Самоорганизация атомного порядка и электронной структуры в пленках LaSrMnO

© З.А. Самойленко,¹ В.Д. Окунев,¹ Т.А. Дьяченко,¹ Е.И. Пушенко,¹ S.J. Lewandowski,² P. Gierlowski,² А. Klimov,² А.А. Abal'oshev²

¹ Донецкий физико-технический институт им. А.А. Галкина НАН Украины, 83114 Донецк, Украина ² Instytut Fizyki PAN, 02-668 Warszawa, Al. Lotnikov 32/46, Poland e-mail: okunev@host.dipt.donetsk.ua

(Поступило в Редакцию 17 июня 2003 г. В окончательной редакции 21 октября 2003 г.)

Обнаружена линейная связь между температурами T_{max} и T_{min} , характеризующими экстремальные точки на температурных зависимостях сопротивления монокристаллических пленок La_{0.6}Sr_{0.2}Mn_{1.2}O₃, имеющих мезоскопическую неоднородность в виде металлических кластеров в диэлектрической матрице. Исследована связь между атомным порядком и электронной структурой образцов с помощью рентгеновской дифракции и оптических спектров поглощения. Показано, что повышение T_{max} при одновременном понижении T_{min} сопровождается коррелированными локальными изменениями в кластеризованных областях структуры в виде уменьшения объема, занятого группировками Mn–O плоскостей с большими межплоскостными расстояниями (d = 2.04-2.08 Å), но с увеличением его в виде группы плоскостей с меньшими d = 1.99-1.90 Å. В электронной подсистеме увеличивается плотность состояний при $\hbar\omega = 1.5$ и 2.4 eV, связанных с наличием ионов Mn³⁺ и Mn⁴⁺, но уменьшается вклад состояний Mn²⁺ в области $\hbar\omega = 0.9$ eV. Показано, что увеличение вклада структурных состояний с меньшими d, обусловленное ростом энергии связи Mn–O с увеличением зарядового состояния Mn³⁺ и Mn⁴⁺, приводит к росту плотности состояний в электронной подсистеме в интервале энергий 0.5–2.7 eV. Наблюдающийся эффект самоорганизации многокомпонентной системы LaSrMnO включает в себя переход от сильно искаженной ромбоэдрической к менее искаженной орторомбической структуре.

Введение

05:12

В результате экспериментальных исследований зависимостей электрического сопротивления от температуры для магниторезистивных пленок La_{0.6}Sr_{0.2}Mn_{1.2}O₃ показано [1-3], что кривые R(T) нередко имеют немонотонный характер с минимумом и максимумом (вставка к рис. 1). Было также замечено, что различные образцы характеризуются неодинаковыми значениями критических температур T_{max} и T_{min}, соответствующих экстремальным величинам сопротивления, которые могут изменяться в широких пределах. Однако взаимозависимости этих параметров уделяется недостаточное внимание. В то же время такая связь вполне ожидаема, поскольку, несмотря на значительные изменения электропроводности, в данных экспериментах принимает участие всегда (при высоких и низких температурах измерений) одна и та же атомная система со своей индивидуальностью для каждого из изучаемых образцов. Особенности атомного и электронного строения металлооксидов проявляются в деталях кластеризации структуры с формированием неоднородностей массовой и электронной плотностей мезоскопического масштаба [4-8].

Исходя из вышесказанного, мы провели исследования взаимосвязи атомной и электронной структур для серии пленок La_{0.6}Sr_{0.2}Mn_{1.2}O₃ (на подложках из SrLaGaO₄) с существенно различающимися температурами T_{max} и T_{min} . Это достигалось вариацией температур роста T_s

в пределах 600-730°C при осаждении слоев методом импульсного лазерного распыления мишени. Для усиления процессов кластерообразования, играющего определяющую роль в электрических и магнитных свойствах манганитов, был взят состав с избытком марганца. Использовался эксимерный лазер (KrF, $\tau = 25 \text{ ns}$) при плотности энергии на мишени 3.0 J/cm² и давлении кислорода в рабочей камере 300 mTorr. Структура пленок анализировалась с использованием длинноволнового СгК_а-излучения фотометодом, облегчающим регистрацию диффузного рассеяния рентгеновских лучей в случае кластеризированных твердых растворов [6], каковыми являются наши объекты. Электрические измерения в интервале 300-4.2 К проводились по стандартным методикам. Спектры оптического поглощения изучались при комнатной температуре в диапазоне $\hbar\omega = 0.5 - 5.0 \,\mathrm{eV}$ с помощью спектрофотометра SP 700С.

Результаты и обсуждение

Все пленки LaSrMnO, анализируемые в настоящей работе, были отобраны по одному непременному признаку: их зависимости сопротивления от температуры измерения имели характерный вид с двумя экстремумами $R_{\max}(T)$ и $R_{\min}(T)$, как это показано на вставке к рис. 1. Наличие максимума R_{\max} на кривых R(T) связывается с началом магнитного упорядочения. При этом температура T_{\max} обычно близка к температуре

Рис. 1. Связь между T_{\min} и T_{\max} для зависимостей R(T), полученных при измерениях различных образцов La_{0.6}Sr_{0.2}Mn_{1.2}O₃. На вставке — типичный ход R(T) для исследуемых образцов.

Кюри. Что касается минимума $R_{\rm min}$, то здесь такой определенности пока нет. Однако в соответствии с результатами [9–11] для слаболегированных манганитов лантана, в которых концентрация ионов Mn⁴⁺ значительно меньше концентрации Mn³⁺, температура $T_{\rm min}$ соответствует температуре зарядового упорядочения. Таким образом, интервал $\Delta T = T_{\rm max} - T_{\rm min}$ представляет собой температурную область активного взаимодействия атомной, электронной и магнитной подсистем, в которой сопротивление образцов, как и в металлах, уменьшается с понижением температуры. При этом металлическая проводимость все-таки не достигается в исследуемых пленках и образцы остаются в диэлектрическом состоянии во всем интервале $\Delta T [4]$.

Особенности взаимодействий химических элементов в многокомпонентной системе при формировании из плазменного потока слоев твердого раствора La_{0.6}Sr_{0.2}Mn_{1.2}O₃ должны проявиться в разнообразии атомного порядка в серии образцов, выращенных в идентичных условиях при вариации лишь одного внешнего параметра — температуры роста T_s. Этому условию отвечает группа пленок La_{0.6}Sr_{0.2}Mn_{1.2}O₃, осажденных на подложках SrLaGaO₄ при различных $T_s = 600, 650,$ 670 и 700°С, в результате чего для них имеет место широкий диапазон значений критических точек $T_{\text{max}} = 135, 277, 285$ и 300° С и $T_{\text{min}} = 100, 30.7, 23$ и 21°С, представленных на рис. 1 наряду с точками для пленок на других подложках и при измерениях образца с $T_s = 730^{\circ}$ С в магнитном поле М (параметры образцов, выращенных при $T_s > 700^{\circ}$ С, при условиях эксперимента ухудшались из-за реакции растущей пленки с подложкой). Расположение точек на рис. 1 предопределило анализ дифракционных отражений для группы пленок с $T_s = 600 - 700^{\circ}$ С при расположении образцов в направлении роста температуры T_s (что совпадает с направлением увеличения температуры T_{max} при одновременном снижении T_{min} на кривых R(T)).

В соответствии с рис. 1 имеем зависимость: $T_{\min} =$ $= aT_{\max} + b$, где a = -0.46, b = 154.3. Столь определенная связь между T_{\min} и T_{\max} для системы La_{0.6}Sr_{0.2}Mn_{1.2}O₃ должна проявиться в особенностях эволюции атомного порядка при изменениях температуры роста пленок $T_s = 600 - 700^{\circ}$ С, от которой зависит интервал $\Delta T = T_{\text{max}} - T_{\text{min}}$. Детали структуры экспериментально были проанализированы с помощью рентгеновских дифрационных картин от соответствующих образцов. Представленные фрагменты дифракционных картин (рис. 2) в интервале углов $29^{\circ} \le \theta_{Cr} \le 40^{\circ}$ характеризуют наиболее активные области кристаллографической структуры, включающие в себя группы Mn-O плоскостей ромбоэдрической (R) и орторомбической (О) фаз — кластеры, которые являются резервуаром для свободных дырок и ответственны за локальную металлическую проводимость, определяя среднюю величину электропроводности пленок. С повышением температуры T_s пленок рост значений T_{max} при уменьшении T_{min} означает увеличение интервала, в котором наблюдается уменьшение сопротивления в процессе перехода образцов в магнитоупорядоченное состояние [4,12].

"Металлизация плоскостей" в структуре кластеров проявляется либо в виде максимумов с плоскими вершинами, либо в виде затянутых хвостов (участки *CD* и *AB* на рис. 2) в исследуемой области дифракций, как на эту особенность было указано в [13,14]. Наиболее яркие изменения наблюдались в структуре металличе-

Рис. 2. Фрагменты рентгеновских дифракционных картин в интервале углов $29 < \theta_{Cr} < 40^{\circ}$ от пленок La_{0.6}Sr_{0.2}Mn_{1.2}O₃, различающихся температурой их роста T_s .

ских кластеров, представленных диффузными максимумами от семейств плоскостей (004) *О*-фазы. При этом происходят не только сдвиги максимума по углу θ , означающие изменение доминирующих межплоскостных расстояний *d* в кластерах (согласно уравнению дифракции Вульфа-Брэггов, $2d \cdot \sin \theta = n\lambda$), но и их внутренней структуры (рис. 2). Например, как видно из сравнений формы диффузных максимумов (004) на рис. 2, при переходе от $T_s = 650$ к 670° С меняется характер асимметрии максимума: при 650° С имеем "хвост" (*AB*) справа, а при 670° С — напротив, "хвост" и площадку (*CD*) слева.

Изменение характера распределения плоскостей в кластеризованной области структуры

Проанализируем интенсивность рассеяния рентгеновских лучей от разных групп плоскостей (с помощью выбранной области дифракций, рис. 2) по мере увеличения температуры роста пленок Т_s (что для наших образцов сопровождается ростом значений T_{max} и снижением T_{\min}). Для этого проследим, как изменяются интенсивности рассеяния рентгеновских лучей в конкретных углах дифракции ($\theta_{Cr} = 29.5 - 40^{\circ}$ через $\Delta \theta = 0.5^{\circ}$), которым соответствуют указанные (на рис. 3, рядом с кривыми) значения межплоскостных расстояний d. Как видно из экспериментально полученных дискретных значений интенсивностей (I), для исследуемых образцов с увеличением T_s имеет место перераспределение интенсивности диффузного рассеяния рентгеновских лучей от соседних плоскостей с близкими по величине межплоскостными расстояниями. Изменения $I(T_s)$ наиболее ярко проявляются для двух групп плоскостей: для одной с $d \sim 2.25 - 2.16$ Å (включающей в себя плоскости (202) О-фазы с $d = 2.\overline{24}$ Å, (203) *R*-фазы с d = 2.16Å и теоретически рассчитанную длину связи MnO(2) с d = 2.17 Å); для другой с d = 2.04 - 1.92 Å (включающей плоскости (400) *R*-фазы с d = 1.942 Å, (004) *O*-фазы с $d = 1.93 \,\text{\AA}$ и теоретически рассчитанные длины связи MnO(2) с d = 1.97 Å и MnO(1) с d = 1.907 Å [15]).

Поскольку перераспределение интенсивности рассеяния в данном случае означает изменение характера распределения конкретных групп плоскостей по величине межплоскостных расстояний d, то полученные результаты доказывают, что в образцах LaSrMnO с увеличением температуры роста пленок $T_s = 600 \rightarrow 700^{\circ}$ С имеет место изменение характера распределения плоскостей с d = 2.25 - 2.22 Å и плоскостей с d = 2.09 - 2.16 Å, для которого при $T_s = 650^{\circ}$ С в первой группе плоскостей изменения описываются кривой с минимумом, а во второй — с максимумом (рис. 3).

Иначе изменяются интенсивности рассеяния от семейства плоскостей с $d \sim 2.04 - 1.92$ Å над слабо реагирующей кривой с d = 2.07 Å (рис. 3). Представленные результаты показывают, что увеличение температуры роста эпитаксиальных слоев LaSrMnO от 600

Рис. 3. Интенсивности когерентного рассеяния рентгеновских лучей от различных образцов в дискретных углах дифракции $(\theta_{\rm Cr} = 29-40^\circ, \text{через } \Delta\theta = 0.5^\circ)$. Справа указаны соответствующие углам θ_i значения межплоскостных расстояний d, Å.

до 700°С вызывает такое изменение в распределении плоскостей группы, при котором сначала (< 650°С) усиливается количество плоскостей в подгруппе с большими (рис. 3) значениями межплоскостных расстояний (d = 2.04 - 1.99 Å), характеризующих область растяжений, а затем (> 650°С) — в подгруппе плоскостей с меньшими межплоскостными расстояниями — область сжатий (d = 1.97 - 1.86 Å) (рис. 3). Эти результаты позволяют утверждать, что, начиная с $T_s = 650$ °С, в кластерной структуре непрерывно увеличивается доля объема, представленного плоскостями с меньшими d.

Поскольку исследуемые межплоскостные расстояния сопоставимы с межатомными расстояниями Mn–O, то наблюдаемый процесс перестраивания атомного порядка при повышении температуры роста слоев LaSrMnO означает переход от преимущественного долевого вклада в общую структуру группы плоскостей с большими межплоскостными расстояниями (d > 2 Å) к группе плоскостей с d < 2 Å. Это позволяет утверждать, что имеется усиление межатомного взаимодействия марганца с кислородом при росте T_s , с увеличением перекрытия волновых функций и соответственно плостности состояний, ответственных за электронные и оптические свойства.

Эволюция электронной подсистемы

О влиянии атомного порядка на электронную структуру пленок LaSrMnO свидетельствуют спектры оптического поглощения (рис. 4). Прозрачность всех образцов низкая (значения коэффициента поглощения α на рис. 4 превышают $2 \cdot 10^4$ cm⁻¹). Следует обратить внимание на отсутствие явно выраженного края оптического поглощения, характерного для классических полупроводников и диэлектриков. Для пленки с $T_s = 600^{\circ}$ C (ромбоэдрическая структура) наблюдаются три максимума поглощения: при 0.9 (*A*), 1.5 (*B*) и 2.0 eV (*C*), отражающие наличие при таких энергиях максимумов в плотности электронных состояний, участвующих в оптических переходах.

В электронной структуре манганитов важную роль играет расщепление *d*-состояний Мп кристаллическим полем с образованием энергетических щелей. Величина энергетического расщепления Δ_{cf} между e_g - и t_{2g} состояниями в кристаллическом поле манганитов зависит от зарядового состояния ионов марганца и уменьшается с увеличением расстояния между ионами Mn-O [2]. Типичные значения Δ_{cf} в оксидах для ионов Mn⁴⁺, Mn³⁺ и Mn^{2+} составляют 2.5, 1.8 и 1.0 eV соответственно. В спектрах перовскитовых манганитов для Mn⁴⁺ и Mn^{3+} они равны 2.4 и 1.5 eV. Это согласуется с экспериментально выявляемыми особенностями оптических спектров поглощения в виде максимумов с близкими к указанным значениями энергий (рис. 4). Более низкая концентрация ионов Mn³⁺ в ромбоэдрической фазе по сравнению с образцами, имеющими орторомбическую структуру, проявилась в том, что коэффициент оптического поглощения α при $\hbar \omega \sim 1.5 \, \text{eV}$, а следовательно, и плотность электронных состояний, участвующих в оптических переходах, в образцах с орторомбической структурой на порядок выше. В области $\hbar \omega > 2.1 \, \text{eV}$ разница между коэффициентами поглощения для ромбоэдрической и орторомбической структур уже невелика (менее 40%).

Наблюдаемое увеличение плотности состояний в интервале 0.5–2.7 eV для орторомбической фазы согласуется с увеличением доли структурных состояний с более плотной упаковкой атомов в кластерах (с меньшими d). Это проявляется в росте интенсивности диффузного рассеяния от кластерных группировок, включающих в себя связи Mn–O с большими зарядовыми состояниями Mn³⁺ и Mn⁴⁺, характеризующиеся большей энергией взаимодействия и соответственно меньшими расстояниями Mn–O [2] (на рис. 3 кривые с d = 1.99-1.92 Å). Сближение ионов Mn и O в орторомбической структуре приводит, как видно из рис. 3 и 4, к существенному увеличению плотности состояний.

Описанные изменения атомного порядка и электронной структуры оказывают определяющее влияние на электропроводность образцов. Так, образцы с ромбоэдрической структурой, полученные при $T_s \leq 600^{\circ}$ С, имеют высокое удельное сопротивление ($\rho \sim 5 \cdot 10^5 \Omega \cdot \text{сm}$

Рис. 4. Оптические спектры поглощения для пленок $La_{0.6}Sr_{0.2}Mn_{1.2}O_3$, различающихся температурой роста T_s .

при 300 К). Наличие же нескольких % орторомбической фазы в пленке с $T_s = 600^{\circ}$ С приводит к снижению удельного сопротивления до $\rho \sim 10^{-2} \,\Omega \cdot$ сm. В пленках с орторомбической структурой удельное сопротивление понижается еще на три–четыре порядка.

Кроме расщепления e_g - и t_{2g} -состояний Мп в кристаллическом поле существенное влияние на форму спектра ромбоэдрической структуры ($T_s = 600^{\circ}$ C) оказывает присутствие в диэлектрической среде кластеров с металлической проводимостью. Благодаря наличию связанных с ними встроенных электрических полей, свойственных сильно неоднородным оптическим средам [16,17], форма края поглощения близка к урбаховской: $\ln \alpha \sim \hbar \omega$ [18] (пунктир на рис. 4).

Группа образцов с $T_s > 600^{\circ}$ С оптически менее прозрачна. Спектры поглощения пленок с $T_s = 650, 670$ и 700°С мало различаются между собой: имеется максимум *B* при $\hbar\omega \sim 1.5 \,\text{eV}$ и максимум *C* при $\hbar\omega \sim 2.0 \,\text{eV}$. Слабую особенность в спектрах при $\hbar\omega \sim 2.0 \,\text{eV}$, которая наблюдается практически во всех образцах в виде максимума *C* (рис. 4; для пленок стехиометрического состава этот максимум не наблюдается), мы связываем с отклонением состава пленок от стехиометрического и формированием кластеров типа MnO₂, когерентно встроенных в основную матрицу. В этом случае можно говорить о проявлении гетерогенности без гетерофазности.

Различие между двумя типами спектров проявляется не только в величинах плотности состояний, но и в присутствии дополнительного пика *A* при $\hbar \omega \sim 0.9 \, {\rm eV}$ для ромбоэдрической и отсутствием такового для орторомбической структуры. Природа максимума *A*, скорее всего, связана с формированием щели между t_{2g} - и e_g -состояниями при наличии ионов ${\rm Mn}^{2+}$.

Для пленок с орторомбической структурой ($T_s = 650$, 670 и 700°С) обработка экспериментальных данных по формуле $\alpha(\hbar\omega) \sim (\hbar\omega - E_{g0})^2/\hbar\omega$, где $\hbar\omega$ — энер-

Рис. 5. Связь коэффициента оптического пропускания $(t, для \hbar \omega = 0.5 \text{ eV})$ и значений удельного сопротивления $(\rho_{\min} \ \mu \rho_{\max})$ в экстремальных точках кривых R(T) с интенсивностью диффузного рассеяния $I_{1.92}$ от группы близко расположенных плоскостей с d = 1.92 Å.

гия кванта и E_{g0} — оптическая ширина запрещенной зоны [19], при аппроксимации зависимости $[\alpha(\hbar\omega)]^{1/2}$ к 0 дает значение $E_{g0} \sim 0$, что наблюдается в манганитах [20]. В коротковолновой области ($\hbar\omega > 3 \text{ eV}$), где на рис. 4 наблюдается увеличение крутизны $\alpha(\hbar\omega)$, при той же обработке получаем значение $E_g = 2.4 \pm 0.05 \text{ eV}$ для всех образцов, соответствующее указанной выше величине расщепления Δ_{cf} между состояниями t_{2g} и e_g для ионов Mn⁴⁺.

На рис. 5 представлена связь экспериментально полученных физических параметров для пленок LaSrMnO: удельного сопротивления в экстремальных точках ($\rho_{\rm max}$ и $\rho_{\rm min}$); оптического пропускания в области энергий, где заметен вклад свободных носителей заряда при внутризонных оптических переходах (t при $\hbar\omega = 0.5 \, {\rm eV}$), с интенсивностью $I_{1.92\,{\rm \AA}}$ диффузного рассеяния рентгеновских лучей от семейств близко расположенных Mn–O плоскостей с $d = 1.92\,{\rm \AA}$.

Сравнение указанных параметров проведено при условии $T_s = 600, 650, 670$ или 700° С = const; направление увеличения температуры T_s совпадает с направлением оси абсцисс (слева направо). Полученные результаты, свидетельствующие об уменьшении удельного сопротивления и оптического пропускания при увеличении объемной доли близко расположенных плоскостей в кластеризованной структуре Mn–O слоев с ростом T_s , доказывают экспериментально наблюдаемый факт усиления металлизации в структуре пленок LaSrMnO в результате сближения ионов марганца и кислорода при увеличении степени ионизации Mn, сопровождающемся кристаллографическим фазовым переходом [4] по схеме: (Mn²⁺ + Mn³⁺ + Mn⁴⁺) ромбоэдрическая фаза \rightarrow (Mn³⁺ + Mn⁴⁺) орторомбическая фаза.

Выводы

Результаты представленных исследований образцов La_{0.6}Sr_{0.2}Mn_{1.2}O₃, объединенных экстремальным характером зависимостей сопротивления от температуры измерений R(T), но различающихся величинами температурных интервалов $\Delta T = T_{\text{max}} - T_{\text{min}}$, позволили выявить следующие закономерности в атомной и электронной подсистемах.

1. Увеличению интервала "металличности" (повышению T_{max} с одновременным понижением T_{min}) способствует процесс перераспределения атомов в семействе коррелирующих плоскостей (при сохранении общего числа рассеивающих центров) от группы далеко расположенных плоскостей (d = 2.04 - 2.02 Å) к группе с близко расположенными плоскостями (d = 1.99 - 1.90 Å) в направлении усиления межатомного взаимодействия марганца с кислородом.

2. В результате усиления взаимодействия Mn–O происходит увеличение плотности электронных состояний, обеспечивающих оптические переходы с энергиями $\hbar\omega = 1.5$ и 2.4 eV, характерными для зарядовых состояний Mn³⁺ и Mn⁴⁺, при одновременном уменьшении плотности состояний, типичных для Mn²⁺ с энергией $\hbar\omega = 0.9$ eV.

Таким образом, показано, что природа увеличения "интервала металличности" $\Delta T = T_{\text{max}} - T_{\text{min}}$ заключается в росте плотности электронных состояний в результате усиления межатомного взаимодействия Mn-O и увеличения локальной массовой плотности в кластеризованной структуре пленок LaSrMnO.

Данная работа была частично поддержана правительством Польши (грант № PBZ-KBN-0.13/TO8/19).

Список литературы

- [1] Нагаев Э.Л. // УФН. 1996. Т. 166. № 8. С. 833–858.
- [2] Coey J.M.D., Viret M., von Molnar S. // Mixed-valence Manganites. Advanced in Physics. 1999. Vol. 48. N 2. P. 167–293.
- [3] Salamon Myron B., Jaime Marcelo // Rev. Mod. Phys. 2001.
 Vol. 73. Juli. P. 583–628.
- [4] Самойленко З.А., Окунев В.Д., Пушенко Е.И., Черенков А., Gierlowski P., Lewandowski S.J., Abal'oshev A., Klimov A., Szewczyk A. // ЖТФ. 2003. Т. 48. Вып. 2. С. 118– 124.
- [5] Okunev V.D., Samoilenko Z.A., Abal'oshev A., Gierlowski P., Klimov A., Lewandowski S.J. // Appl. Phys. Lett. 1999. Vol. 75. N 13. P. 1949–1951.
- [6] Окунев В.Д., Самойленко З.А., Исаев В.А., Klimov A., Lewandowski S.J. // Письма в ЖТФ. 2002. Т. 28. Вып. 2. С. 12–13.
- [7] Okunev V.D., Samoilenko Z.A., Svistunov V.M., Abal'oshev A., Dynowska E., Gierlowski P., Klimov A., Lewandowski S.J. // J. Appl. Phys. 1999. Vol. 85. N 10. P. 7282–7290.
- [8] Кривоглаз М.А. // Электронная структура и электронные свойства металлов и сплавов. Сб. науч. тр. Киев: Наукова думка, 1998. С. 3–39.

- [9] Дубинин С.Ф., Архипов В.Е., Муковский Я.М., Найш В.Е., Пархоменко В.Д., Теплоухов С.Г. // ФММ. 2002. Т. 93. № 3. С. 60–69.
- [10] Нейфельд Э.А., Архипов В.Е., Тумалевич Н.А., Муковский Я.М. // Письма в ЖЭТФ. 2001. Т. 74. Вып. 11. С. 630–632.
- [11] Staub U, Meijer G.I., Fauth F, Allenspach R, Bednorz J.G., Karpinski J., Kazakov S.M., Paolasini L., d'Acapito F. // Phys. Rev. Lett. 2002. Vol. 88. N 12. P. 126402/1–126102/4.
- [12] Бебенин Н.Г., Зайнуллина Р.И., Машкауцан В.В., Гавико В.С., Устинов В.В., Муковский Я.М., Шулятев Д.А. // ЖЭТФ. 2000. Т. 117. Вып. 6. С. 1181–1189.
- [13] Физические свойства высокотемпературных сверхпроводников / Под ред. А.М. Гинзберга. М.: Мир, 1990. 543 с.
- [14] Томсен К., Кардона М. Рамановское рассеяние в высокотемпературных сверхпроводниках. М.: Мир, 1990. С. 411–504.
- [15] Huang Q., Santoro A., Lynn J.W., Erwin R.W., Borchers J.A., Peng J.L., Greene R.L. // Phys. Rev. B. 1997. Vol. 55. N 22. P. 14987–14999.
- [16] Окунев В.Д. // ФТТ. 1992. Т. 31. Вып. 4. С. 1263–1269.
- [17] Okunev V.D., Samoilenko Z.A., Abal'oshev A., Gierlowski P., Klimov A., Lewandowski S.J. // Phys. Rev. B. 2000. Vol. 62. N 1. P. 696–701.
- [18] Бонч-Бруевич В.Л. // УФН. 1983. Т. 140. № 4. С. 583-637.
- [19] Смит Р.А. Полупроводники. М.: Мир, 1982. 558 с.
- [20] Москвин А.С., Зенков Е.В., Панов Ю.Д., Лошкарева Н.Н., Сухоруков Ю.П., Мостовщикова Е.В. // ФТТ. 2002. Т. 44. Вып. 8. С. 1452–1454.