K}$ проходит через минимум. Коэффициент Холла R до $T \approx 40\,\mathrm{K}$ не зависит от температуры, выше $T \approx 40\,\mathrm{K}$ R уменьшается и при $T \approx 65\,\mathrm{K}$ изменяет знак проводимости с p на n и далее при $T \approx 80\,\mathrm{K}$ проходит через минимум (рис. 2). Для всех образцов термоэдс $\alpha_0(T)$ до $T \approx 40\,\mathrm{K}$ линейно растет с температурой, при $T \approx 65\,\mathrm{K}$ наблюдается инверсия знака проводимости, а при $T \approx 80\,\mathrm{K}$ и 200 K зависимость $\alpha_0(T)$ проходит через минимум (рис. 3). На зависимостях $\alpha(T)$, R(T) и $\alpha_0(T)$ в p-Ag2Te также наблюдаются количественные отличия (подобно n-Ag2Te), так как при разном содержании T значения σ и T количественно заметно отличаются.

Полученные данные о $\sigma(T)$, R(T) и $\alpha_0(T)$ в n-и p-Ag $_2$ Te, достаточно подробно обсуждаются в работах [6–8,13]. Однако в этих работах не проанализированы причины сильного различия значений E_{g_0} . Для решения данного вопроса были проведены следующие расчеты.

3. Метод расчета

Авторы [4] сообщают, что Ag_2 Те характеризуется дефектами Френкеля — наличием полностью ионизованных атомов серебра Ag_i^0 и вакансий серебра в междоузлиях V_{Ag}^I , появляющихся за счет статистически расположенных атомов Ag в подрешетке. Расхождение в стехиометрии δ на единицу объема описывается как [4]:

$$\delta = |Ag_i^0| - |V_{Ag}^I| = n - p, \tag{1}$$

где $|{\rm Ag}_i^0|$, $|V_{\rm Ag}^0|$, n и p — концентрации избыточного серебра и их вакансий, т.е. электронов и дырок. Эдс связана с химическими потенциалами μ по формуле Вагнера:

$$\mu_{\mathrm{Ag}(c)}^{0} - \mu_{\mathrm{Ag}_{i}^{x}} = EF, \tag{2}$$

где

$$\mu_{Ag_i}^x = \mu_{Ag_i}^0 + \mu_n = \mu_{Ag^0} - \mu_p, \tag{3}$$

 $\mu_{\mathrm{Ag}(c)}^{0}$, $\mu_{\mathrm{Ag}_{i}^{x}}$, $\mu_{\mathrm{Ag}_{i}^{0}}$, μ_{n} и μ_{p} соответственно химические потенциалы металлического серебра, нейтрального серебра, ионизованного серебра, электронов и дырок в теллуриде серебра, а F — число Фарадея. Величина $\mu_{\mathrm{Ag}_{i}}$ согласно уравнению, установленному для α -Ag₂Se [14]:

$$\mu_{Ag_i^0} - \mu_{Ag_i}^0 = RT \ln \frac{[Ag_i^0]}{[Ag_i^0]^{\theta}} = -RT \ln \frac{[V_{Ag}^I]}{[V_{Ag}^I]^{\theta}}, \quad (4)$$

где θ — соответствует стехиометрическому Ag₂Se, а μ_n дается выражением [14]

$$\mu_n - \mu_n^{\theta} = RT \ln \frac{\gamma n}{\gamma^{\theta} n^{\theta}},$$
 (5)

Параметры	Образцы					
	Аg ₂ Te + 0.02 ат% Аg			Ag ₂ Te + 0.05 at% Te		
β_1 , $\ni \mathbf{B} \cdot \mathbf{K}^{-1}$	100 K	200 K	300 K	100 K	200 K	300 K
	$-7.5 \cdot 10^{-5}$	_	_	$-7.5 \cdot 10^{-5}$	_	_
$E_{g_0},$ э $\mathrm{B}_{v^{ heta}}$	0.046	0.040	0.031	0.028	0.021	0.014
γ^{θ}	1.501	1.439	1.354	1.438	1.347	1.298
m_n^*	0.025 [6]	0.018	0.014	0.022	0.020	0.020
m_p^*	0.12 [8]	_	_	_	_	_
$U_n, V^{1/2}, c \cdot cm^{-2}$	$1.5 \cdot 10^{-5}$	$8 \cdot 10^{3}$	$4 \cdot 10^{3}$	$5 \cdot 10^3 \ [6]$	$2 \cdot 10^{3}$	$1 \cdot 10^{4}$
$U_p, V^{1/2}, c \cdot cm^{-2}$	_	_	_	$6 \cdot 10^3 \ [6]$	$4 \cdot 10^3$	$2 \cdot 10^3$

Параметры носителей заряда в Ад₂Те

где γ — коэффициент активации, вычисленный методом Розенберга [15]:

$$\gamma = \frac{\sqrt{\pi}[\exp n; p]}{2[F_{1/2}(\eta); I_{3/2,0}^{0}(\eta, \beta)]},$$
 (6)

где $\eta=\mu_n/k_oT$ — приведенный химический потенциал; $\beta=k_0T/E_{g_0}$ — параметр, характеризующий нестандартность зоны; $F_{1/2}(\eta)$ и $I^0_{3/2,0}(\eta,\beta)$ — одно- и двухпараметрические интегралы Ферми. Эти интегралы Ферми определяются согласно [10]:

$$F_{1/2}(\eta) = \frac{n\sqrt{\pi}}{4(2\pi m^* k_0 T h^{-2})^{3/2}},$$

$$I_{3/2,0}^{0}(\eta,\beta) = \frac{3\pi^2\hbar^3n}{(2m^*k_0T)^{3/2}},$$

где m^* — эффективная масса носителей заряда.

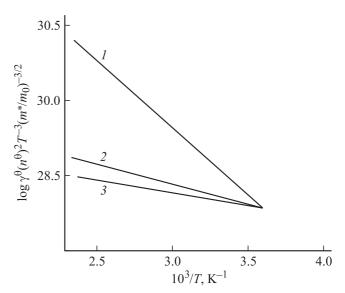
Функции $F_{1/2}(\eta)$ и $I^0_{3/2,0}(\eta,\beta)$ численно вычисляются в следующем виде: в случае квадратичного закона дисперсии и любой степени вырождения коэффициент термоэдс в классически сильных магнитных полях выражается согласно [16,17]:

$$\alpha_{\infty} = -\frac{k_0}{e} \left[\frac{5F_{3/2}(\eta)}{3F_{1/2}(\eta)} - \eta \right],$$
 (7)

$$lpha_{\infty} = -rac{k_0}{e} \left[rac{I_{3/2,0}(\eta,eta)}{I_{3/2,0}^0(\eta,eta)} - \eta
ight].$$

Известно, что $\alpha_{\infty}=\alpha_0+\Delta\alpha_{\infty}$, где $\Delta\alpha_{\infty}$ — магнитотермоэдс в классически сильном магнитном поле. В узкощелевых полупроводниках $\Delta\alpha_{\infty}$ составляет $\sim 10-15\%$ от величины α_0 [16–18]. Учитывая значения $\Delta\alpha_{\infty}$ в (7), можно рассчитать $F_{1/2}(\eta)$ и $I_{3/2,0}^0(\eta,\beta)$.

Концентрация электронов n определяется, с одной стороны, по экспериментальным данным коэффициента Холла, в области, где проводимость осуществляется одним типом носителей заряда (в случае Ag_2 Te это удовлетворяется до недостатка Ag больше 0.01 at% [7]), как $n \approx \frac{1}{Re}$.


С другой стороны, в области избытка Те превалирует вклад дырок: R, связанный с концентрацией и подвижностью электронов и дырок (n, p, U_n, U_p) , определяется по формуле:

$$R = \frac{pU_p^2 - nU_n^2}{e(pU_p - nU_n)^2},$$
(8)

где U_n , U_p и n, p определяются согласно [6,19]. Если $F_{1/2}(\eta)$, $I^0_{3/2,0}(\eta,\beta)$, n и p известны, то из соотношений (5) и (6) можно определить значения γ , γ^θ и n^θ .

На рис. 4 представлена зависимость $\log \gamma^{\theta}(n^{\theta})^2 T^{-3}(m^*/m_0)^{-3/2}$ как функция от 1/T [4,14], наклон которой позволяет вычислить E_{g_0} . Разница между началом этой прямой позволяет, вычислить температурный коэффициент ширины запрещенной зоны β_1 . Полученные таким образом данные представлены в таблице.

Как видно из таблицы, расщепление происходит за счет дефектов (или деформационного потенциала). Для подтверждения действительности полученных данных о

Рис. 4. Температурные зависимости $\log y^{\theta}(n^{\theta})^2 T^3 (m^*/m_0)^{-3/2}$ в Ag₂Te. I — взято из [4], $E_{g_0}=0.113$ эB; 2 — избыток 0.02 ат% Ag, значение $E_{g_0}=0.054$ эB; 3 — избыток 0.75 ат% Te, значение $E_{g_0}=0.035$ эB.

ширине запрещенной зоны был проведен расчет температурных зависимостей коэффициента Холла в n-и p-Ag $_2$ Te. Расчет производился по следующей схеме: для одного типа носителей заряда (электронов) в модели со сферическими изоэнергетическими поверхностями коэффициент Холла выражается согласно

$$R = -1/ne. (9)$$

Концентрация электронов при кейновском законе дисперсии n определяется согласно [10]

$$n = \frac{(2m_n^* k_0 T)^{3/2}}{3\pi^2 \hbar^3} I_{3/2,0}^0(\eta, \beta). \tag{10}$$

Из полученных значений m_n^* , η и β по соотношению (10) можно определить n и далее по (9) можно рассчитать R (рис. 2).

Из рис. 2 видно, что при значении $E_{g_0}=0.054\,\mathrm{9B}$ расчетная кривая R для $n\text{-Ag}_2\mathrm{Te}$ согласуется с экспериментальными данными для $n=2.1\cdot 10^{18}\,\mathrm{cm}^{-3}$.

Расчет зависимости R(T) в p-Ag $_2$ Те проведен следующим образом. Как видно из рис. 2, при $T \le 50\,\mathrm{K}$ проводимость исследованного образца Ag $_2$ Те, с избытком Те больше $0.05\,\mathrm{a}$ т%, полностью обеспечивается дырками. Интервал температур $50 < T < 300\,\mathrm{K}$ соответствует области собственной проводимости, и температурная зависимость R(T) определяется двумя типами носителей заряда. В области собственной проводимости для двух типов носителей заряда величина R(T) в слабом магнитном поле H (при $(U_pH/c)^2 \ll 1$) согласно выражению [6]:

$$R = \frac{1}{N_a e} \frac{(1 - c)(1 - b^2 c)}{(1 + bc)^2},\tag{11}$$

где $N_a=p(1-c)$ — концентрация акцепторов, $b=U_n/U_p$ — отношение подвижностей электронов и дырок, c=n/p — отношение концентраций электронов n и дырок p (которые определяются по методам [6]). Температурная зависимость c(T) рассчитывалась по соотношению

$$c = \frac{n_i}{N_a + p_i},$$

где $n_i \approx p_i$ — собственная концентрация определяется согласно

$$n_i = 4.9 \cdot 10^{15} \left(\frac{m_p^* m_n^*}{m_0^2} \right) T^{3/2} \exp\left(-\frac{\varepsilon_g}{2k_0 T} \right).$$
 (12)

Подставляя значения $m_p^*=0.12$ [6], $m_n^*=0.02$ [7], E_{g_0} , c и b, можно рассчитать R(T) (рис. 2).

Из рис. 2 видно, что при значении $E_{g_0}=(0.035-7\cdot 10^{-5}\,{\rm K}^{-1})$ эВ экспериментальные и расчетные данные полностью согласуются.

Из расчетных данных видно, что E_{g_0} для электроотрицательных дефектов больше (ионизованных атомов серебра), чем для электроположительных (вакансии серебра); значения температурного коэффициента ширины запрещенной зоны близки данным [4,6].

4. Анализ полученных результатов

Анализ электрофизических свойств Ag₂Te позволяет считать, что это соединение относится к группе нестехиометрических полупроводниковых фаз переменного состава [7], обладающей характерными особенностями, такими как структурный фазовый переход, сложная энергетическая структура и смешанный ионно-ковалентнометаллический характер химической связи. Одним из основных признаков теллурида серебра является собственная дефектность (концентрация больше $1 \cdot 10^{18} \, \text{см}^{-3} \, [4]$), которая обусловливает отклонения от стехиометрии и изменения энергетических и кинетических параметров носителей заряда. Неполное заполнение тетраэдрических и октаэдрических пустот приводит к кристаллизации соединений Ag₂Te в решетках собственного типа, а наличие ионизованных атомов и вакансий атомов серебра в подрешетке влияет на механизм электронфононного процесса.

Сильная зависимость электрических и термоэлектрических свойств Ag_2 Те при отклонениях от стехиометрии обусловлена образованием и поведением собственных дефектов-вакансий по Ag (межузельных атомов) Ag_{2-x} Те и связана с возникновением дополнительных носителей заряда (n_D) . Расчеты показывают, что если выполняется условие $n_D \geq n_i$, то при этом изменяется ширина запрещенной зоны. Это условие удовлетворяется в случае Ag_{2-x} Те при добавках 0.01 ат% Ag и 0.05 ат% Te.

Из анализа моделей [18] видно, что образование собственных дефектов и их диффузии [19] обусловливаются движением вакансий межузельных атомов серебра. Среди членов семейства халькогенидов серебра Ag_2X (X-S, Se, Te), только Ag_2 Те обладает n- и p- типом проводимости. Причина этого проанализирована в работе [7].

Как отмечалось выше, физические свойства Ag₂Te определяются поведением собственных дефектов и, следовательно, отклонением от стехиометрии. Поэтому все основные параметры носителей заряда и их поведение закономерно изменяются при варьировании стехиометрии состава. Большая концентрация собственных дефектов, сравнимая с концентрацией основных носителей заряда, приводит к специфическим особенностям физических свойств. Увеличение концентрации электроотрицательных дефектов приводит к росту концентрации электронов, а также электропроводности n-Ag₂Te (рис. 1); при этом уровень Ферми смещается в разрешенную энергетическую зону и наступает вырождение [11]. Подвижность носителей заряда и термоэдс, наоборот, уменьшаются, изменяются ширина запрещенной зоны и эффективная масса носителей заряда на уровне Ферми. Степень дефектности количественно и качественно меняет характер зависимостей $\sigma(T)$ и R(T), что подтверждается реализацией для Ад₂Те, электронного фазового перехода типа упорядочения [20]. Основным механизмом рассеяния носителей заряда при низких температурах является рассеяние на дефектах, а при высоких температурах — на тепловых колебаниях решетки [6,7,13].

Таким образом, с изменением концентрации дефектов возникают определенные и взаимосвязанные корреляции между кинетическими свойствами, зонной структурой и характером химической связи соединений Ag_2 Те. Поведение $\sigma(T)$, R(T) и $\alpha_0(T)$ связано с положением атомов серебра в подрешетке элементарной ячейки. Таким образом, с помощью добавок серебра и теллура в Ag_2 Те можно регулировать электрические и термоэлектрические свойства, что позволяет прогнозировать поведение носителей заряда в материалах электронной техники на основе теллурида серебра.

Список литературы

- [1] Ю.А. Гуревич, Ю.И. Харкац. УФН, 136 (4), 693 (1982).
- [2] R. Dalreen, R. Gill. Phys. Rev., 143 (2), 666 (1966).
- [3] Т.Г. Керимова, С.А. Алиев, Г.А.Ахундов. ФТП, **4** (2), 400 (1970).
- [4] A. Addel, S. Gromb. J. Phys. Chem. Sol., 44 (2), 95 (1983).
- [5] А.С. Королева, В.Ю. Мартынов, П.П. Петров. Тез. 2-й Всес. конф. ЧГУ "Материаловедение халькогенидных кислородсодержащих полупроводников", **11**, 47 (1986).
- [6] Ф.Ф. Алиев, Э.М. Керимова, С.А. Алиев. ФТП, **36** (8), 932 (2002).
- [7] Ф.Ф. Алиев, М.Б. Джафаров. ФТП, 42 (11), 1297 (2008).
- [8] С.А. Алиев, Ф.Ф. Алиев. Изв. АН ССССР. Неорг. матер., **25** (2), 241 (1989).
- [9] И.А. Драбкин, Б.Я. Мойжес. ФТП, 21 (9), 1715 (1987).
- [10] Б.М. Аскеров. Кинетические эффекты в полупроводниках (Л., Наука, 1970).
- [11] C.M. Fang, R.A. de Groot, G.A. Wigers. J. Phys. Chem. Sol., 63, 457 (2002).
- [12] В.М. Глазов, Н.М. Махмудова. Изв. АН СССР. Неорг. матер., 6 (8), 1409 (1970).
- [13] Ф.Ф. Алиев, М.Б. Джафаров, Г.З. Аскерова, Э.М. Годжаев. ФТП, **44** (8), 1042 (2010).
- [14] G. Bonnecaze, A. Lichanot, S. Gromb. J. Phys. Chem. Sol., 41, 935 (1980).
- [15] J. Rosenberg. J. Chem. Phys., 33 (3), 665 (1960).
- [16] Ф.Ф. Алиев, Г.Г. Гусейнов, Г.П. Пашаев, Г.М. Агамирзоева, А.М. Магеррамов. Неорг. матер., **44** (2), 156 (2008).
- [17] Ф.Ф. Алиев, Г.А. Гасанов. Неорг. матер., **47** (8), 1 (2011).
- [18] Ф.Ф. Алиев, М.Б. Джафаров, В.И. Эминова. ФТП, **44** (6), 749 (2010).
- [19] Г.Б. Абдуллаев, Т.Д. Джафаров. *Атомная диффузия в полупроводниковых структурах* (М., Атомиздат, 1980).
- [20] Ф.Ф. Алиев. Неорг. матер., 38 (10), 1184 (2002).

Редактор Л.В. Беляков

The role of intrinsic defects in the splitting of the energy spectra of charge carriers in Ag₂Te

M.B. Jafarov, F.F. Aliev*, R.A. Hasanova*, A.A. Saddinova*

Az-1143 Baku, Azerbaijan

Azerbaijan State Agrarian University, Az-2000 Ganja, Azerbaijan * Institute of Physics, Azerbaijan National Academy of Sciences,

Abstract The defect concentration dependences of the forbidden band width and the temperature coefficient of that have been calculated for Ag_2Te with surplus of Ag and Te. On basic of obtained data the correlation between the energy spectrum of charge carriers and defect in Ag_2Te has been analysed. It is established the correlation. It is established that the correlation is the mirror of the most general fundamental relationships between structure and defect concentration in Ag_2Te , due to ions and vacancies in the sub-lattice of silver atoms.