06

Напряжения лавинного пробоя n-p-n-транзисторов И²Л элементов

© С.В. Шутов, А.Н. Фролов, А.А. Фролов

Инстиут физики полупроводников НАН Украины, Херсонское отделение, 73008 Херсон, Украина

(Поступило в Редакцию 16 апреля 2003 г.)

Экспериментально проверена методика определения напряжения лавинного пробоя вертикальных переключающих n-p-n-транзисторов $\mathbb{N}^2 \mathbb{N}$ элементов.

В первые годы после появления элементов интегральной инжекционной логики (${\rm M}^2\Pi$ элементов) основным механизмом пробоя вертикальных переключающих n-p-n-транзисторов считался пробой по "проколу" базы, т.е. по смыканию области пространственного заряда (ОПЗ) коллекторного перехода с эмиттером через базу, который и определял напряжение $U_{\rm keo}$ [1]. Однако развитие технологии и областей применения ${\rm M}^2\Pi$ схем выдвигает требования определять как напряжение "прокола", так и напряжение лавинного пробоя. Известно, что для дрейфовых и бездрейфовых биполярных транзисторов напряжение пробоя при включении транзистора с общим эмиттером (ОЭ) определяется выражением [2]

$$U_{\text{keo}} = \frac{U_{\text{kbo}}}{\sqrt[n]{B_N + 1}},\tag{1}$$

где $U_{
m kbo}$ — напряжение лавинного пробоя p-n-перехода коллектор—база; B_N — коэффициент усиления; n — показатель степени, равный n=3 для p-n-p-тран-зисторов, n=4 для n-p-n-транзисторов.

С целью определения пригодности выражения (1) для расчета напряжения лавинного пробоя вертикальных переключающих n-p-n-транзисторов $\mathrm{H}^2\Pi$ элементов было проведено исследование напряжений пробоя элементов различной топологии, изготовленных на кремниевых однослойных эпитаксиальных структурах (КЭФ) 76 $(6\mathrm{K}\Theta0.4/380\Theta\mathrm{K}\Theta0.01)$.

На каждой пластине были изготовлены одноколлекторные n-p-n-транзистороы на различные максимальные токи с соотношением площадей S_k/S_e , равным 0.88, 0.75, 0.63 (S_k , S_e — площади коллектора и эмиттера соответственно); двухколлекторные n-p-n-транзистороы с соотношением площадей S_k/S_e , равным 0.24 + 0.24 и 0.4 + 0.06; трехколлекторные и четырехколлекторные n-p-n-транзисторы с одинаковыми и различными размерами коллекторов.

Были изготовлены и исследованы 4 партии по 4 пластины в каждой партии. Для различных партий области базы формировались при помощи ионного легирования различными дозами бора и последующей разгонки бора при температуре 1150° С при различных временах разгонки (t). Технологические режимы формирования базовых областей приведены в таблице. Коллекторные области формировались одностадийной диффузией фосфора при температуре 1040° С. В контрольных модулях

каждой пластины методом шар—шлифа определялись глубины p-n-переходов коллектор—база — $X_{\rm jkb}$ и эмиттер—база — $X_{\rm jeb}$.

После вскрытия контактных окон, вакуумного напыления алюминия и фотолитографии по алюминию, проводился отжиг пластин в атмосфере аргона при температуре 510° С в течение 25 min. На измерителе параметров полупроводниковых приборов Л2-56 в пяти точках каждой пластины на всех коллекторах каждого элемента проводилось измерение коэффициентов усиления B_N при напряжениях 0.5 V, напряжения пробоя перехода коллектор—база $U_{\rm kbo}$, напряжения пробоя и также по наклону выходных ВАХ определялось напряжение экстраполяции (напряжение Эрли) U_e . Усредненные данные измерений приведены в таблице.

Из данных измерений видно, что напряжения экстраполяции U_e для $\mathrm{H}^2\Pi$ элементов на одной пластине, но с различной топологией имеют одинаковые значения, что очевидно, так как диффузионные области баз и коллекторов формируются одновременно; часть n-p-n-транзисторов $\mathrm{H}^2\Pi$ элементов имеют значения U_{keo} , близкие к значения U_e .

Так как напряжение "прокола" базы $U_{\rm keo,c}$ и напряжение экстраполяции определяются одинаковыми выражениями [3,4], то при условии $U_{\rm keo}=U_e$ напряжение $U_{\rm keo}$ таких структур определяется "проколом" базы. Тогда более низкие значения $U_{\rm keo}$ будут определяться лавинным пробоем. На основании выражения (1) определено выражение для оценки показателя степени n

$$n = \lg(B_N + 1) / \lg(U_{\text{kbo}}/U_{\text{keo}}). \tag{2}$$

Результаты расчетов величины n для структур, у которых значения напряжения $U_{\rm keo}$ определяются лавинным пробоем, приведены в таблице.

Эти данные показывают, что на одной пластине значения показателя степени n не одинаковы для структур с различным соотношением площадей, но довольно близки для структур с одинаковой топологией, но разными технологическими режимами изготовления.

Обработка выявленной зависимости $n=f(S_k/S_e)$ позволяет определить выражение для оценки показателя степени n при использовании выражения (1) для расчета напряжений лавинного пробоя $\mathbf{M}^2 \Pi$ структур

$$n = 4S_e/S_k. (3)$$

	1							
№ пар-	Технологические режимы		S_k/S_e	Данные измерений электрических				<i>n</i> , расчет
тии			параметров				по (3)	
	Q_b ,	t,		B_N ,	$U_{ m kbo}$,	U_{keo} ,	U_e ,	
	μ C/cm ²	min		un.	V	V	V	
1	4	150	0.88	83	19.4	4.6	4.6	
			0.75	68	19.4	4.6	4.6	
			0.63	55	19.4	4.7	4.6	
			0.4	31	19.4	4.6	4.6	
			0.24	15	19.4	4.7	4.6	
			0.11	5.5	19.4	4.7	4.7	
2	12	105	0.88	42	12.2	5.3	8.7	4.51
			0.75	34	12.2	6.3	8.7	5.38
			0.63	27	12.2	7.2	8.7	6.32
			0.4	15	12.2	8.7	8.7	
			0.24	8	12.2	8.8	8.8	
			0.11	2.5	12.2	8.8	8.8	
3	40	60	0.88	40	8.3	3.6	7.8	4.45
			0.75	33	8.3	4.3	7.8	5.36
			0.63	27	8.3	4.9	7.8	6.32
			0.4	15	8.3	6.3	7.8	10.0
			0.24	7.5	8.3	7.3	7.9	16.6
			0.11	2.5	8.3	7.9	7.9	
4	100	40	0.88	35	6.9	3.1	7.2	4.48
			0.75	28	6.9	3.6	7.2	5.17
			0.63	22.5	6.9	4.2	7.2	6.38
			0.4	13	6.9	5.3	7.2	10.0
			0.24	6.5	6.9	6.1	7.3	16.6
			0.11	2.0	6.9	6.7	7.3	36.3
	•	•		,	•		•	-

Выводы

- 1. Напряжение лавинного пробоя n-p-n-транзисторов $\mathrm{U}^2 \mathrm{J}$ элементов зависит не только от напряжения лавинного пробоя p-n-перехода коллектор—база и коэффициента усиления, но и от соотношения площадей S_k/S_e .
- 2. Выражение (1) для расчета напряжений лавинного пробоя транзисторов $U_{\rm keo}$ является универсальным для приборов и структур, но если для биполярных p-n-pи n-p-n-транзисторов показатель степени n является постоянной величиной, то для ${\rm M}^2{\rm JI}$ структур этот показатель определяется через соотношение площадей согласно выражению (3).

Список литературы

- [1] *Аваев Н.А., Дулин В.Н., Наумов Ю.Е.* Большие интегральные схемы с инжекционным питанием. М.: Сов. радио, 1977. 248 с.
- [2] Гребен А.Б. Проектирование аналоговых интегральных схем. М.: Энергия, 1976. 235 с.
- [3] Степаненко И.П. Основы микроэлектрники. М.: Сов. радио, 1980. 424 с.
- [4] *Зи С.* Физика полупроводниковых приборов: Кн. 1. Пер. с англ. М.: Мир, 1984. 456 с.
- 9 Журнал технической физики, 2004, том 74, вып. 2